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Two-channel sampling in wavelet subspaces

J.M. Kim and K.H. Kwon

Abstract

We develop two-channel sampling theory in the wavelet subspace Vi
from the multi resolution analysis {V;},ez. Extending earlier results by
G. G. Walter [11], W. Chen and S. Itoh [2] and Y. M. Hong et al [5]
on the sampling theory in the wavelet or shift invariant spaces, we find
a necessary and sufficient condition for two-channel sampling expansion
formula to hold in V.

1 Indroduction

The classical Whittaker-Shannon-Kotel'nikov(WSK) sampling theorem [4]
states that any signal f(¢) with finite energy and the bandwidth 7 can be
completely reconstructed from its discrete values by the formula

= sinmw(t — n)
WSK sampling theorem has been extended in many directions (see [1], [2], [5],
[6], [7], [8], [10], [11], [12] and references therein). G. G. Walter [11] developed
a sampling theorem in wavelet subspaces, noting that the sampling function
sinct := sinnt/nt in the WSK sampling theorem is a scaling function of a
multi-resolution analysis. A. J. E. M. Janssen [6] used the Zak transform to
generalize Walter’s work to regular shifted sampling. Later, W. Chen and S.
Itoh [2] (see also [12]) extended Walter’s result further by relaxing conditions
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TWO-CHANNEL SAMPLING IN WAVELET SUBSPACES 116

on the scaling function ¢(t). Recently in [5],[8] general sampling expansion are
handled on shift invariant spaces([9]). In this work, we find a necessary and
sufficient condition for two-channel sampling expansion to hold in the wavelet
subspace V7 of a multi resolution analysis {V;};ez.

2 Preliminaries

For a measurable function f(¢) on R, we let

500 = swp 17O and[f Ol = i snp 170

be the essential infimum and the essential supremum of |f(t)| on R respec-
tively, where |E| is the Lebesgue measure of E. For any f(t) € L?(R)N L'(R),
we let

F(F)(E) = F(€) = / T pe et

be the Fourier transform of f(¢) so that \/%CF () becomes a unitary operator on

L?(R). A sequence {¢,, : n € Z} in a Hilbert space H is called a Riesz sequence
if {¢n, : n € Z} is a Riesz basis of the closed subspace V := span{¢,, : n € Z}
of H.

Definition 1. A function ¢(t) € L?(R) is called a scaling function of a multi-
resolution analysis (MRA in short) {V;};ez if the closed subspaces V; of L*(R),

v, ::W{qb(?t—k):kez}, ez
satisfy the following properties;
1. --CcViCcVoCVie--;
2. UV, = L*(R) ;
3. V; ={0};
4 P €V if and only if F(2t) € Vg
5. {¢(t —n) :n € Z} is a Riesz basis of Vp.

The wavelet subspace W; is the orthogonal complement of V; in V;; so
that Vj 1 = V;@W,. Then there is a wavelet ¢(t) € L?(R) that induces a Riesz
basis {1)(27t — k) : k € Z} of W;. Moreover, {$(27t — k), (27t — k) : k € Z}
forms a Riesz basis of Vj41.
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For any ¢(t) € L2(R), {¢(t —n) : n € Z} is a Bessel sequence if there is a
constant B > 0 such that

D)ot =) < Bl flFemy f€ L (R)

neEZ

or equivalently (see Theorem 7.2.3 in [3]) G(€) := 3,,cp [(€ + 2nm)|* < B
a.e. on [0, 27].

Lemma 1. (Lemma 2.2 in [5] and Lemma 7.2.1 in [3]) Let ¢(t) € L%(R) be
such that {¢(t — k) : k € Z} is a Bessel sequence. Then, for any {ck}rez €
12,3 ez cud(t — k) converges in L*(R) and

F(Y st —k)) = (3 ene™) (&)

kEZ keZ

For any ¢ = {c,}rez € 12, let €(€) := 3", 7 cke™ *¢. Then, €(£) € L?[0, 2]
or C[0,27] if {cx }rez € 1% or I! respectively.

Lemma 2. If a = {ax}rez, b = {br}rez € [? and A(£) € L*°[0,2n], then
axb:= {ZjeZ ajbk_j}k'GZ €1? and

—

axb(€) = a(€)b(¢).

27] and b(¢) € L2[0,2x], a(&)b(¢) € L2[0,2x].
(€) into its Fourier series Y., c,e™™¢ in L2[0, 2n],

Proof. Since a(§) € L0,
Hence we can expand a(¢)b

where
_ Ly an —iné —ike ( 1k:.§) —ing
o= 27 <a(§)b(§), c >L2[0 27 2T < Z are é bie >L2[0 27]
SETOOT S= Rl S o
ake —ke ArOn—k
< keZ >L2 =)
by Parseval’s identity. Hence the conclusion follows. O

For any ¢(t) € L*(R), let

):Z|Qg(£+2n7r)| and Cy(t) Z|¢t+n

neZ ne”Z
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3 Main Result and an example

In the following, let ¢(t) € L?(R) be a scaling function of an MRA {V; } ez and
(t) the associated wavelet, of which we always assume that H,(§) and Hy ()
are in L*°[0,2n]. Then (cf. Proposition 2.4 in [8]) ¢(¢) and ¢(t) € L*(R) N
C(R) and sup Cy(t) < oo, sup Cy(t) < oo. Hence for any ¢ = {c}nez € [2,
R R
(c*@)(t) :== > cnd(t — n) converges both in L*(R) and uniformly in R so
nez

that each V; C L*(R)NC(R),j € Z.

Let £;[] be the LTI (linear time invariant) systems with frequency re-

sponses M € e L2( )N L>*(R) for j = 1,2. Then

I1(1) = F(FM)(1) € TAR) N C(R), f € L2(R) and j = 1,2
and tl‘gnmz ;[f](t) = 0 by the Riemann-Lebesgue Lemma since f(£)M;(€) €
L'(R).

Moreover by the Poisson summation formula (cf. Lemma 5.1 in [8]), for
any fixed t € R and j = 1,2,

> L[t +n)e ™ =" G(E + 2nm) M;(€ + 2n)et )
neZ nez

and
L[Nt +n)e ™ = (€ + 2nm) M; (€ + 2nm)ettEF2)
nez nez

are in L°°[0, 27| as functions in £ since Hy(§), Hy (&) € L*°[0, 27].
In particular, A; ;(§) = A; ;(§ +2m) € L0, 2] for ¢,j = 1,2, where

4156 = 2 L5llme ™, Ay(€) = Do Lyl (me
neL ner
Let
A©) = (A1 -1

Then for any f(t) = > c1x0(t — k) + > coxtp(t — k) € Vi, where {c1k}rez
kez kez

and {CQ,k}keZ in 12, we have for i = 1,2 and n € Z
= ekl k) + > canLi(@)(t — k),
keZ keZ

which converges both in L?(R) and absolutely on R. In particular

Li(f)(n) = ch,kﬁi(¢)(n*k)+z c26Li(¢Y)(n—k), n€Z and i = 1,2.
kEZ kez
(1)
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Lemma 3. Assume that det A(€) # 0 a.e. in [0,2x]. Let A1, 5(&) < A2,5(&) be
eigenvalues of the Hermitian matriz B(€) = (A(€)*A(E))~L. If || det A(§)]lo >
0, then

0 < [IA,8( o < [A2,8(§)llse < o0

Proof. Since B(£) is a nonsingular positive semi-definite Hermitian matrix a.e.
in [0, 27],
0< )\1’3(5) < )\Q)B(g) a.e. in [0,2’/T].

Since A; ;(§) € L*[0,27] and || det A(§)|lo > 0, all entries of B(§) are also in
L]0, 27] so that the characteristic equation of B(§) is of the form

ME? + FEAE) +9(§) =0

where f(§) and g(§) are real-valued functions in L°°[0,27]. Hence
0 < [[A2,8(8)]loo < 00. Since A1, 5(£)A2, 5(€) = det B(£) = | det A(£)|72,

Idet A2 < Ap(E)A2,5(6) < [[det A(€)[lg® ae. in [0,27]

so that 0 < || det A(&)||=2[Xe.5(&)]I=t < A1.5(€) a.e. in [0,27]. O

Definition 2. For any fi(t) and f2(t) in L3(R), let F(¢ [F; (& )]z2j:1 be

)=
the Gramian of {f1, fo}, where F; ;(§) = kZZ fi(€ + 2km) f; (€ + 2km).
€

Then as a Hermitian matrix, F'(£) has real eigenvalues.

Proposition 1. ([9]) Let M\ p(§) < Ao r(§) be eigenvalues of the Gramian
F(&) of {f1, fo}. Then {fi(t—n), fa(t —n) : n € Z} is a Riesz sequence if and
only if

0 < [[Ar,r(E)llo < [[A2,7(§)]lc0 < 00

Lemma 4. Assume ||det A(€)|lo > 0. Let { g;g ; } A(E)! { (&) ]

and Si(t) == F1(S)(t) for i = 1,2. Then S;(t) € Vi fori = 1,2 and
{S;(t—n):i=1,2 and n € Z} is a Riesz sequence.

Proof. Let A(§)™" = C(&) = [Ci ()7 j=1- Since Ci5(€) € L¥(R), 8;(8) =
Cin(§)0(€) + Cip(O(€) € LA(R) for i = 1,2. Since Cy;(§) = Ci, (€ +
27) € L*°[0,2n], we may expand C;;(§) into its Fourier series C; ;(§) =
> cijre e where {c; .k }rez € [2. Then by Lemma 1,

keZ

$i6) = Y (carne ™06 + cizre ()

kEZ
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so that

Sit) == FHS)(1) = Y (crand(t — k) + oot = k) € Vi,
kEZ
Let G(&) and S(&) be the Gramians of {¢,v} and {S1, Sz} respectively and
M,c(€) < A g(§) and A1 g(§) < Ag,5(&) the eigenvalues of G(§) and S(&)
respectively. Then S(&) = C(£)G(€)C(€)". Let Us(€) and Ug(€) be unitary
matrices, which diagonalize S(£) and G(&) respectively, i.e.,

_ A1,s(6) 0 y
s©=vs©)| 5, % usto
and M elE) 0
G =Ual®) | ™5 AQ,G@)}UG@*
B e o Mal6) 0
1,5 B 1,G X
0 Az,s(f)} R(f)[ 0 cl®) }R(f)
where
R = Vsl CEUa(e) = | prile) Tl |
so that
A5 (€) = Aa(©)IR1,1 (O + A2,a(§)R12() (2)
A2,5(8) = Ma(E)|R21 () + Az, (§) [ Ra2(9) 7. (3)
On the other hand,
RORE)" = Us(§)"C(EC(E)" Us(§) = Us(€)"B(€)Us(€) (4)

A,B(6) 0

= usteruae | 5E 0 |umerusio,

where Ug(§) is the unitary matrix such that

A1, () 0

5O =Us6) | M50 vater

with A g(§) < A2,B(§). Set Us(§)*Up(&) = [Diaj(§>]?,j:1’ which is also a

unitary matrix. Then we have from diagonal entries of both sides of (4),
[R11 (&) +[R12(6)> = M1, (E)[ D11 () + Ao,5(8)[D1,2()]%; (5)
[R2,1(6)? + [Ra,2(6)1> = M1, (E)[ D21 () + Ao, 5(8)[D2,2(€)]*. (6)
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Then we have a.e. in [0, 27] (from (2), (3), (5), and (6))

Ms(©) = M) (1RO + | R12(©)) = Ma(©r.n(E):

As() € A6 (6 (IR21 (O + [ Ras(©)) < A2 6(E)Aa,5(E)
since |D11(€)|? +|D1.2(8)? = |D2.1(&)? + |D22(€)|> = 1 a.e. in [0,27]. Hence
0 <[[Are(©llolA1,5(E)llo < l[A1,s(E)llo

< A2, < [[A2,6(8)lo0l[A2,B(§)]l00 < 00
by Lemma 3 and Proposition 4 so that {S;(t —n):i=1,2 and n € Z} is a
Riesz sequence by Proposition 4. L]
Now we are ready to give the main result of this work.

Theorem 1. There exist S;(t) € Vi (i = 1,2) such that {S;(t —n) : i =
1,2 and n € Z} is a Riesz basis of Vi for which two-channel sampling formula

=3 Li(H)()Si(t —n)+ > La(f)(n)Sa(t - n) (7)
neZ nez
holds for f € Vi if and only if || det A(§)|lo > 0. In this case
Sit) =5 (Cin(§)D(&) + Cia(D(©) (1) for i=1,2. (8)

Proof. Assume | det A(§)|lo > 0 and define S;(t) by (8). Then S;(t) € V1 (i =
1,2) and {S;(t —n) : i = 1,2 and n € Z} is a Riesz sequence by Lemma 5.
For any f(t) € V4

f(t) = chkébt* +ZC2k¢ (t—Fk

kEZL keZ

where {¢; i }rez € 12 for i = 1,2, we have by Lemma 1,

(201 jxe lké) (Zcz ke lk&) 9)

keZ kEZ
mce %(5) = é&(f) we have al emima
e | 70 ] MO 5 | e ey 1), ) and e

1© 22: chl pe )Al,j(i) + (Z@,ke*ikg)Agd(ﬁﬂSj(g)(lo)

j=1 kezZ kez

= Y [GlfAme581()] + 2 [Lalflme"5u(e)|.

nez neZ
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Taking the inverse Fourier transform on (10) gives (7), which implies V; =
span {S;(t—n):i=1,2 and n € Z} so that {S;(t —n):i=1,2 and n € Z}
is a Riesz basis of V4. Conversely assume that there exist S;(t) € V1 (i = 1,2)
such that {S;(t —n):i=1,2 and n € Z} is a Riesz basis of V; and (7) holds.
In particular,

¢(t) = ZL Slt—n +ZL2 )Sg(t—n);
nez nez

’(/)(t) = ZLl Sl t—n +ZL2 )Sg(t—n).
nez nez

By taking Fourier transform and using Lemma 1, we have

{ (6 } — AQ) { g;gg ] (11)

We then have as in the proof of Lemma 5, G(§) = A(£)S(§)A(£)*, where G(&)
and S(§) are Gramians of {¢, 1} and {51, S2} respectively. Hence det G(§) =
det S(¢)| det A(€)|? so that

det G(O) _ Ac(©Mac(é) . Mc()?
det S(§)  Ai,s(§)A2,5(8) — A2,5(6)?

where A1 g(§) < Aa,¢(€) and A; g(€) < Ag,5(€) are eigenvalues of G(§) and
S(€) respectively. Therefore,

Aa(§) > |A1,c(&)lo
A2,5(8) 7 [A2,5(§)o

so that || det A(&)]lo > 0 since both {¢(t — n),y(t —n) : n € Z} and {S;(t —
n) : i = 1,2 and n € Z} are Riesz sequences. Finally (8) comes from (11)
immediately. O

| det A(6)” = a.e. in [0, 27],

| det A()| =

a.e. in [0, 27]

Note that if {£;(¢)(n)}nez and {£;(¥)(n)}nez € I, then 4; ;(€) € C[0, 27]
for i, j = 1,2 so that A; ;(§) € L>[0,2x] and || det A(§)||o > 0 is equivalent to
detA(&) # 0 on [0, 27].

Example. (2-channel sampling in Paley- Wiener space)

Let ¢(t) = sinct so that Vy = spau{¢(t —n) : n € Z} = PW, and V5 =
span{¢(2t—n) : n € Z} = PWa,. Then V; = Vo & W, where W, = span{y (¢t —
n):n € Z} and 9(t) = (cos 3mt)(sinct).
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Note that (;3(6) = \/%X[—ﬂ',ﬂ'] (6) and ’JJ(S) = \/%X[—Qﬂ,—ﬂ']u[ﬂ,Qﬂ'](f)7 where
XE(+) is the characteristic function of a set F in R. We have by (12)

—iné __ Mz(g) ’ 56 [Oaﬂ-)
ZLiM(n)e 5—{ My(E—2m) . £ € [m 2]

neZ
and e om) ciom
. —in& __ i — 4T s c s
%;mwm _{M@ s
Hence

[ Ml(f) MQ(g) } on [0 ﬂ.)
M1(€—27T) M2(§—27T) ’
A(g) =
|: M1(€—27T) M2(§—27T)
M (§) M;(€)

so that the determinant condition ||detA(€)][o > 0 is equivalent to
|detM(£)]lo > O where

e =[G e .

} on [r, 2r]

(&) Ma(¢ —2m)
Take M;(§) = 1 and My(§) = —isgnf so that Lq[f](t) = f(¢) and
Lo[f](t) = f(t) where f(t) is the Hilbert transform of f(t). Then
1 1
M@[4i]

so that ||detM(&)|lo = 2. As a consequence, the sampling formula holds on
Vi = PWa,. In fact, we have from (11),

so that

f@) = Z f(n)sinc2(t —n) — Z f(n)sinm(t — n)sinc(t —n), f € PWa.
nez

nez
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As another example, take M;(§) = 1 and M(§) = i€ so that L1[f](t) = f(t)
and Lo[f](t) = f/'(¢). Then

M@:{ilf z‘(f—l%)]

so that ||detM (£)||o = 2w. By the similar procedure as above, we obtain a
sampling formula

fi) = Z f(n)sinc®2(t —n) + % Z fl(n)sinm(t — n)sinc(t —n), f € PWa,.

nez nez
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