

Two-channel sampling in wavelet subspaces

J.M. Kim and K.H. Kwon

Abstract

We develop two-channel sampling theory in the wavelet subspace V_1 from the multi resolution analysis $\{V_j\}_{j\in\mathbb{Z}}$. Extending earlier results by G. G. Walter [11], W. Chen and S. Itoh [2] and Y. M. Hong et al [5] on the sampling theory in the wavelet or shift invariant spaces, we find a necessary and sufficient condition for two-channel sampling expansion formula to hold in V_1 .

1 Indroduction

The classical Whittaker-Shannon-Kotel'nikov(WSK) sampling theorem [4] states that any signal f(t) with finite energy and the bandwidth π can be completely reconstructed from its discrete values by the formula

$$f(t) = \sum_{n=-\infty}^{\infty} f(n) \frac{\sin \pi (t-n)}{\pi (t-n)}.$$

WSK sampling theorem has been extended in many directions (see [1], [2], [5], [6], [7], [8], [10], [11], [12] and references therein). G. G. Walter [11] developed a sampling theorem in wavelet subspaces, noting that the sampling function sinct := $\sin \pi t/\pi t$ in the WSK sampling theorem is a scaling function of a multi-resolution analysis. A. J. E. M. Janssen [6] used the Zak transform to generalize Walter's work to regular shifted sampling. Later, W. Chen and S. Itoh [2] (see also [12]) extended Walter's result further by relaxing conditions

Key Words: two-channel sampling, wavelet subspaces, Riesz basis 2010 Mathematics Subject Classification: Primary 42C15

Received: 26 April, 2014. Revised: 30 May, 2014. Accepted: 27 June, 2014. on the scaling function $\phi(t)$. Recently in [5],[8] general sampling expansion are handled on shift invariant spaces([9]). In this work, we find a necessary and sufficient condition for two-channel sampling expansion to hold in the wavelet subspace V_1 of a multi resolution analysis $\{V_i\}_{i\in\mathbb{Z}}$.

2 Preliminaries

For a measurable function f(t) on \mathbb{R} , we let

$$||f(t)||_0 := \sup_{|E|=0} \inf_{\mathbb{R} \setminus E} |f(t)|$$
 and $||f(t)||_{\infty} := \inf_{|E|=0} \sup_{\mathbb{R} \setminus E} |f(t)|$

be the essential infimum and the essential supremum of |f(t)| on \mathbb{R} respectively, where |E| is the Lebesgue measure of E. For any $f(t) \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$, we let

$$\mathfrak{F}(f)(\xi) = \hat{f}(\xi) := \int_{-\infty}^{\infty} f(t)e^{-it\xi}dt$$

be the Fourier transform of f(t) so that $\frac{1}{\sqrt{2\pi}}\mathcal{F}(\cdot)$ becomes a unitary operator on $L^2(\mathbb{R})$. A sequence $\{\phi_n:n\in\mathbb{Z}\}$ in a Hilbert space H is called a Riesz sequence if $\{\phi_n:n\in\mathbb{Z}\}$ is a Riesz basis of the closed subspace $V:=\overline{\operatorname{span}}\{\phi_n:n\in\mathbb{Z}\}$ of H.

Definition 1. A function $\phi(t) \in L^2(\mathbb{R})$ is called a scaling function of a multiresolution analysis (MRA in short) $\{V_j\}_{j\in\mathbb{Z}}$ if the closed subspaces V_j of $L^2(\mathbb{R})$,

$$V_j := \overline{span} \Big\{ \phi(2^j t - k) : k \in \mathbb{Z} \Big\}, \ j \in \mathbb{Z}$$

satisfy the following properties;

- 1. $\cdots \subset V_{-1} \subset V_0 \subset V_1 \cdots$;
- 2. $\overline{\bigcup V_i} = L^2(\mathbb{R})$;
- 3. $\bigcap V_i = \{0\};$
- 4. $f(t) \in V_i$ if and only if $f(2t) \in V_{i+1}$;
- 5. $\{\phi(t-n): n \in \mathbb{Z}\}$ is a Riesz basis of V_0 .

The wavelet subspace W_j is the orthogonal complement of V_j in V_{j+1} so that $V_{j+1} = V_j \oplus W_j$. Then there is a wavelet $\psi(t) \in L^2(\mathbb{R})$ that induces a Riesz basis $\{\psi(2^jt-k): k \in \mathbb{Z}\}$ of W_j . Moreover, $\{\phi(2^jt-k), \psi(2^jt-k): k \in \mathbb{Z}\}$ forms a Riesz basis of V_{j+1} .

For any $\phi(t) \in L^2(\mathbb{R})$, $\{\phi(t-n) : n \in \mathbb{Z}\}$ is a Bessel sequence if there is a constant B > 0 such that

$$\sum_{n\in\mathbb{Z}} |\langle f(t), \phi(t-n)\rangle|^2 \le B \|f\|_{L^2(\mathbb{R})}^2, \ f\in L^2(\mathbb{R})$$

or equivalently (see Theorem 7.2.3 in [3]) $G_{\phi}(\xi) := \sum_{n \in \mathbb{Z}} |\hat{\phi}(\xi + 2n\pi)|^2 \leq B$ a.e. on $[0, 2\pi]$.

Lemma 1. (Lemma 2.2 in [5] and Lemma 7.2.1 in [3]) Let $\phi(t) \in L^2(\mathbb{R})$ be such that $\{\phi(t-k): k \in \mathbb{Z}\}$ is a Bessel sequence. Then, for any $\{c_k\}_{k \in \mathbb{Z}} \in l^2, \sum_{k \in \mathbb{Z}} c_k \phi(t-k)$ converges in $L^2(\mathbb{R})$ and

$$\mathcal{F}\left(\sum_{k\in\mathbb{Z}}c_k\phi(t-k)\right) = \left(\sum_{k\in\mathbb{Z}}c_ke^{-ik\xi}\right)\hat{\phi}(\xi).$$

For any $\mathbf{c} = \{c_k\}_{k \in \mathbb{Z}} \in l^2$, let $\widehat{\mathbf{c}}(\xi) := \sum_{k \in \mathbb{Z}} c_k e^{-ik\xi}$. Then, $\widehat{\mathbf{c}}(\xi) \in L^2[0, 2\pi]$ or $C[0, 2\pi]$ if $\{c_k\}_{k \in \mathbb{Z}} \in l^2$ or l^1 respectively.

Lemma 2. If $\mathbf{a} = \{a_k\}_{k \in \mathbb{Z}}$, $\mathbf{b} = \{b_k\}_{k \in \mathbb{Z}} \in l^2 \text{ and } \widehat{\mathbf{a}}(\xi) \in L^{\infty}[0, 2\pi], \text{ then } \mathbf{a} * \mathbf{b} := \left\{ \sum_{j \in \mathbb{Z}} a_j b_{k-j} \right\}_{k \in \mathbb{Z}} \in l^2 \text{ and }$

$$\widehat{\mathbf{a} * \mathbf{b}}(\xi) = \widehat{\mathbf{a}}(\xi)\widehat{\mathbf{b}}(\xi).$$

Proof. Since $\widehat{\mathbf{a}}(\xi) \in L^{\infty}[0, 2\pi]$ and $\widehat{\mathbf{b}}(\xi) \in L^{2}[0, 2\pi]$, $\widehat{\mathbf{a}}(\xi)\widehat{\mathbf{b}}(\xi) \in L^{2}[0, 2\pi]$. Hence we can expand $\widehat{\mathbf{a}}(\xi)\widehat{\mathbf{b}}(\xi)$ into its Fourier series $\sum_{n} c_{n}e^{-in\xi}$ in $L^{2}[0, 2\pi]$, where

$$c_{n} = \frac{1}{2\pi} \left\langle \widehat{\mathbf{a}}(\xi) \widehat{\mathbf{b}}(\xi), e^{-in\xi} \right\rangle_{L^{2}[0,2\pi]} = \frac{1}{2\pi} \left\langle \sum_{k \in \mathbb{Z}} a_{k} e^{-ik\xi}, \left(\sum_{k \in \mathbb{Z}} \overline{b_{k}} e^{ik\xi} \right) e^{-in\xi} \right\rangle_{L^{2}[0,2\pi]}$$
$$= \frac{1}{2\pi} \left\langle \sum_{k \in \mathbb{Z}} a_{k} e^{-ik\xi}, \sum_{k \in \mathbb{Z}} \overline{b_{n-k}} e^{-ik\xi} \right\rangle_{L^{2}[0,2\pi]} = \sum_{k \in \mathbb{Z}} a_{k} b_{n-k}$$

by Parseval's identity. Hence the conclusion follows.

For any $\phi(t) \in L^2(\mathbb{R})$, let

$$H_{\phi}(\xi) := \sum_{n \in \mathbb{Z}} |\hat{\phi}(\xi + 2n\pi)|$$
 and $C_{\phi}(t) := \sum_{n \in \mathbb{Z}} |\phi(t+n)|^2$.

3 Main Result and an example

In the following, let $\phi(t) \in L^2(\mathbb{R})$ be a scaling function of an MRA $\{V_j\}_{j \in \mathbb{Z}}$ and $\psi(t)$ the associated wavelet, of which we always assume that $H_{\phi}(\xi)$ and $H_{\psi}(\xi)$ are in $L^{\infty}[0, 2\pi]$. Then (cf. Proposition 2.4 in [8]) $\phi(t)$ and $\psi(t) \in L^2(\mathbb{R}) \cap C(\mathbb{R})$ and $\sup_{\mathbb{R}} C_{\phi}(t) < \infty$, $\sup_{\mathbb{R}} C_{\psi}(t) < \infty$. Hence for any $\mathbf{c} = \{c_n\}_{n \in \mathbb{Z}} \in l^2$, $(\mathbf{c} * \phi)(t) := \sum_{n \in \mathbb{Z}} c_n \phi(t-n)$ converges both in $L^2(\mathbb{R})$ and uniformly in \mathbb{R} so that each $V_j \subset L^2(\mathbb{R}) \cap C(\mathbb{R})$, $j \in \mathbb{Z}$.

Let $\mathcal{L}_j[\cdot]$ be the LTI (linear time invariant) systems with frequency responses $M_j(\xi) \in L^2(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ for j = 1, 2. Then

$$\mathcal{L}_i[f](t) = \mathcal{F}^{-1}(\hat{f}M_i)(t) \in L^2(\mathbb{R}) \cap C(\mathbb{R}), f \in L^2(\mathbb{R}) \text{ and } j = 1, 2$$

and $\lim_{|t|\to\infty} \mathcal{L}_j[f](t) = 0$ by the Riemann-Lebesgue Lemma since $\hat{f}(\xi)M_j(\xi) \in L^1(\mathbb{R})$.

Moreover by the Poisson summation formula (cf. Lemma 5.1 in [8]), for any fixed $t \in \mathbb{R}$ and j = 1, 2,

$$\sum_{n\in\mathbb{Z}} \mathcal{L}_j[\phi](t+n)e^{-in\xi} = \sum_{n\in\mathbb{Z}} \hat{\phi}(\xi+2n\pi)M_j(\xi+2n\pi)e^{it(\xi+2n\pi)}$$

and

$$\sum_{n\in\mathbb{Z}}\mathcal{L}_j[\psi](t+n)e^{-in\xi} = \sum_{n\in\mathbb{Z}}\hat{\psi}(\xi+2n\pi)M_j(\xi+2n\pi)e^{it(\xi+2n\pi)}$$

are in $L^{\infty}[0, 2\pi]$ as functions in ξ since $H_{\phi}(\xi), H_{\psi}(\xi) \in L^{\infty}[0, 2\pi]$. In particular, $A_{i,j}(\xi) = A_{i,j}(\xi + 2\pi) \in L^{\infty}[0, 2\pi]$ for i, j = 1, 2, where

$$A_{1,j}(\xi) := \sum_{n \in \mathbb{Z}} \mathcal{L}_j[\phi](n) e^{-in\xi}, \quad A_{2,j}(\xi) := \sum_{n \in \mathbb{Z}} \mathcal{L}_j[\psi](n) e^{-in\xi}.$$

Let

$$A(\xi) = [A_{i,j}(\xi)]_{i,j=1}^2.$$

Then for any $f(t) = \sum_{k \in \mathbb{Z}} c_{1,k} \phi(t-k) + \sum_{k \in \mathbb{Z}} c_{2,k} \psi(t-k) \in V_1$, where $\{c_{1,k}\}_{k \in \mathbb{Z}}$ and $\{c_{2,k}\}_{k \in \mathbb{Z}}$ in l^2 , we have for i = 1, 2 and $n \in \mathbb{Z}$

$$\mathcal{L}_{i}(f)(t) = \sum_{k \in \mathbb{Z}} c_{1,k} \mathcal{L}_{i}(\phi)(t-k) + \sum_{k \in \mathbb{Z}} c_{2,k} \mathcal{L}_{i}(\psi)(t-k),$$

which converges both in $L^2(\mathbb{R})$ and absolutely on \mathbb{R} . In particular

$$\mathcal{L}_{i}(f)(n) = \sum_{k \in \mathbb{Z}} c_{1,k} \mathcal{L}_{i}(\phi)(n-k) + \sum_{k \in \mathbb{Z}} c_{2,k} \mathcal{L}_{i}(\psi)(n-k), \ n \in \mathbb{Z} \text{ and } i = 1, 2.$$
(1)

Lemma 3. Assume that det $A(\xi) \neq 0$ a.e. in $[0, 2\pi]$. Let $\lambda_{1,B}(\xi) \leq \lambda_{2,B}(\xi)$ be eigenvalues of the Hermitian matrix $B(\xi) = (A(\xi)^*A(\xi))^{-1}$. If $\|\det A(\xi)\|_0 > 0$, then

$$0 < \|\lambda_{1,B}(\xi)\|_0 \le \|\lambda_{2,B}(\xi)\|_\infty < \infty.$$

Proof. Since $B(\xi)$ is a nonsingular positive semi-definite Hermitian matrix a.e. in $[0, 2\pi]$,

$$0 < \lambda_{1,B}(\xi) \le \lambda_{2,B}(\xi)$$
 a.e. in $[0, 2\pi]$.

Since $A_{i,j}(\xi) \in L^{\infty}[0,2\pi]$ and $\|\det A(\xi)\|_0 > 0$, all entries of $B(\xi)$ are also in $L^{\infty}[0,2\pi]$ so that the characteristic equation of $B(\xi)$ is of the form

$$\lambda(\xi)^2 + f(\xi)\lambda(\xi) + g(\xi) = 0$$

where $f(\xi)$ and $g(\xi)$ are real-valued functions in $L^{\infty}[0, 2\pi]$. Hence $0 < \|\lambda_{2,B}(\xi)\|_{\infty} < \infty$. Since $\lambda_{1,B}(\xi)\lambda_{2,B}(\xi) = \det B(\xi) = |\det A(\xi)|^{-2}$,

$$\|\det A(\xi)\|_{\infty}^{-2} \le \lambda_{1,B}(\xi)\lambda_{2,B}(\xi) \le \|\det A(\xi)\|_{0}^{-2}$$
 a.e. in $[0,2\pi]$

so that
$$0 < \|\det A(\xi)\|_{\infty}^{-2} \|\lambda_{2,B}(\xi)\|_{\infty}^{-1} \le \lambda_{1,B}(\xi)$$
 a.e. in $[0, 2\pi]$.

Definition 2. For any $f_1(t)$ and $f_2(t)$ in $L^2(\mathbb{R})$, let $F(\xi) := [F_{i,j}(\xi)]_{i,j=1}^2$ be the Gramian of $\{f_1, f_2\}$, where $F_{i,j}(\xi) := \sum_{k \in \mathbb{Z}} \hat{f}_i(\xi + 2k\pi) \hat{f}_j(\xi + 2k\pi)$.

Then as a Hermitian matrix, $F(\xi)$ has real eigenvalues.

Proposition 1. ([9]) Let $\lambda_{1,F}(\xi) \leq \lambda_{2,F}(\xi)$ be eigenvalues of the Gramian $F(\xi)$ of $\{f_1, f_2\}$. Then $\{f_1(t-n), f_2(t-n) : n \in \mathbb{Z}\}$ is a Riesz sequence if and only if

$$0 < \|\lambda_{1,F}(\xi)\|_0 \le \|\lambda_{2,F}(\xi)\|_\infty < \infty.$$

Lemma 4. Assume $\|\det A(\xi)\|_0 > 0$. Let $\begin{bmatrix} \hat{S}_1(\xi) \\ \hat{S}_2(\xi) \end{bmatrix} := A(\xi)^{-1} \begin{bmatrix} \hat{\phi}(\xi) \\ \hat{\psi}(\xi) \end{bmatrix}$

and $S_i(t) := \mathcal{F}^{-1}(\hat{S}_i)(t)$ for i = 1, 2. Then $S_i(t) \in V_1$ for i = 1, 2 and $\{S_i(t-n) : i = 1, 2 \text{ and } n \in \mathbb{Z}\}$ is a Riesz sequence.

Proof. Let $A(\xi)^{-1} = C(\xi) = [C_{i,j}(\xi)]_{i,j=1}^2$. Since $C_{i,j}(\xi) \in L^{\infty}(\mathbb{R})$, $\hat{S}_i(\xi) = C_{i,1}(\xi)\hat{\phi}(\xi) + C_{i,2}(\xi)\hat{\psi}(\xi) \in L^2(\mathbb{R})$ for i = 1, 2. Since $C_{i,j}(\xi) = C_{i,j}(\xi + 2\pi) \in L^{\infty}[0, 2\pi]$, we may expand $C_{i,j}(\xi)$ into its Fourier series $C_{i,j}(\xi) = \sum_{k \in \mathbb{Z}} c_{i,j,k} e^{-ik\xi}$ where $\{c_{i,j,k}\}_{k \in \mathbb{Z}} \in l^2$. Then by Lemma 1,

$$\hat{S}_i(\xi) = \sum_{k \in \mathbb{Z}} \left(c_{i,1,k} e^{-ik\xi} \hat{\phi}(\xi) + c_{i,2,k} e^{-ik\xi} \hat{\psi}(\xi) \right)$$

so that

$$S_i(t) := \mathcal{F}^{-1}(\hat{S}_i)(t) = \sum_{k \in \mathbb{Z}} \left(c_{i,1,k} \phi(t-k) + c_{i,2,k} \psi(t-k) \right) \in V_1.$$

Let $G(\xi)$ and $S(\xi)$ be the Gramians of $\{\phi, \psi\}$ and $\{S_1, S_2\}$ respectively and $\lambda_{1,G}(\xi) \leq \lambda_{2,G}(\xi)$ and $\lambda_{1,S}(\xi) \leq \lambda_{2,S}(\xi)$ the eigenvalues of $G(\xi)$ and $S(\xi)$ respectively. Then $S(\xi) = C(\xi)G(\xi)C(\xi)^*$. Let $U_S(\xi)$ and $U_G(\xi)$ be unitary matrices, which diagonalize $S(\xi)$ and $G(\xi)$ respectively, i.e.,

$$S(\xi) = U_S(\xi) \begin{bmatrix} \lambda_{1,S}(\xi) & 0 \\ 0 & \lambda_{2,S}(\xi) \end{bmatrix} U_S(\xi)^*$$

and

$$G(\xi) = U_G(\xi) \begin{bmatrix} \lambda_{1,G}(\xi) & 0 \\ 0 & \lambda_{2,G}(\xi) \end{bmatrix} U_G(\xi)^*.$$

Then

$$\left[\begin{array}{cc} \lambda_{1,S}(\xi) & 0 \\ 0 & \lambda_{2,S}(\xi) \end{array}\right] = R(\xi) \left[\begin{array}{cc} \lambda_{1,G}(\xi) & 0 \\ 0 & \lambda_{2,G}(\xi) \end{array}\right] R(\xi)^*$$

where

$$R(\xi) = U_S(\xi)^* C(\xi) U_G(\xi) := \begin{bmatrix} R_{1,1}(\xi) & R_{1,2}(\xi) \\ R_{2,1}(\xi) & R_{2,2}(\xi) \end{bmatrix}$$

so that

$$\lambda_{1,S}(\xi) = \lambda_{1,G}(\xi)|R_{1,1}(\xi)|^2 + \lambda_{2,G}(\xi)|R_{1,2}(\xi)|^2; \tag{2}$$

$$\lambda_{2,S}(\xi) = \lambda_{1,G}(\xi)|R_{2,1}(\xi)|^2 + \lambda_{2,G}(\xi)|R_{2,2}(\xi)|^2.$$
(3)

On the other hand,

$$R(\xi)R(\xi)^{*} = U_{S}(\xi)^{*}C(\xi)C(\xi)^{*}U_{S}(\xi) = U_{S}(\xi)^{*}B(\xi)U_{S}(\xi)$$

$$= U_{S}(\xi)^{*}U_{B}(\xi) \begin{bmatrix} \lambda_{1,B}(\xi) & 0\\ 0 & \lambda_{2,B}(\xi) \end{bmatrix} U_{B}(\xi)^{*}U_{S}(\xi),$$
(4)

where $U_B(\xi)$ is the unitary matrix such that

$$B(\xi) = U_B(\xi) \begin{bmatrix} \lambda_{1,B}(\xi) & 0 \\ 0 & \lambda_{2,B}(\xi) \end{bmatrix} U_B(\xi)^*$$

with $\lambda_{1,B}(\xi) \leq \lambda_{2,B}(\xi)$. Set $U_S(\xi)^*U_B(\xi) = \left[D_{i,j}(\xi)\right]_{i,j=1}^2$, which is also a unitary matrix. Then we have from diagonal entries of both sides of (4),

$$|R_{1,1}(\xi)|^2 + |R_{1,2}(\xi)|^2 = \lambda_{1,B}(\xi)|D_{1,1}(\xi)|^2 + \lambda_{2,B}(\xi)|D_{1,2}(\xi)|^2;$$
 (5)

$$|R_{2,1}(\xi)|^2 + |R_{2,2}(\xi)|^2 = \lambda_{1,B}(\xi)|D_{2,1}(\xi)|^2 + \lambda_{2,B}(\xi)|D_{2,2}(\xi)|^2.$$
 (6)

Then we have a.e. in $[0, 2\pi]$ (from (2), (3), (5), and (6))

$$\lambda_{1,S}(\xi) \ge \lambda_{1,G}(\xi) \left(|R_{1,1}(\xi)|^2 + |R_{1,2}(\xi)|^2 \right) \ge \lambda_{1,G}(\xi) \lambda_{1,B}(\xi);$$

$$\lambda_{2,S}(\xi) \le \lambda_{2,G}(\xi) \Big(|R_{,21}(\xi)|^2 + |R_{2,2}(\xi)|^2 \Big) \le \lambda_{2,G}(\xi) \lambda_{2,B}(\xi)$$

since $|D_{1,1}(\xi)|^2 + |D_{1,2}(\xi)|^2 = |D_{2,1}(\xi)|^2 + |D_{2,2}(\xi)|^2 = 1$ a.e. in $[0, 2\pi]$. Hence

$$0 < \|\lambda_{1,G}(\xi)\|_0 \|\lambda_{1,B}(\xi)\|_0 \le \|\lambda_{1,S}(\xi)\|_0$$

$$\leq \|\lambda_{2,S}(\xi)\|_{\infty} \leq \|\lambda_{2,G}(\xi)\|_{\infty} \|\lambda_{2,B}(\xi)\|_{\infty} < \infty$$

by Lemma 3 and Proposition 4 so that $\{S_i(t-n): i=1,2 \text{ and } n \in \mathbb{Z}\}$ is a Riesz sequence by Proposition 4.

Now we are ready to give the main result of this work.

Theorem 1. There exist $S_i(t) \in V_1$ (i = 1, 2) such that $\{S_i(t - n) : i = 1, 2 \text{ and } n \in \mathbb{Z}\}$ is a Riesz basis of V_1 for which two-channel sampling formula

$$f(t) = \sum_{n \in \mathbb{Z}} \mathcal{L}_1(f)(n)S_1(t-n) + \sum_{n \in \mathbb{Z}} \mathcal{L}_2(f)(n)S_2(t-n)$$
 (7)

holds for $f \in V_1$ if and only if $\|\det A(\xi)\|_0 > 0$. In this case

$$S_i(t) = \mathcal{F}^{-1}(C_{i,1}(\xi)\hat{\phi}(\xi) + C_{i,2}(\xi)\hat{\psi}(\xi))(t) \quad \text{for } i = 1, 2.$$
 (8)

Proof. Assume $\|\det A(\xi)\|_0 > 0$ and define $S_i(t)$ by (8). Then $S_i(t) \in V_1$ (i = 1, 2) and $\{S_i(t-n) : i = 1, 2 \text{ and } n \in \mathbb{Z}\}$ is a Riesz sequence by Lemma 5. For any $f(t) \in V_1$

$$f(t) = \sum_{k \in \mathbb{Z}} c_{1,k} \phi(t-k) + \sum_{k \in \mathbb{Z}} c_{2,k} \psi(t-k)$$

where $\{c_{i,k}\}_{k\in\mathbb{Z}}\in l^2$ for i=1,2, we have by Lemma 1,

$$\hat{f}(\xi) = \left(\sum_{k \in \mathbb{Z}} c_{1,k} e^{-ik\xi}\right) \hat{\phi}(\xi) + \left(\sum_{k \in \mathbb{Z}} c_{2,k} e^{-ik\xi}\right) \hat{\psi}(\xi). \tag{9}$$

Since $\begin{bmatrix} \hat{\phi}(\xi) \\ \hat{\psi}(\xi) \end{bmatrix} = A(\xi) \begin{bmatrix} \hat{S}_1(\xi) \\ \hat{S}_2(\xi) \end{bmatrix}$, we have by (1), (9) and Lemma 1

$$\hat{f}(\xi) = \sum_{j=1}^{2} \left[\left(\sum_{k \in \mathbb{Z}} c_{1,k} e^{-ik\xi} \right) A_{1,j}(\xi) + \left(\sum_{k \in \mathbb{Z}} c_{2,k} e^{-ik\xi} \right) A_{2,j}(\xi) \right] \hat{S}_{j}(\xi) (10)$$

$$= \sum_{n \in \mathbb{Z}} \left[\mathcal{L}_{1}[f](n) e^{-in\xi} \hat{S}_{1}(\xi) \right] + \sum_{n \in \mathbb{Z}} \left[\mathcal{L}_{2}[f](n) e^{-in\xi} \hat{S}_{2}(\xi) \right].$$

Taking the inverse Fourier transform on (10) gives (7), which implies $V_1 = \overline{\text{span}} \{S_i(t-n) : i=1,2 \text{ and } n \in \mathbb{Z}\}$ so that $\{S_i(t-n) : i=1,2 \text{ and } n \in \mathbb{Z}\}$ is a Riesz basis of V_1 . Conversely assume that there exist $S_i(t) \in V_1$ (i=1,2) such that $\{S_i(t-n) : i=1,2 \text{ and } n \in \mathbb{Z}\}$ is a Riesz basis of V_1 and (7) holds. In particular,

$$\phi(t) = \sum_{n \in \mathbb{Z}} \mathcal{L}_{1}[\phi](n) S_{1}(t-n) + \sum_{n \in \mathbb{Z}} \mathcal{L}_{2}[\phi](n) S_{2}(t-n);
\psi(t) = \sum_{n \in \mathbb{Z}} \mathcal{L}_{1}[\psi](n) S_{1}(t-n) + \sum_{n \in \mathbb{Z}} \mathcal{L}_{2}[\psi](n) S_{2}(t-n).$$

By taking Fourier transform and using Lemma 1, we have

$$\begin{bmatrix} \hat{\phi}(\xi) \\ \hat{\psi}(\xi) \end{bmatrix} = A(\xi) \begin{bmatrix} \hat{S}_1(\xi) \\ \hat{S}_2(\xi) \end{bmatrix}. \tag{11}$$

We then have as in the proof of Lemma 5, $G(\xi) = A(\xi)S(\xi)A(\xi)^*$, where $G(\xi)$ and $S(\xi)$ are Gramians of $\{\phi, \psi\}$ and $\{S_1, S_2\}$ respectively. Hence $\det G(\xi) = \det S(\xi) |\det A(\xi)|^2$ so that

$$|\det A(\xi)|^2 = \frac{\det G(\xi)}{\det S(\xi)} = \frac{\lambda_{1,G}(\xi)\lambda_{2,G}(\xi)}{\lambda_{1,S}(\xi)\lambda_{2,S}(\xi)} \ge \frac{\lambda_{1,G}(\xi)^2}{\lambda_{2,S}(\xi)^2}$$
 a.e. in $[0, 2\pi]$,

where $\lambda_{1,G}(\xi) \leq \lambda_{2,G}(\xi)$ and $\lambda_{1,S}(\xi) \leq \lambda_{2,S}(\xi)$ are eigenvalues of $G(\xi)$ and $S(\xi)$ respectively. Therefore,

$$|\det A(\xi)| \ge \frac{\lambda_{1,G}(\xi)}{\lambda_{2,S}(\xi)} \ge \frac{\|\lambda_{1,G}(\xi)\|_0}{\|\lambda_{2,S}(\xi)\|_{\infty}}$$
 a.e. in $[0, 2\pi]$

so that $\|\det A(\xi)\|_0 > 0$ since both $\{\phi(t-n), \psi(t-n) : n \in \mathbb{Z}\}$ and $\{S_i(t-n) : i = 1, 2 \text{ and } n \in \mathbb{Z}\}$ are Riesz sequences. Finally (8) comes from (11) immediately.

Note that if $\{\mathcal{L}_i(\phi)(n)\}_{n\in\mathbb{Z}}$ and $\{\mathcal{L}_i(\psi)(n)\}_{n\in\mathbb{Z}}\in l^1$, then $A_{i,j}(\xi)\in C[0,2\pi]$ for i,j=1,2 so that $A_{i,j}(\xi)\in L^{\infty}[0,2\pi]$ and $\|\det A(\xi)\|_0>0$ is equivalent to $\det A(\xi)\neq 0$ on $[0,2\pi]$.

Example. (2-channel sampling in Paley-Wiener space)

Let $\phi(t) = \operatorname{sinc} t$ so that $V_0 = \overline{\operatorname{span}} \{ \phi(t-n) : n \in \mathbb{Z} \} = PW_{\pi}$ and $V_1 = \overline{\operatorname{span}} \{ \phi(2t-n) : n \in \mathbb{Z} \} = PW_{2\pi}$. Then $V_1 = V_0 \oplus W_0$ where $W_0 = \overline{\operatorname{span}} \{ \psi(t-n) : n \in \mathbb{Z} \}$ and $\psi(t) = (\cos \frac{3}{2}\pi t)(\operatorname{sinc} \frac{1}{2}t)$.

Note that $\hat{\phi}(\xi) = \frac{1}{\sqrt{2\pi}} \chi_{[-\pi,\pi]}(\xi)$ and $\hat{\psi}(\xi) = \frac{1}{\sqrt{2\pi}} \chi_{[-2\pi,-\pi] \cup [\pi,2\pi]}(\xi)$, where $\chi_E(\cdot)$ is the characteristic function of a set E in \mathbb{R} . We have by (12)

$$\sum_{n\in\mathbb{Z}} \mathcal{L}_i[\phi](n)e^{-in\xi} = \begin{cases} M_i(\xi) &, \xi \in [0,\pi) \\ M_i(\xi - 2\pi) &, \xi \in [\pi, 2\pi] \end{cases}$$

and

$$\sum_{n\in\mathbb{Z}} \mathcal{L}_i[\psi](n)e^{-in\xi} = \left\{ \begin{array}{ll} M_i(\xi - 2\pi) & , \ \xi \in [0,\pi) \\ M_i(\xi) & , \ \xi \in [\pi,2\pi] \end{array} \right..$$

Hence

$$A(\xi) = \begin{cases} \begin{bmatrix} M_1(\xi) & M_2(\xi) \\ M_1(\xi - 2\pi) & M_2(\xi - 2\pi) \end{bmatrix} & \text{on } [0, \pi) \\ M_1(\xi - 2\pi) & M_2(\xi - 2\pi) \\ M_1(\xi) & M_2(\xi) \end{bmatrix} & \text{on } [\pi, 2\pi] \end{cases}$$

so that the determinant condition $\|\det A(\xi)\|_0 > 0$ is equivalent to $\|\det M(\xi)\|_0 > 0$ where

$$M(\xi) = \left[\begin{array}{cc} M_1(\xi) & M_1(\xi - 2\pi) \\ M_2(\xi) & M_2(\xi - 2\pi) \end{array} \right].$$

Take $M_1(\xi) = 1$ and $M_2(\xi) = -i \operatorname{sgn} \xi$ so that $\mathcal{L}_1[f](t) = f(t)$ and $\mathcal{L}_2[f](t) = \tilde{f}(t)$ where $\tilde{f}(t)$ is the Hilbert transform of f(t). Then

$$M(\xi) = \left[\begin{array}{cc} 1 & 1 \\ -i & i \end{array} \right]$$

so that $\|\det M(\xi)\|_0 = 2$. As a consequence, the sampling formula holds on $V_1 = PW_{2\pi}$. In fact, we have from (11),

$$\begin{bmatrix} \hat{S}_1(\xi) \\ \hat{S}_2(\xi) \end{bmatrix} = \begin{cases} \frac{1}{2\sqrt{2\pi}} \begin{bmatrix} 1 \\ -i \end{bmatrix} & \text{on } [-2\pi, 0) \\ \\ \frac{1}{2\sqrt{2\pi}} \begin{bmatrix} 1 \\ i \end{bmatrix} & \text{on } [0, 2\pi] \\ \\ \begin{bmatrix} 0 \\ 0 \end{bmatrix} & \text{otherwise} \end{cases}$$

so that

$$f(t) = \sum_{n \in \mathbb{Z}} f(n) \operatorname{sinc2}(t - n) - \sum_{n \in \mathbb{Z}} \tilde{f}(n) \sin \pi(t - n) \operatorname{sinc}(t - n), \ f \in PW_{2\pi}.$$

As another example, take $M_1(\xi) = 1$ and $M_2(\xi) = i\xi$ so that $\mathcal{L}_1[f](t) = f(t)$ and $\mathcal{L}_2[f](t) = f'(t)$. Then

$$M(\xi) = \left[\begin{array}{cc} 1 & 1 \\ i\xi & i(\xi - 2\pi) \end{array} \right]$$

so that $\|\det M(\xi)\|_0 = 2\pi$. By the similar procedure as above, we obtain a sampling formula

$$f(t) = \sum_{n \in \mathbb{Z}} f(n)\operatorname{sinc}^2 2(t-n) + \frac{1}{\pi} \sum_{n \in \mathbb{Z}} f'(n) \sin \pi (t-n)\operatorname{sinc}(t-n), \ f \in PW_{2\pi}.$$

Acknowledgments: This work is partially supported by the National Research Foundation of Korea (NRF) (2012R1A1A2038650)

References

- [1] A. Aldroubi and K. Gröchenig, Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Review, vol. 43, no. 4, pp. 585-620, 2001.
- [2] W. Chen and S. Itoh, A sampling theorem for shift-invariant subspace, IEEE Trans. Signal Processing, vol. 46, pp. 2822-2824, 1998.
- [3] O. Christensen, An Introduction to frames and Riesz Bases, Birkhäuser, 2002.
- [4] J. R. Higgins, Sampling theory in Fourier and signal analysis, Oxford University Press, 1996.
- [5] Y. M. Hong, J. M. Kim, K. H. Kwon and E. H. Lee, Channeled sampling in shift invariant spaces, Int. J. Wavelets Multiresolut. Inf. Process., vol. 5, pp. 753-767, 2007.
- [6] A. J. E. M. Janssen, The Zak-transform and sampling theorem for wavelet subspaces, IEEE Trans. Signal Processing, vol. 41, pp. 3360-3364, 1993.
- [7] A. J. Jerri, The Shannon sampling theorem-Its various extentions and applications: A tutorial review, Proc. IEEE, vol. 65, pp. 1565-1596, 1977.
- [8] J. M. Kim and K. H. Kwon, Sampling expansion in shift invariant spaces, Int. J. Wavelets Multiresolut. Inf. Process., vol. 6, no. 2, pp. 223-248, 2008.

- [9] A. Ron and Z. Shen, Frames and stable bases for shift-invariant subspaces of $L^2(\mathbb{R})$, Canadian J. Math., vol. 47, pp.1051-1094, 1995.
- [10] M. Unser, $Sampling\mbox{-}50$ years after Shannon, Proc. IEEE, vol. $\bf 88,~pp.$ $567\mbox{-}587,~2000.$
- [11] G. G. Walter, A sampling theorem for wavelet subspaces, IEEE Trans. Inform. Theory, vol. 38, pp. 881-884, 1992.
- [12] P. Zhao, G. Liu and S. Itoh, Frames and sampling theorem for translation-invariant subspaces, IEEE Signal Processing Letters, vol. 11, pp. 8-11, 2004.

J.M. KIM,

Faculty of Mathematics and Computer Sciences, Korea Science Academy of KAIST,

Kores

e-mail: frankim@gmail.com

K. H. KWON,

Faculty of Mathematical Sciences,

Korea Advanced Institute of Science and Technology

Korea

e-mail: khkwon@kaist.edu