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Symmetric Besov-Bessel Spaces

Khadija Houissa and Mohamed Sifi

Abstract

In this paper we introduce the symmetric Besov-Bessel spaces. Next,
we give a Sonine formula for generalized Bessel functions. Finally, we
give a characterization of these spaces using the Bochner-Riesz means.

1 Introduction

Let F be the skew field R, C, or H. For q be a positive integer consider Πq the
set of positive matrices over F and the closed Weyl chamber

Ξq = {ξ = (ξ1, . . . ξq) ∈ Rq, ξ1 ≥ · · · ≥ ξq ≥ 0}

of the hyperoctahedarl group Bq, which acts on Rq by permutations of the
basis vectors and sign changes.

In [15, Section 3], the author has shown that the cone Πq carries a contin-
uously parameterized family of commutative hypergroup structure ∗µ with µ

a real number satisfying µ > d(q − 1

2
), where d = dimRF, which interpolate

those occuring as orbit hypergroup for indices µ = pd
2 ; p ≥ q an integer; with

neutral element 0 and the identity mapping as the involution.
Each convolution ∗µ, in the set

Mq :=

{
pd

2
, p = q, q + 1, . . .

}
∪]d(q − 1

2
),∞[
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, induces a commutative hypergroup convolution ◦µ on Ξq which is obtained
by the technique of orbital hypergroup morphisms [11].

The Fourier transform on Ξq is defined for suitable functions f by

f̂(η) =

∫
Ξq

f(ξ)J
Bq
k (ξ, iη)dω̃µ(ξ),

where J
Bq
k (ξ, iη) represents the generalized Bessel function associated to root

system of type Bq and ω̃µ is the Haar measure on the hypergroup Ξq. The

functions J
Bq
k admit a product formula which permits to define a translation

operator τξ, ξ ∈ Ξq.

This paper deals with new spaces that we will call symmetric Besov-Bessel
spaces as follows. Let 0 < α < q and 1 ≤ p, r < ∞. Let u ∈ Ξq such that
‖u‖ = max

i=1,··· ,q
ui = 1 and put for t > 0, Λp(f, t) = ‖τtuf − f‖p,µ.

We say that a function f on Ξq is in BBp,rα,µ if f ∈ Lp(ω̃µ) (the Lebesgue space
with respect to the measure ω̃µ) and∫ ∞

0

(
Λp(f, t)

tα

)r
dt

t
<∞

where ‖.‖p,α is the usual norm of Lp(ω̃µ).
The goal of this paper is to characterize these spaces by means of the

Bochner Riesz means: For T > 0, β ≥ 0 and f ∈ L1(ω̃µ)

σβT (f)(ξ) = Cµ,q

∫
BT

f̂(η)J
Bq
k (η, iξ)

q∏
i=1

(1− η2
i T
−2)βdω̃µ(η), ξ ∈ Ξq.

where BT = {ξ = (ξ1, . . . , ξq) ∈ Ξq | T ≥ ξ1 ≥ · · · ≥ ξq ≥ 0} and Cµ,q a posi-
tive constant which depend only on µ and q.

To establish this result we shall generalize the Sonine formula correspond-
ing to Bessel functions and give asymptotic behavior of the Bessel function.

Analogous results have been obtained by Giang and Moricz in [6] for the
classical Fourier transform on R. Later, Betancor and Rodriguez-Mesa in [1],
[2], [3] have established similar results, in the framework of Hankel transform
on (0,+∞). In [13] Kamoun proves an analogous result for the Dunkl trans-
form in one dimensional case.

Let us now describe the organization of our paper. In section 2, we recall
some notions about Bessel functions on the cone Πq and Bessel functions of
two arguments. Next, we develop the basic Fourier analysis on the hypergroup
Ξq.
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Section 3 is devoted to the proof of generalized Sonine formula and to
the study of the asymptotic behavior of the matrix Bessel functions in the
neighborhood of 0 and infinity.

In section 4, we define the Bochner-Riesz mean σβT where T > 0 and

β ≥ 0, as an operator on L1(ω̃µ). Next, we express differently σβT in terms

of convolution operator on L1(ω̃µ) : σβT = φT,β ◦µ f where φT,β is up to a
constant factor equals to a Bessel function. Therefore, thanks to properties of
symmetric Bessel convolution we extend the definition of the operator σβT to
the spaces Lp(ω̃µ), 1 ≤ p ≤ +∞.

Next, we introduce symmetric Besov-Bessel spaces B.Bp,rα,µ, 0 < α < q and
1 ≤ p, r < +∞ and then provide their characterizations using Bochner-Riesz
means.

Throughout this paper we denote by
• Cc(Ξq) (resp. C0(Ξq) the space of continuous compactly supported func-

tions on Ξq ((resp. those continous on Ξq and going to 0 at infinity).

• θ = (q − 1)
d

2
+ 1.

• C will denote a suitable positive constant not necessarily the same in
each occurrence.

2 Preliminaries

2.1 Bessel function on the symmetric cone

In this subsection, we provide some relevant background on symmetric cone,
in particular matrix cones, and about Bessel functions on such cone.

ConsiderMp,q = Mp,q(F) the space of p×q matrices over F. LetMq = Mq,q.
It is a real algebra with the involution x → x∗ = xt. Let Hq = Hq(F) the
set of Hermitian q × q matrices over F. It is a Euclidean vector space, its
dimension over R is n = q + d

2q(q − 1). Endowed with the following Jordan
product x ◦ y = 1

2 (xy + yx), Hq(F) becomes a Euclidean Jordan algebra with
unit 1 = Iq, the unit matrix. The rank of Hq is q.

The set Ωq = Ωq(F) of those matrices from Hq which are positive definite
is a symmetric cone (see [4]). Let Gq = GL(q,F) the group of all invertible
q×q matrices over F and Kq the maximal subgroup of Gq which consists of all
matrices k in Mq such that k∗k = 1. Finally let Πq the set of positive matrices
over F.

A function or a measure on Mp,q is said to be radial if it is invariant under
the action of the group Up from the left Up ×Mp,q →Mp,q, (u, x) 7→ ux.

The mapping Up.x 7→
√
x∗x establishes a homeomorphism between the

space of Up-orbits in Mp,q and the cone Πq. Radial functions on Mp,q can
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thus be considered as functions on the cone Πq. Polar coordinates in Mp,q are
given as follows: Let

Σp,q = {x ∈Mp,q, x
∗x = 1}

be the Stiefel manifold. Any matrix x ∈ Gq has a unique decomposition
x = σ

√
r into polar coordinates where σ ∈ Σp,q and

√
r is the unique positive

square root of r = x∗x ∈ Πq. The maximal subgroup Kq acts on Πq via
conjugation (k, r) 7→ krk−1, and the orbits under this action are parameterized
by the set Ξq of possible spectra σ(r) of matrices r ∈ Πq.

The following integration formula is a special case of [4, Theorem VI.2.3].
For integrable function g : Πq → C,∫

Πq

g(r)dr = κq

∫
Ξq

∫
Kq

g(uξu−1)du
∏
i<j

(ξi − ξj)ddξ (1)

here κq > 0 a normalization constant, du the normalized Haar measure on Kq

and ξ ∈ Ξq is identified with the diagonal matrix diag(ξ1, . . . ξq) ∈ Πq.
Hypergeometric functions of matrix argument are certain real-analytic

functions on Hq which are invariant under the maximal compact subgroup
Kq of Gq, these functions can be expanded in terms of the zonal polynomials.

Let us recall some notations
Notations. We denote

• ∆ the function defined on Mq(F), by

∆(x) = (detx)ε, and ε =

{
1, F = R, C,

1/2, F = H.

• For 1 ≤ j ≤ q and s ∈ Hq , ∆j(s) is the principal minors of ∆(s) with
respect to a fixed Jordan frame {e1, . . . eq} of Hq.

• For λ ≥ 0 is a q−tuple λ = (λ1, . . . , λq) of integers such that λ1 ≥ · · · ≥
λq ≥ 0 and |λ| = λ1 + . . . ,+λq the weight of λ.

• For λ = (λ1, · · · , λq) ∈ Cq, ∆λ(s) = ∆(s)λq
∏q−1
j=1 ∆j(s)

λj−λj+1 , the
power function. For λ ≥ 0, ∆λ is a homogeneous polynomial of degree
|λ|, positive on Ωq.

• P the space of all polynomials on Hq
C, where Hq

C is the complexification
of the simple euclidean Jordan algebra Hq.

• For λ ≥ 0, let Pλ be the subspace of P generated by the polynomials z 7→
∆λ(g−1z), g ∈ Gq. The polynomials belonging to Pλ are homogeneous
of degree |λ|, hence Pλ is finite dimensional; let dλ = dimPλ.
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• d∗r = ∆(r)−θdr , where dr is the restriction of the Lebesgue measure
on Hq to Ωq. Notice that d∗r is a Gq−invariant measure on Ωq.

Let us recall some notions

Definition 2.1. 1. The gamma function of the symmetric cone Ωq :

ΓΩq (z) =

∫
Ωq

e−tr r∆z(r)d∗r, z ∈ Cq, <zj >
d

2
(j − 1). (2)

2. For λ ≥ 0, the generalized Pochammer symbol :

(µ)αλ =

q∏
j=1

(
µ− 1

α
(j − 1)

)
λj
, µ ∈ C, α ∈ R?+

where (a)j = a(a+ 1) . . . (a+ j− 1) is the standard Pochammer symbol.

3. The beta function of the symmetric cone Ωq is defined for u, v ∈ Cq
satisfying <uj , <vj > (j − 1)d2 , by

βΩq (u, v) =

∫
0<r<1

∆u(r)∆v−θ(1− r)d∗r.

4. The zonal polynomial φλ of weight λ :

φλ(s) =

∫
Kq

∆λ(ks)dk, s ∈ Hq.

where dk is the normalized Haar measure on Kq.

5. The normalized zonal polynomial Zλ of weight λ :

Zλ(s) = dλ
|λ|!

(nq )λ
φλ(s).

6. For arbitrary α > 0 and a parameter µ ∈ C with <µ > 1
α (q − 1), the

hypergeometric function 0Fα1 (µ; .) on Rq is defined by

0Fα1 (µ; ξ) =
∑
λ≥0

1

| λ |!
1

(µ)αλ
Cαλ (ξ).

where Cαλ refer to Jack polynomial of index α > 0 ( see [12]).

Properties. (See [4] and [7]).
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1. For α = 2
d , we note (µ)

2
d

λ = (µ)λ. Then

(µ)λ =
ΓΩq (µ+ λ)

ΓΩq (µ)
. (3)

2. The following relation relies the gamma and beta functions :

βΩq (u, v) =
ΓΩq (u)ΓΩq (v)

ΓΩq (u+ v)
. (4)

3. The zonal polynomials φλ is the unique Kq−invariant function satisfying

φλ(1) = 1, s ∈ Hq, k ∈ Kq.

4. The zonal polynomials satisfy the product formula∫
Kq

Zλ(
√
rksk−1

√
r)dk =

Zλ(s)Zλ(r)

Zλ(1)
, r, s ∈ Πq. (5)

5. The value of Zλ at s ∈ Hq depend uniquely on the eigenvalues of s,

Zλ(s) = Zλ(ξ) = C
2
d

λ (ξ), (6)

ξ is a diagonal matrix with the diagonal entries the eigenvalues of s.
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Remarks.

1. For m ∈ Cq and r ∈ C we will write m+ r = (m1 + r, . . . ,mq + r); with
this notation ∆r(x) = ∆(x)r. Therefore as special case of (2), we obtain

ΓΩq (z) =

∫
Ωq

e−tr r∆(r)zd∗r, z ∈ C, <z > d

2
(q − 1) = θ − 1. (7)

2. The notion x < y for x, y ∈Mq(F) means that y−x is (strictly) positive-
definite.

3. The normalization of the zonal polynomial is such that

(tr s)m =
∑
|λ|=m

Zλ(s), s ∈ Hq. (8)

4. In the statistical literature the symbol Cαλ , refereing to the Jack poly-
nomial of index α > 0, is used rather than Zλ for the zonal polynomial
normalized by (8).

Definition 2.2. 1. For a complex number µ such that (µ)λ 6= 0 for all
λ ≥ 0, the Bessel function Jµ associated with Ωq in the sense of [4], is
defined by

Jµ(x) =
∑
λ≥0

(−1)|λ|
1

| λ |!
1

(µ)λ
Zλ(x), x ∈ Hq. (9)

2. The Bessel functions of two arguments x, y ∈ Hq, is defined by

Jµ(x, y) = 0F1(µ; iξ, iη) =
∑
λ≥0

(−1)|λ|
1

| λ |!
1

(µ)λ

Zλ(x)Zλ(y)

Zλ(1)
. (10)

Properties.

1. For x ∈ Hq with eigenvalues ξ = (ξ1, . . . , ξq), one has

Jµ(x) = 0F
2/d
1 (µ;−ξ).

2. If q = 1 then Π1 = R+ and Jµ is given by a usual one-variable Bessel

function: Jµ(x
2

4 ) = jµ−1(x), where jµ−1(x) = 0F1(µ;−x
2

4 ).

3. The product formula (5) gives an integral representation for the Bessel
function of two arguments

Jµ(r, s) =

∫
Kq

Jµ(
√
rksk−1

√
r)dk, r, s ∈ Πq. (11)
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4. For ξ, η ∈ Ξq, we have

Jµ(
ξ2

2
,
η2

2
) =

∫
Kq

Jµ(
1

4
ξkη2k−1ξ)dk. (12)

2.2 Bessel function associated with root system Bq

Bessel functions associated with root systems are part of the theory of rational
Dunkl operators which are initiated by C.F. Dunkl in the late nineteen-eighties.
Let W be a finite reflection group on Rq with the usual euclidian scalar product
〈., .〉 and let R be its reduced root system. A W -invariant function k : R→ C is
called a multiplicity function on R. In the present paper, we shall be concerned
with root system Bq = {±ei, 1 ≤ i ≤ q} ∪ {±ei ± ej , 1 ≤ i < j ≤ q}. Each
multiplicity on Bq is of the form k = (k1, k2) where k1 is the value on the
roots ±ei and k2 is the value on the roots ±ei ± ej .

For a fixed multiplicity k, the associated (rational) Dunkl operators are
given by

Tξ(k) = ∂ξ +
∑
α∈R+

k(α) 〈α, ξ〉 1− σα
〈α, .〉

, ξ ∈ Rq.

Here R+ is a positive subsystem of R, σα denotes the reflection in the hy-
perplane perpendicular to α and the action of W is extended to functions on
Rq in the usual way. The operators Tξ(k) commute and therefore generate a
commutative algebra of differential-reflection operators on Rq. For k ≥ 0 and
spectral parameter η ∈ Cq, consider the so-called Bessel system

p(T (k))f = p(η)f p ∈ PW ; f(0) = 1.

PW denotes the subalgebra of W -invariant polynomials in P, and p(T (k)) is
the Dunkl operator associated with the polynomial p(x) = p(x1, . . . , xq) which
is obtained by replacing xi by Tei(k). As proven in [14], the Bessel system
has a unique analytic W -invariant solution ξ 7→ JWk (ξ, η) which is called the
symmetric Bessel function associated with R. In rank one, one obtains the
one-variable Bessel functions Jk(ξ, η) = jk−1/2(iξη).

In the general case, JWk satisfies

JWk (ξ, η) = JWk (η, ξ) (13)

and is W -invariant in both arguments.

Proposition 2.3. (See [15, Proposition 4.5]) Let k = (k1, k2) ≥ 0 and k2 > 0.

Let J
Bq
k denote the Dunkl type Bessel function of type Bq and with multiplicity
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k. For ξ = (ξ1, . . . , ξq) ∈ Cq put ξ2 = (ξ2
1 , . . . , ξ

2
q ). Then for all ξ, η ∈ Cq, we

have

J
Bq
k (ξ, η) = 0Fα1 (µ;

ξ2

2
,
η2

2
), α =

1

k2
, µ = k1 + (q − 1)k2 +

1

2
.

According to this proposition and (10), we can say that for r, s ∈ Πq with
eigenvalues ξ = (ξ1, . . . , ξq) and η = (η1, . . . , ηq) respectively, we have

Jµ(
r2

2
,
s2

2
) = J

Bq
k (ξ, iη) (14)

where k is given by k = kµ,d = (k1, k2) = (µ − d
2 (q − 1) − 1

2 ,
d
2 ) ; see [15,

Corollary 4.6].

2.3 Harmonic analysis on Ξq.

As we recall in the introduction, Rösler in [15] proves that Ξq was equipped
with a hypergroup structure and we have :
• The Haar measure of the commutative hypergroup (Ξq, ◦µ) is given by

dω̃µ(ξ) = dµhµ(ξ)dξ = dµ

q∏
i=1

ξ2δ+1
i

∏
i<j

(ξ2
i − ξ2

j )ddξ, (15)

where δ = µ− θ and the constant dµ > 0 given by

dµ =

(∫
Ξq

hµ(ξ)e−|x|
2

dx

)−1

.

• The dual space of (Ξq, ◦µ) is parameterized by Ξq and consists of the
functions

ψµξ (η) =

∫
K

Jµ(
1

4
ξkη2k−1ξ)dk = J

Bq
k (ξ, iη)

where the multiplicity k is given by k = kµ,d.

• The Bessel functions J
Bq
k with k = kµ,d satisfies the positive product

formula

J
Bq
k (ξ, z)J

Bq
k (η, z) =

∫
Ξq

J
Bq
k (ζ, z)d(δξ ◦ δη)(ζ), ξ, η ∈ Ξq, z ∈ Cq. (16)
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• The symmetric Bessel translation is defined on Lp(ω̃µ) by

τη(f)(ξ) =

∫
Ξq

f(ζ)d(δξ ◦µ δη)(ζ), (17)

where d(δξ ◦µ δη)(ζ) is the convolution on the hyprergroup Ξq. (See [9] for
details).

• If f and g are two measurable functions on Ξq, the symmetric Bessel
convolution f ◦µ g of f and g is defined in [9] by

f ◦µ g(ξ) =

∫
Ξq

τξf(η)g(η)dω̃µ(η), a.e.ξ ∈ Ξq, (18)

when the last integral has a sense.

• The symmetric Bessel transform on Ξq is defined by

f̂(η) =

∫
Ξq

f(ξ)J
Bq
k (ξ, iη)dω̃µ(ξ).

We collect some properties from [9] that we need in this paper :

1. For all ξ ∈ Ξq, the operator τξ can be extended to Lp(ω̃µ) (p ≥ 1) and
for f ∈ Lp(ω̃µ) we have

‖τξ(f)‖p,µ ≤ ‖f‖p,µ . (19)

2. Let f, g two measurable functions on Ξq and let ξ ∈ Ξq, then∫
Ξq

(τξf)(η)g(η)dω̃µ(η) =

∫
Ξq

f(η)(τξg)(η)dω̃µ(η) (20)

3. For all f ∈ L1(ω̃µ) and g ∈ Lp(ω̃µ), 1 ≤ p <∞, we have

τη(f ◦µ g) = τη(f) ◦µ g = f ◦µ τη(g), η ∈ Ξq. (21)

4. For p, r, s ∈ [1,∞] such that 1
p + 1

s = 1
r , the map (f, g) 7→ f ◦µ g , defined

on Cc(Ξq)×Cc(Ξq), extends to a continuous map from Lp(ω̃µ)×Ls(ω̃µ)
to Lr(ω̃µ) and

‖f ◦µ g‖r,µ ≤ ‖f‖p,µ ‖g‖s,µ (22)

5. For all f ∈ L1(ω̃µ) such that f̂ ∈ L1(ω̃µ) we have the inversion formula

f(η) =

∫
Ξq

f̂(ξ)J
Bq
k (ξ, iη)dω̃µ(ξ).
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3 Generalized Sonine’s formula and asymptotic
behaviour for the symmetric Bessel function.

3.1 Generalized Sonine’s formula

Theorem 3.1. Let µ, ν ∈ C, such hat <µ > (q − 1)d2 , <ν > (q − 1)d2 . Then∫
0<r<1

Jµ(
√
sr
√
s)∆(1− r)ν−θ∆(r)µd∗r = βΩq (µ, ν)Jµ+ν(s), s ∈ Πq. (23)

Remark. The proof of the following Theorem was communicated to the
authors by Prof. Jacques Faraut.

Proof. We shall use the same proof like in [4, Proposition XV1.4]. Using the
relation (9) we shall compute the integral∫

0<r<1

Zλ(
√
sr
√
s)∆(1− r)ν−θ∆(r)µd∗r.

Substituting r by krk−1, we can write∫
0<r<1

Zλ(
√
sr
√
s)∆(1− r)ν−θ∆(r)µd∗r

=

∫
0<r<1

Zλ(
√
skrk−1

√
s)∆(1− r)ν−θ∆(r)µd∗r

Now integrating over Kq, using the invariance under Kq and the product for-
mula (5), one obtains∫

0<r<1

Zλ(
√
sr
√
s)∆(1− r)ν−θ∆(r)µd∗r

= Zλ(s)

∫
0<r<1

Zλ(r)

Zλ(1)
∆(1− r)ν−θ∆(r)µd∗r.

From the definition of the beta function and the relations (3) and (4), the left
hand side of the above equality is equals to

Zλ(s)βΩq (λ+ µ, ν) = Zλ(s)
(µ)λ

(µ+ ν)λ

ΓΩq (µ)ΓΩq (ν)

ΓΩq (µ+ ν)
.

Finally to obtain (23) we use relation (9) and integrate term by term.
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Corollary 3.2. Let µ, ν ∈ C, such that <µ > (q− 1)d2 , <ν > (q− 1)d2 . Then

βΩq (µ, ν)Jµ+ν(
η

4

2
) = 2q

κq
dµ

∫
B1

J
Bq
k (ξ, iη)

q∏
i=1

(1− ξ2
i )ν−θdω̃µ(ξ). (24)

Proof. Using relation (1) and the Kq-invariance of the determinant we obtain∫
0<r<1

Jµ(
√
sr
√
s)∆(1− r)ν−θ∆(r)µd∗r =

κq

∫
B1

∆(1− ξ)ν−θ∆(ξ)µ−θ

(∫
Kq

Jµ(
√
ηkξk−1√η)dk

)∏
i<j

(ξi − ξj)ddξ

where ξ, η ∈ Ξq are the eigenvalues of r (resp. of s) identified with the diagonal
matrix diag(ξ1, . . . , ξq), (resp. diag(η1, . . . , ηq) in Πq.
Now using (11), we obtain∫

0<r<1

Jµ(
√
sr
√
s)∆(1− r)ν−θ∆(r)µd∗r

= κq

∫
B1

Jµ(ξ, η)∆(1− ξ)ν−θ
q∏
i=1

ξδi
∏
i<j

(ξi − ξj)ddξ.

Finally, replacing ξ by ξ2 and using relations (12),(14) and (15) we obtain the
desired result.

3.2 Asymptotic behavior for the Bessel function Jµ

We come back to polar coordinates on Mp,q: Let f ∈ L1(Mp,q), and µ = pd
2

then ∫
Mp,q

f(x)dx =
πµq

ΓΩq (µ)

∫
Ωq

∫
Σp,q

f(σ
√
r)∆µ(r)d∗rdσ

where dσ denotes the unique Up-invariant measure on Σp,q normalized accord-
ing to σ(Σp,q) = 1. Let ωµ denote the measure on Πq wich is obtained as the
image measure of the normalized Lebesgue measure (2π)−µqdx on Mp,q under
the mapping x 7→

√
x∗x. Calculation in polar coordinates gives

ωµ(f) =
2−µq

ΓΩq (µ)

∫
Ωq

f(
√
r)∆µ(r)d∗r. (25)

Remark. If we consider the canonical mapping σ : Πq → Ξq, r → σ(r),
where σ(r) = (ξ1, . . . , ξq) ∈ Rq is the set of eigenvalues of r ordered by size
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according to ξ1 ≥ · · · ≥ ξq ≥ 0. Then the image measure of ωµ under σ is
ω̃µ = dµhµ(ξ)dξ.

Now suppose that F ∈ L1(Mp,q) is radial with F (x) = f(
√
x∗x), then the

Fourier transform of F is also radial and given by

F̂ (t) =
1

(2π)µq

∫
Mp,q

F (x)e−i(t,x)dx =

∫
Πq

f(r)

(∫
Σp,q

e−i(t,σr)dσ

)
dωµ(r).

The inner integral over the Stiefel manifold can be expressed in terms of the
Bessel function Jµ on Ωq with parameter µ = pd

2 . According to [4, Proposition
XVI2.2], we have for all x ∈Mp,q∫

Σp,q

e−i(σ|x)dσ = Jµ(
1

4
x∗x), µ =

pd

2
. (26)

An asymptotic formula for the Bessel function Jµ for µ = pd
2 was given in [5] :

Let r =

q∑
j=1

ξjej be an element in Ωq with distinct eigenvalues ξ1 > ξ2 > · · · >

ξq(> 0), then as t→ +∞,

Jµ(tr2) =
ΓΩq (µ)

(4π)
n
2

(
2

t

)q(µ− θ2 ) ∑
ω∈Zq2

(
|H(σω)|−

1
2 ei(

π
4 s(σω)+it(σωr|σ0)

)
+ O(t−(q(µ− θ2 )+1)),

where σ0 =

(
Iq
0

)
∈ Mp,q(F) , σω = σ0rω with rω =

∑q
j=1 ωjej , H(σω)

denotes the Hessian of the function g(σ) = (rσ | σ0) and takes the value

H(σω) = (−1)2µq−n
∏
i<j

(
1

2
(ωiξi + ωjξj)

)d( q∏
i=1

ωiξi

)(2µ−(q−1)d−1)

while s(σω) denotes the signature of the Hessian matrix H(σω) and is equal
to

s(σω) = −
q∑
i=1

(2µ− (i− 1)d− 1)ωi.

For µ = pd
2 with an integer p ≥ q, we obtain from (26) that for all x ∈Mq,

Jµ(x∗x) =

∫
Σp,q

e−2i(σ|σ0x)dσ =

∫
Σp,q

e−2i(σ̃|x)dσ
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where σ̃ = σ∗0σ. If p ≥ 2q, then according to [15, Corollary 3.2] this can be
written as

Jµ(x∗x) =
1

κµ

∫
Dq

e−2i(v|x)∆(1− v∗v)µ−ρdv. (27)

where Dq = {v ∈Mq, v
∗v < I} and for µ ∈ C with <µ > ρ− 1,

κµ =

∫
Dq

∆(1− v∗v)µ−ρdv.

Analytic continuation with respect to µ shows that (27) remains valid for
all µ ∈ C with <µ > ρ− 1.

If x 6= 0, the function v 7→ 2(v | x) has no critical points, so it follows
from the Riemann-Lebesgue lemma for the additive group (Mq,+) that Jµ is
in C0(Πq). When F = R the result goes back to Herz, see[8].

Proposition 3.3. 1. For x→ 0 , we have for x ∈ Hq

Jµ(x) = 1− 1

µ
tr(x) +O(|x|2).

where |x|2 = (x | x).

2. Let t > 0, then for all r, s ∈ Ωq with distinct eigenvalues ξ = (ξ1, · · · , ξq)
with ξ1 > ξ2 > · · · > ξq(> 0) and η = (η1, · · · , ηq) with η1 > η2 > · · · >
ηq(> 0) respectively we have:√

ω̃µ(ξ)ω̃µ(η) |Jk(ξ, itη)| ≤ Ct−(qµ− q2 )

where C is a constant not depending on t and k = (k1, k2) is given in
Proposition 2.3.

Proof. 1) It follows immediately from (8) and (9).
2) According to [10, Corollary 1], for a reflection group W and a corresponding
Weyl chamber C attached with the positive subsystem R+, we have : There
exists a constant non-zero vector (vg)g∈W ∈ C|W | such that for all x, y ∈ C
and g ∈W ,

lim
t→∞

tγe−it〈x,gy〉Ek(itx, gy) =
vg√

ωk(x)ωk(y)

where ωk(x) is the weight function defined by

ωk(x) =
∏
α∈R+

|〈α, x〉|2k(α)
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which is W−invariant and homogenous of degree 2γ, with the index γ :=

γ(k) =
∑
α∈R+

k(α) ≥ 0. Applying this result for our case W = Bq, we obtain

according to Proposition 2.3 and (15) that ωk(x) = 1
dµ
ω̃µ(x), γ = qµ− q

2 and

so we can write√
ωk(x)ωk(y)Ek(itx, gy) ∼ t−(qµ− q2 )eit〈x,gy〉vg, as t→∞

The following relation :

Jk(x, ity) =
1

|W |
∑
g∈W

Ek(itx, gy),

gives the result.

4 Characterization of symmetric Besov-Bessel spaces.

4.1 The Bochner-Riesz means

In this section we define the Bochner-Riesz means σβT , T > 0 and β ≥ 0, as

operators on L1(ω̃µ). We prove that we may define σβT on Lp(ω̃µ).

Definition 4.1. Let T > 0 be a real number, β ≥ 0 and µ ∈ Mq. We define

the Bochner-Riesz mean σβT f of a function f ∈ L1(ω̃µ) by

σβT f(ξ) =
2n

ΓΩq (µ)

κq
dµ

∫
BT

J
Bq
k (η, iξ)f̂(η)

q∏
i=1

(1− η2
i T
−2)βdω̃µ(η), ξ ∈ Ξq (28)

For T > 0 and β ∈ R+, we consider the function

ΦT,β(α) = 2n−qT 2µq βΩq (µ, β + θ)

ΓΩq (µ)
Jβ+µ+θ(T

2α
2

4
), (29)

where α = (α1, . . . , αq) ∈ Ξq , usually identified with diag((α1, . . . , αq) ∈ Πq.
According to (7) and (4), the function ΦT,β(α) is well defined for µ >

d
2 (q − 1) and β + θ > d

2 (q − 1).

Proposition 4.2. Let f ∈ L1(ω̃µ), µ ∈Mq verifying µ > d
2 (q−1). For T > 0

and β + θ > d
2 (q − 1), the Bochner-Riesz mean σβT f verifies the convolution

relation
σβT f = ΦT,β ◦µ f. (30)
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Proof. From (28) and Fubini’s theorem we get for ξ ∈ Ξq,

σβT f(ξ) =
2n

ΓΩ(µ)

κq
dµ

∫
Ξq

∫
BT

J
Bq
k (η, iξ)J

Bq
k (λ, iη)

q∏
i=1

(1 − η2
i

T 2
)βdω̃µ(η)f(λ)dω̃µ(λ).

To make concise the formula, we introduce

IT,ξ(λ) =
2n

ΓΩ(µ)

κq
dµ

∫
BT

J
Bq
k (ξ, iη)J

Bq
k (λ, iη)

q∏
i=1

(1− η2
i

T 2
)βdω̃µ(η).

It follows from (13) that

σβT f(ξ) =

∫
Ξq

IT,ξ(λ)f(λ)dω̃µ(λ).

Using the change of variable Tz = η, we obtain

IT,ξ(λ) =
2n

ΓΩ(µ)

κq
dµ
TNq

∫
B1

Jk(ξ, iTz)Jk(λ, iTz)

q∏
i=1

(1− z2
i )βdω̃µ(z),

where Nq = dq2 + (2γ + 2− d)q = 2µq.
Now (16) and again Fubini’s theorem give

IT,ξ(λ) =
2n

ΓΩ(µ)

κq
dµ
T 2µq

∫
Ξq

∫
B1

Jk(α, iTz)

q∏
i=1

(1− z2
i )βdω̃µ(z)d(δξ ◦µ δλ)(α).

Thanks to (24) and (29), we obtain

ΦT,β(α) =
2n

ΓΩ(µ)

κq
dµ
T 2µq

∫
B1

Jk(α, iTz)

q∏
i=1

(1− z2
i )βdω̃µ(z).

So from (17)

IT,ξ(λ) =

∫
Ξq

ΦT,β(α)d(δξ ◦µ δλ)(α) = τξΦT,β(λ).

Make use of (20) and (18) we easily get σβT f(ξ) = ΦT,β ◦µ f(ξ) as desired.

Lemma 4.3. For µ ∈Mq such that µ+ β + θ > d(q − 1) + 1, we have∫
Ξq

ΦT,β(α)dω̃µ(α) = 1.
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Proof. It follows from (29), (6) and (25) that∫
Ξq

ΦT,β(α)dω̃µ(α)

= 2n−qT 2µq βΩq (µ, β + θ)

ΓΩq (µ)

∫
Ξq

Jβ+µ+θ(
α2

4
)dω̃µ(α)

= 2n−q
βΩq (µ, β + θ)

ΓΩq (µ)

∫
Πq

Jβ+µ+θ ◦ σ(
r2

4
)dωµ(r)

= 2n−q(µ+1) ΓΩq (β + θ)

ΓΩq (β + µ+ θ)ΓΩq (µ)

∫
Πq

Jβ+µ+θ ◦ σ(
r

2
)∆µ(r)d∗r

=
ΓΩq (β + θ)

ΓΩq (µ)ΓΩq (β + µ+ θ)

∫
Πq

Jβ+µ+θ(r)∆
µ(r)d∗r

Applying [4, Proposition XV4.5], we obtain∫
Ωq

Jβ+µ+θ(s)∆
µ(s)d∗s =

ΓΩq (µ+ 2ρ)ΓΩq (β + µ+ θ)

ΓΩq (β + θ)
,

here ρ = (ρ1, . . . , ρq) where ρi = d
4 (2i− q − 1).

From [4, Proposition XIV5.1], we get

ΓΩq (s+ 2ρ) = ΓΩq (s
∗), s = (s1, · · · , sq) ∈ Cq; and s∗ = (sq, · · · , s1).

As µ is a real number so µ∗ = µ and then ΓΩq (µ + 2ρ) = ΓΩq (µ). Which
complete the proof.

Let f ∈ Lp(ω̃µ) , 1 ≤ p ≤ +∞ and µ ∈Mq such that µ+β+θ > d(q−1)+1.
Since ΦT,β ∈ L1(ω̃µ) we have by virtue of (22)

‖ΦT,β ◦µ f‖p,µ ≤ ‖ΦT,β‖1,µ ‖f‖p,µ

That suggest us to extend the definition of the operator σβT to Lp(ω̃µ), p ≥ 1,
by the relation (30).

Lemma 4.4. Let f ∈ Lp(ω̃µ) for some 1 ≤ p < ∞, and µ ∈ Mq such that
µ+ β + θ > d(q − 1) + 1. Then

1. σβT f(ξ) −→ f(ξ), as T → +∞, a. e. ξ ∈ Ξq.

2. σβT f(ξ) −→ 0, as T → 0+.
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Proof. 1) It follows by an analog proof as in the case of ordinary Fourier
transform.(See [16]).
2) By virtue of relationship (22) we have∣∣∣σβT f(ξ)

∣∣∣ ≤ ‖ΦT,β‖r,µ ‖f‖p,µ
with 1

r + 1
p = 1. But ‖ΦT,β‖r,µ = C.T

2µq
p where C is a positive constant not

depending on T , consequently σβT f(ξ) −→ 0, uniformly in ξ ∈ Ξq.

Lemma 4.5. Let T > 0, µ ∈Mq such that µ+ β > (q − 1)d2 and 1 ≤ p <∞.
For every function f ∈ Lp(ω̃µ), we have

f(ξ)(Log2) =

∫ ∞
0

[
σβ2T f(ξ)− σβT f(ξ)

] dT
T

a.e. ξ ∈ Ξq. (31)

Proof. Let T > 0 we can write

σβ2T f(ξ)− σβT f(ξ) =

∫ 2T

T

d

dt
σβt f(ξ)dt.

Integrating both sides and using Fubini’s theorem we obtain∫ ∞
0

[
σβ2T f(ξ)− σβT f(ξ)

] dT
T

=

∫ ∞
0

d

dt

{
σβt f(ξ)

}(∫ t

t/2

dT

T

)
dt

= (Log2)∞0
d

dt

{
σβt f(ξ)

}
dt.

Applying Lemma 4.4, we get∫ ∞
0

d

dt

{
σβt f(ξ)

}
dt = f(ξ), a.e. ξ ∈ Ξq.

Our proof is now complete.

4.2 Symmetric Besov-Bessel spaces

We are going to establish an analogous of [1, Theorem 2.1].

Theorem 4.6. Let T > 0, 0 < α < q , 1 ≤ p, r < ∞, µ ∈ Mq, − q2 < µq <
(β+θ− 1

2 )q−α and f ∈ Lp(ω̃µ). The following three properties are equivalent

1. f ∈ BBp,rα,µ.

2. Tα
∥∥∥σβT (f)− f

∥∥∥
p,µ
∈ Lr((0,∞), dTT ).



Symmetric Besov-Bessel Spaces 91

3. Tα
∥∥∥σβ2T (f)− σβT (f)

∥∥∥
p,µ
∈ Lr((0,∞), dTT ).

Proof. 1) ⇒ 2) Let T > 0, by Lemma 4.3 together with (30), we can write

σβT f(ξ)− f(ξ) =

∫
Ξq

ΦT,β(η)(τηf(ξ)− f(ξ))dω̃µ(η), ξ ∈ Ξq.

Using the generalized Minkowski inequality, we spilt∥∥∥σβT (f)− f
∥∥∥
p,µ
≤
∫

Ξq

|ΦT,β(η)|Λp(f, ‖η‖)dω̃µ(η) = I1 + I2,

where

I1 =

∫ 1
T

0

|ΦT,β(η)|Λp(f, ‖η‖)dω̃µ(η) ; I2 =

∫ +∞

1
T

|ΦT,β(η)|Λp(f, ‖η‖)dω̃µ(η).

Now according Proposition 3.3.(1) and (29), we get

I1 ≤ CT 2µq

∫ 1
T

0

Λp(f, ‖η‖)dω̃µ(η)

≤ CT 2µq

∫ 1
T

0

Λp(f, η1)η
(2δ+1)q+dq(q−1)
1 dη1

≤ CT q
∫ 1

T

0

Λp(f, η1)dη1.

To estimate I2, we may use Proposition 3.3.(2), (9), (10), (14) and (29) to
obtain

I2 ≤ CT (µ−β−θ)q+ q
2

∫ +∞

1
T

Λp(f, η1)η
(µ−β−θ)q− q2
1 dη1.

Arguing as in [6, Lemma 6] and [1, Lemma 2.2], we deduce that[∫ ∞
0

(
Tα‖σβT (f)− f‖p,µ

)r dT
T

] 1
r

≤ C

[∣∣∣∣∣Tα+q

∫ 1
T

0

Λp(f, η1)dη1

∣∣∣∣∣
r
dT

T

] 1
r

+ C

[∣∣∣∣∣Tα+(µ−β−θ)q+ q
2

∫ ∞
1
T

Λp(f, η1)η
(µ−β−θ)q− q2
1 dη1

∣∣∣∣∣
r
dT

T

] 1
r

≤ C

[∫ ∞
0

(Λp(f, t)

tα
)r dt
t

] 1
r

.
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2) ⇒ 3) is a consequence of the following inequality∥∥∥σβ2T (f)− σβT (f)
∥∥∥
p,µ
≤
∥∥∥σβ2T (f)− f

∥∥∥
p,µ

+
∥∥∥σβT (f)− f

∥∥∥
p,µ

.

3) ⇒ 1) We set for a function f ∈ Lp(ω̃µ)

δ(f, ξ, t) = τtuf(ξ)− f(ξ), ξ,∈ Ξq, t > 0, u = (1, 0, · · · , 0).

Since τξ is a bounded operator in Lp(ω̃µ) for all ξ ∈ Ξq then according to (31),
we can write for all t > 0 and almost every where ξ ∈ Ξq,

δ(f, ξ, t)(Log2) =

∫ ∞
0

[
σβ2T δ(f, ., t)(ξ)− σ

β
T δ(f, ., t)(ξ)

] dT
T
.

Now thanks to the relation (30), we can write

δ(f, ξ, t)(Log2) =

∫ ∞
0

(Φ2T,β − ΦT,β) ◦µ δ(f, ., t)(ξ)
dT

T
.

Hence (21) gives

δ(f, ξ, t)(Log2) =

∫ ∞
0

δ(σβ2T (f)− σβT (f), ξ, t)
dT

T
.

By the generalized Minkowski inequality we have

Λp(f, t)(Log2) ≤
∫ ∞

0

∥∥∥δ(σβ2T (f)− σβT (f), ., t)
∥∥∥
p,µ

dT

T
.

From (19), we get obviously∥∥∥δ(σβ2T (f)− σβT (f), ., t)
∥∥∥
p,µ
≤ 2

∥∥∥σβ2T (f)− σβT (f)
∥∥∥
p,µ

. (32)

On the other hand, using the same techniques used in Bernstein’s inequality
in [9, Lemma 3.6], we can write∥∥∥δ(σα2T (f)− σβT (f), ., t)

∥∥∥
p,µ
≤ CtT

∥∥∥σβ2T (f)− σβT (f)
∥∥∥
p,µ

. (33)

Combining (32), (33) and the generalized Minkowski inequality it follows that

Λp(f, t) ≤ C

{∫ 1
t

0

t
∥∥∥σβ2T (f) − σβT (f)

∥∥∥
p,µ

dT +

∫ ∞

1
t

∥∥∥σβ2T (f) − σβT (f)
∥∥∥
p,µ

dT

T

}
, t > 0

From [6, Lemma 4] it deduces{∫ ∞
0

(Λp(f)(t)

tα
)r dt
t

} 1
r

≤ C
{∫ ∞

0

(Tα
∥∥∥σβ2T (f)− σβT (f)

∥∥∥
p,µ

)r
dT

T

} 1
r

,

so f ∈ BBp,rα,µ.
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