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Proximal quasi-normal structure in convex
metric spaces

Moosa Gabeleh

Abstract

We consider, in the setting of convex metric spaces, a new class of
Kannan type cyclic orbital contractions, and study the existence of its
best proximity points. The same problem is then discussed for relatively
Kannan nonexpansive mappings, by using the concept of proximal quasi-
normal structure. In this way, we extend the main results in Abkar and
Gabeleh [A. Abkar and M. Gabeleh, J. Nonlin. Convex Anal. 14 (2013),
653-659].

1 Introduction

Let (X, d) be a metric space and T : X → X be a mapping. Call T , a Kannan
contraction if there exists α ∈ [0, 12 ) such that

d(Tx, Ty) ≤ α[d(x, Tx) + d(y, Ty)], (1)

for all x, y ∈ X. We know that ifX is complete, then every Kannan contraction
mapping has a unique fixed point, see [4]. In [9], Subrahmanyam proved
that Kannan’s fixed point theorem characterizes the metric completeness of
underlying spaces, that is, a metric space (X, d) is complete if and only if every
Kannan contraction mapping on X has a fixed point.
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A mapping T : X → X is said to be Kannan nonexpansive, provided that

d(Tx, Ty) ≤ 1

2
[d(x, Tx) + d(y, Ty)], (2)

for all x, y ∈ X. Notice that mappings of the above type may or may not
be nonexpansive in the usual case. In fact, the Kannan condition does not
even imply continuity of the mapping. It was announced in [11] that X is a
Banach space with quasi-weak normal structure if and only if every Kannan
nonexpansive mapping T of a non-empty weakly compact convex subset K of
X into itself has a fixed point.

Let us consider a mapping T : A ∪ B → A ∪ B, where A and B are two
nonempty subsets of a metric space (X, d). The mapping T is said to be a
cyclic provided that T (A) ⊆ B and T (B) ⊆ A. If A∩B = ∅, then a cyclic map
cannot have fixed points. In this case, it is interesting to study the existence
of best proximity points p ∈ A ∪B, characterized as

d(p, Tp) = dist(A,B) := inf{d(x, y) : (x, y) ∈ A×B}.

The relevance of best proximity points is that they provide optimal solutions
for the problem of best approximation between two sets.

Eldred, Kirk and Veeramani [2] established the existence of a best prox-
imity point for cyclic relatively nonexpansive mappings by using a geometric
notion of proximal normal structure in the setting of Banach spaces.

Theorem 1.1.([2]) Let (A,B) be a nonempty, weakly compact and convex
pair in a Banach space X. Let T : A ∪ B → A ∪ B be a cyclic relatively
nonexpansive mapping, that is, T is cyclic and ‖Tx− Ty‖ ≤ ‖x− y‖ for each
(x, y) ∈ A×B. Suppose that (A,B) has the proximal normal structure. Then
T has a best proximity point.

After that in [7], the authors established the existence of best proximity
points for cyclic relatively nonexpansive mappings without invoking proximal
normal structure.

The notion of weak cyclic Kannan contractions was introduced in [5] as
follows.

Definition 1.2. Let A,B be a two nonempty subsets of a metric space (X, d).
A mapping T : A∪B → A∪B is said to be a weak cyclic Kannan contraction
mapping if T is cyclic and satisfies the following condition.

d(Tx, Ty) ≤ α{d(x, Tx) + d(y, Ty)}+ (1− 2α)dist(A,B), (3)
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for some α ∈ (0, 12 ) and for all (x, y) ∈ A×B.

If in above definition α = 1
2 , we say that T is relatively Kannan nonexpan-

sive, that is, T is cyclic on A ∪B and satisfies the following condition.

d(Tx, Ty) ≤ 1

2
{d(x, Tx) + d(y, Ty)}, ∀(x, y) ∈ A×B. (4)

The following theorem guarantees the existence, uniqueness and convergence
of a best proximity point for weak cyclic Kannan contractions in the setting
of uniformly convex Banach spaces.

Theorem 1.3.([5]) Let (A,B) be a nonempty closed convex pair in a uni-
formly convex Banach space X. Suppose that T : A ∪ B → A ∪ B is a weak
cyclic Kannan contraction mapping. Then T has a unique best proximity
point z ∈ A. Moreover, the sequence {T 2nx} converges to z for any x ∈ A.

Note that the geometric property of uniformly convexity of a Banach space
X, plays an important role in the proof of Theorem 1.3. In [1], the authors
established the next existence result of best proximity points for weak cyclic
Kannan contractions in Banach spaces without uniformly convexity.

Theorem 1.4.([1]) Let (A,B) be a nonempty weakly compact convex pair in
a Banach space X. Assume that T : A ∪B → A ∪B is a weak cyclic Kannan
contraction mapping. Then T has a best proximity point.

Another notion of cyclic mappings was introduced in [3] as below.

Definition 1.5.([3]) Let (A,B) be a nonempty pair of subsets of a Banach
space X. A mapping T : A∪B → A∪B is said to be a relatively u-continuous
mapping if T is cyclic on A ∪B and satisfies the following condition.

∀ε > 0,∃δ > 0; if ‖x− y‖ < δ + dist(A,B) then ‖Tx− Ty‖ < ε+ dist(A,B), (5)

for all (x, y) ∈ A×B.

It is clear that every cyclic relatively nonexpansive mapping is a cyclic rel-
atively u-continuous. The following best proximity point theorem is the main
result of [3].

Theorem 1.6.([3]) Let (A,B) be a nonempty compact convex pair of subsets
of a strictly convex Banach space X and T : A ∪ B → A ∪ B be a rela-
tively u-continuous mapping. Then there exists (x0, y0) ∈ A × B such that
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‖x0 − Tx0‖ = ‖Ty0 − y0‖ = dist(A,B).

In the current paper, we introduce a new class of cyclic mappings, called
cyclic orbital contractions in the sense of Kannan, which contains the class of
weak cyclic contractions as a subclass. We prove a similar result of Theorem
1.4 for this class of mappings in the setting of convex metric spaces. Moreover,
we prove a best proximity point theorem for relatively Kannan nonexpansive
mappings which are u-continuous by using a geometric notion of proximal
quasi-normal structure.

2 Preliminaries

In [10], Takahashi introduced the notion of convexity in metric spaces as fol-
lows.

Definition 2.1. Let (X, d) be a metric space and I := [0, 1]. A mapping
W : X ×X × I → X is said to be a convex structure on X provided that for
each (x, y;λ) ∈ X ×X × I and u ∈ X,

d(u,W(x, y;λ)) ≤ λd(u, x) + (1− λ)d(u, y).

A metric space (X, d) together with a convex structure W is called a convex
metric space, which is denoted by (X, d,W). A Banach space and each of its
convex subsets are convex metric spaces. But a Frechet space is not necessary
a convex metric space. The other examples of convex metric spaces which are
not imbedded in any Banach space can be founded in [10].

To describe our results, we need some definitions and preliminary facts
from the references [2] and [10].

Definition 2.2. A subset K of a convex metric space (X, d,W) is said to be
a convex set provided that W(x, y;λ) ∈ K for all x, y ∈ K and λ ∈ I.

Proposition 2.3. Let (X, d,W) be a convex metric space and let B(x; r)
denote the closed ball centered at x ∈ X with radius r ≥ 0. Then B(x; r) is a
convex subset of X.

Proposition 2.4. Let {Kα}α∈A be a family of convex subsets of X, then⋂
α∈AKα is also a convex subset of X.

Definition 2.5. A convex metric space (X, d,W) is said to have property (C)
if every bounded decreasing net of nonempty closed convex subsets of X has
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a nonempty intersection.

For example every weakly compact convex subset of a Banach space has
property (C). The next example ensures that condition (C) is natural as well
in the metrical setting.

Example 2.6.([8]) Let H be a Hilbert space and let X be a nonempty closed
subset of {x ∈ H : ‖x‖ = 1} such that if x, y ∈ X and α, β ∈ [0, 1] with

α + β = 1, then αx+βy
‖αx+βy‖ ∈ X and diam(X) ≤

√
2
2 , where diam(X) :=

sup{d(x, y) : x, y ∈ X}. Let d(x, y) := cos−1(< x, y >) for all x, y ∈ X,
where <,> is the inner product of H. If we define the convex structure

W : X×X× I → X with W(x, y, λ) := λx+(1−λ)y
‖λx+(1−λ)y‖ , then (X, d) is a complete

convex metric space which has the property (C) (for more information see
Example 2 of [8]).

Let A and B be two nonempty subsets of a convex metric space (X, d,W).
We shall say that a pair (A,B) in a convex metric space (X, d,W) satisfies a
property if both A and B satisfy that property. For instance, (A,B) is convex if
and only if both A and B are convex; (A,B) ⊆ (C,D)⇔ A ⊆ C, and B ⊆ D.
We shall also adopt the following notations.

δx(A) := sup{d(x, y) : y ∈ A} for all x ∈ X,
δ(A,B) := sup{d(x, y) : x ∈ A, y ∈ B},

diam(A) := δ(A,A).

The closed and convex hull of a set A will be denoted by con(A) and defined
as below.

con(A) :=
⋂
{C : C is a closed and convex subset of X such that C ⊇ A}.

The pair (x, y) ∈ A×B is said to be proximal in (A,B) if d(x, y) = dist(A,B).
Moreover, we set

A0 := {x ∈ A : d(x, y′) = dist(A,B), for some y′ ∈ B},

B0 := {y ∈ B : d(x′, y) = dist(A,B), for some x′ ∈ A}.
We note that if (A,B) is a nonempty weakly compact and convex pair of
subsets of a Banach space X, then also is the pair (A0, B0) and it is easy to
see that dist(A,B) = dist(A0, B0).

For a cyclic mapping T : A ∪ B → A ∪ B and x ∈ A ∪ B, we define the
orbit setting at x by

OTx := {Tx, T 3x, ..., T 2n−1x, ...},



PROXIMAL QUASI-NORMAL STRUCTURE IN CONVEX METRIC SPACES 50

where, for each n ≥ 1, Tn stands for the n-th iterate of T . Note that if
(x, y) ∈ A×B, then OTx ⊆ B and OT y ⊆ A.

Definition 2.7. Let A be a nonempty subset in a metric space (X, d). A
point p in A is said to be a diametral point if δp(A) = diam(A).

Definition 2.8. A convex metric space (X, d,W) is said to have normal struc-
ture if for each bounded, closed and convex subset E of X which contains at
least two points, there exists an element p ∈ E which is a nondiametral point.

Here, we recall the geometric notion of proximal normal structure which
was introduced in [2].

Definition 2.9. A pair (A,B) of subsets of a linear space X is said to be a
proximal pair if for each (x, y) ∈ A×B there exists (x′, y′) ∈ A×B such that

‖x− y′‖ = ‖x′ − y‖ = dist(A,B).

Definition 2.10. A convex pair (K1,K2) in a Banach space X is said to have
proximal normal structure if for any bounded, closed and convex proximal pair
(H1, H2) ⊆ (K1,K2) for which dist(H1, H2) = dist(K1,K2) and δ(H1, H2) >
dist(H1, H2), there exits (x1, x2) ∈ H1 ×H2 such that

δx1
(H2) < δ(H1, H2), δx2

(H1) < δ(H1, H2).

It was announced in [2] that every nonempty, bounded, closed and convex
pair of subsets of a uniformly convex Banach space X has a proximal normal
structure (Proposition 2.1 of [2]).

3 Cyclic orbital contractions in the sense of Kannan

We begin our main result of this section with the following definition.

Definition 3.1. Let (A,B) be a nonempty pair of subsets of a metric space
(X, d). A mapping T : A∪B → A∪B is said to be a cyclic orbital contraction
in the sense of Kannan if T is cyclic on A∪B and there exists α ∈ (0, 12 ) such
that

d(Tx, Ty) ≤ α{δx(OTx) + δy(OT y)}+ (1− 2α)dist(A,B), (6)

for all (x, y) ∈ A×B.
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It is clear that every weak cyclic Kannan contraction is cyclic orbital con-
traction in the sense of Kannan. Let us state the following theorem which
ensures the existence of best proximity points for a cyclic orbital contraction
in the sense of Kannan.

Theorem 3.2. Let (A,B) be a nonempty, bounded, closed and convex pair
in a convex metric space (X, d,W). Suppose that T : A ∪ B → A ∪ B is a
cyclic orbital contraction in the sense of Kannan. If X has the property (C),
then T has a best proximity point.

Proof. Let Σ denote the set of all nonempty, bounded, closed and convex pairs
(E,F ) which are subsets of (A,B) and such that T is cyclic on E ∪ F . Note
that (A,B) ∈ Σ. Also, Σ is partially ordered by the reverse inclusion, that
is (E1, F1) ≤ (E2, F2) ⇔ (E2, F2) ⊆ (E1, F1). By the fact that X has the
property (C), every increasing chain in Σ is bounded above. So, by using
Zorn’s lemma we obtain a minimal element say (C,D) ∈ Σ. We note that
(con(T (D)), con(T (C))) is a nonempty, bounded, closed and convex pair in X
and (con(T (D)), con(T (C))) ⊆ (C,D). Further,

T (con(T (D))) ⊆ T (C) ⊆ con(T (C)),

and also,
T (con(T (C))) ⊆ con(T (D)),

that is, T is cyclic on con(T (D)) ∪ con(T (C)). It now follows from the mini-
mality of (C,D) that

con(T (D)) = C , con(T (C)) = D.

Let x ∈ C, then D ⊆ B(x; δx(D)). Now, if y ∈ D we have

d(Tx, Ty) ≤ α{δx(OTx) + δy(OT y)}+ (1− 2α)dist(A,B)

≤ 2αδ(C,D) + (1− 2α)dist(A,B).

Hence, for all y ∈ D we have

Ty ∈ B(Tx; 2αδ(C,D) + (1− 2α)dist(A,B)),

and so,
T (D) ⊆ B(Tx; 2αδ(C,D) + (1− 2α)dist(A,B)).

Thus,

C = con(T (D)) ⊆ B(Tx; 2αδ(C,D) + (1− 2α)dist(A,B)).
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Therefore,

d(z, Tx) ≤ 2αδ(C,D) + (1− 2α)dist(A,B), ∀z ∈ C.

This implies that

δTx(C) ≤ 2αδ(C,D) + (1− 2α)dist(A,B). (7)

Similarly, if y ∈ D, we conclude that

δTy(D) ≤ 2αδ(C,D) + (1− 2α)dist(A,B). (8)

If we put

E := {x ∈ C : δx(D) ≤ 2αδ(C,D) + (1− 2α)dist(A,B)},

F := {y ∈ D : δy(C) ≤ 2αδ(C,D) + (1− 2α)dist(A,B)},
then T (D) ⊆ E and T (C) ⊆ F . Besides, it is easy to check that

E =
⋂
y∈D

B(y; 2αδ(C,D) + (1− 2α)dist(A,B)) ∩ C,

F =
⋂
x∈C

B(x; 2αδ(C,D) + (1− 2α)dist(A,B)) ∩D.

Further, if x ∈ E then by (7), Tx ∈ F , i.e. T (E1) ⊆ E2 and also by the
relation (8) T (F ) ⊆ E, that is, T is cyclic on E ∪ F . It now follows from the
minimality of (C,D) that E = C and F = D. This deduces that

δx(D) ≤ 2αδ(C,D) + (1− 2α)dist(A,B), ∀x ∈ C.

We have

δ(C,D) = sup
x∈C

δx(D) ≤ 2αδ(C,D) + (1− 2α)dist(A,B),

and then δ(C,D) = dist(A,B). Therefore, for each pair (x∗, y∗) ∈ C ×D we
must have

d(x∗, Tx∗) = d(Ty∗, y∗) = dist(A,B).

The following corollary ensures the existence and uniqueness of a best prox-
imity pair in the setting of Banach spaces.

Corollary 3.3. Let (A,B) be a nonempty, bounded, closed and convex pair
in a reflexive and strictly convex Banach space X. Suppose that T : A∪B →
A∪B is a cyclic orbital contraction in the sense of Kannan. Then there exists a
unique pair (x∗, y∗) ∈ A×B such that ‖x∗−Tx∗‖ = ‖Ty∗−y∗‖ = dist(A,B).
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4 Relatively Kannan nonexpansive mappings

In this section we investigate the existence of a best proximity point for rela-
tively Kannan nonexpansive mappings in the setting of convex metric spaces.
In this order, we need a geometric notion of proximal quasi-normal structure
for a convex pair of subsets of a convex metric space.

Definition 4.1.([1]) A convex pair (K1,K2) in a convex metric space (X, d,W)
is said to have proximal quasi-normal structure if for any bounded, closed
and convex proximal pair (H1, H2) ⊆ (K1,K2) for which dist(H1, H2) =
dist(K1,K2) and δ(H1, H2) > dist(H1, H2), there exits (u, v) ∈ H1 × H2

such that
d(u, y) < δ(H1, H2), d(x, v) < δ(H1, H2),

for all (x, y) ∈ H1 ×H2.

Note that if the convex proximal pair (K1,K2) of a convex metric space
X has proximal normal structure, then (K1,K2) has proximal quasi-normal
structure.

Definition 4.2.([6]) Let (A,B) be a nonempty pair of subsets of a metric
space (X, d). We say that the pair (A,B) is proximal compactness pro-
vided that every net ({xα}, {yα}) of A × B satisfying the condition that
d(xα, yα)→ dist(A,B), has a convergent subnet in A×B.

It is clear that if (A,B) is a compact pair in a metric space (X, d) then
(A,B) is proximal compactness. The next lemma will be used in our main
theorem of this section.

Lemma 4.3.([1]) Let (K1,K2) be a nonempty pair of a convex metric space
(X, d,W). Then δ(K1,K2) = δ(con(K1), con(K2)).

Next, we shall prove our main result of this section.

Theorem 4.4. Let (A,B) be a nonempty, bounded, closed and convex pair
in a convex metric space (X, d,W) such that A0 is nonempty and (A,B) is
proximal compactness. Suppose that T : A∪B → A∪B is a relatively Kannan
nonexpansive mapping and (A,B) has the proximal quasi-normal structure.
Moreover, let T be a relatively u-continuous and X has the property (C). Then
T has a best proximity point.

Proof. Let Σ denote the set of all nonempty, closed and convex pairs (E,F )
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which are subsets of (A,B) and such that T is cyclic on E ∪ F and d(x, y) =
dist(A,B) for some (x, y) ∈ E × F . Note that (A,B) ∈ Σ by the fact that
A0 is nonempty. Also, Σ is partially ordered by the reverse inclusion. Assume
that {(Eα, Fα)}α is a descending chain in Σ. Set E :=

⋂
Eα and F :=

⋂
Fα.

Since X has the property (C), we conclude that (E,F ) is a nonempty pair.
Also, by Proposition 2.4, (E,F ) is a closed and convex pair. Moreover,

T (E) = T (
⋂
Eα) ⊆

⋂
T (Eα) ⊆

⋂
Fα = F.

Similarly, we can see that T (F ) ⊆ E, that is, T is cyclic on E ∪ F . Now,
let (xα, yα) ∈ Eα × Fα be such that d(xα, yα) = dist(A,B). Since (A,B) is
proximal compactness, (xα, yα) has a convergent subsequence say (xαi , yαi)
such that xαi → x ∈ A and yαi → y ∈ B. Thus,

d(x, y) = lim
i
d(xαi , yαi) = dist(A,B).

Therefore, there exists an element (x, y) ∈ E×F such that d(x, y) = dist(A,B).
Hence, every increasing chain in Σ is bounded above with respect to reverse
inclusion relation. Then by using Zorn’s Lemma we can get a minimal el-
ement say (K1,K2). Let r > 0 be such that r ≥ dist(A,B) and consider
(x∗, y∗) ∈ K ×K2 such that

d(x∗, y∗) = dist(A,B), d(x∗, Tx∗) ≤ r and d(Ty∗, y∗) ≤ r.

Set,

Kr
1 = {x ∈ K1 : d(x, Tx) ≤ r}, Kr

2 = {x ∈ K2 : d(Tx, x) ≤ r},

and put Cr1 := con(T (Kr
1)), Cr2 := con(T (Kr

2)). We prove that T is cyclic on
Cr1∪Cr2 . At first, we show that Cr1 ⊆ Kr

2 . Let x ∈ Cr1 . If d(Tx, x) = dist(A,B),
then x ∈ Kr

2 . Let d(Tx, x) > dist(A,B). Put, h := sup{d(Tz, Tx) : z ∈ Kr
1}.

We note that B(Tx;h) ⊇ T (Kr
1), that is, Cr1 ⊆ B(Tx;h). Since x ∈ Cr1 , we

have d(Tx, x) ≤ h. It now follows from the definition of h that for each ε > 0
there exists z ∈ Kr

1 such that h− ε ≤ d(Tz, Tx). Therefore,

d(Tx, x)− ε ≤ h− ε ≤ d(Tz, Tx)

≤ 1

2
[d(z, Tz) + d(Tx, x)] ≤ 1

2
d(Tx, x) +

1

2
r.

Hence, d(Tx, x) ≤ r + 2ε and so, x ∈ Kr
2 . Thus, Cr1 ⊆ Kr

2 . This implies that

T (Cr1) ⊆ T (Kr
2) ⊆ con(T (Kr

2)) = Cr2 .
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Similarly, we can see that T (Cr2) ⊆ Cr1 , that is, T is cyclic on Cr1 ∪ Cr2 . We
now claim that δ(Cr1 , C

r
2) ≤ r. By using Lemma 4.3 we have

δ(Cr1 , C
r
2) = δ(con(T (Kr

1), con(T (Kr
2)))

= δ(T (Kr
1), T (Kr

2)) = sup{d(Tx, Ty) : x ∈ Kr
1 , y ∈ Kr

2}

≤ sup{1

2
[d(x, Tx) + d(Ty, y)] : x ∈ Kr

1 , y ∈ Kr
2}

≤ 1

2
[r + r] = r.

Besides, since (x∗, y∗) ∈ K1×K2 and d(x∗, y∗) = dist(A,B), for any ζ > 0, we
have d(x∗, y∗) < ζ + dist(A,B). By the fact that T is relatively u-continuous
map,

dist(A,B) ≤ d(Tx∗, T y∗) < ε+ dist(A,B),

for each ε > 0. This implies that d(Tx∗, T y∗) = dist(A,B) and so,
dist(Cr2 , C

r
1) = dist(A,B). Let

r0 := inf{d(x, Tx) : x ∈ K1 ∪K2}.

Then r0 ≥ dist(A,B). Let {rn} be a nonnegative sequence such that rn ↓ r0.
Thus, ({Crn1 }, {C

rn
2 }) are descending sequences of nonempty, bounded, closed

and convex subsets of (K1,K2). Since X has the property (C),

Cr01 =

∞⋂
n=1

Crn1 6= ∅, C
r0
2 =

∞⋂
n=1

Crn2 6= ∅.

Moreover, by the preceding argument, T : Cr01 ∪ C
r0
2 → Cr01 ∪ C

r0
2 is a cyclic

mapping. Further, since dist(Crn2 , Crn1 ) = dist(A,B) for all n ∈ N, we de-
duce that dist(Cr02 , C

r0
1 ) = dist(A,B). It now follows from the minimality

of (K1,K2) that Cr02 = K1 and Cr01 = K2. Therefore, d(x, Tx) ≤ r0 for all
x ∈ K1∪K2. Assume that r0 > dist(A,B). Since the pair (A,B) has proximal
quasi-normal structure, there exists (u, v) ∈ K1 ×K2 such that

d(u, y) < δ(K1,K2) ≤ r0, d(x, v) < δ(K1,K2) ≤ r0,

for all (x, y) ∈ K1 ×K2. Hence,

d(u, Tu) < δ(K1,K2) ≤ r0 & d(Tv, v) < δ(K1,K2) ≤ r0.

This is a contradiction, that is, r0 = dist(A,B) and so,

d(x, Tx) = d(y, Ty) = dist(A,B),

for all (x, y) ∈ K1 ×K2. This completes the proof.
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As a result of Theorem 4.4, we obtain the next corollary which is the main
result of [1].

Theorem 4.5.([1]) Let (A,B) be a nonempty, weakly compact convex pair in
a Banach space X and suppose (A,B) has proximal quasi-normal structure.
Let T : A ∪B → A ∪B be a cyclic mapping such that

‖Tx− Ty‖ ≤ min{1

2
(‖x− Tx‖+ ‖y − Ty‖), ‖x− y‖}, (9)

for all (x, y) ∈ A×B. Then there exists (x∗, y∗) ∈ A×B such that

‖x∗ − Tx∗‖ = ‖Ty∗ − y∗‖ = dist(A,B).

Let us illustrate Theorem 4.4 with the following example.

Example 4.5. Let X := [−1, 1] and define a metric d on X by

d(x, y) =

{
0, if x = y,

max{|x|, |y|}, if x 6= y.

Define W : X ×X × I → X with

W(x, y, λ) = λmin{|x|, |y|},

for each x, y ∈ X and λ ∈ I. We show that W is a convex stricture on X. Let
x, y ∈ X and λ ∈ I. We may assume that |x| ≤ |y|. Then for each u ∈ X we
have

d(u,W(x, y, λ)) = max{|u|, λmin{|x|, |y|}}
= max{|u|, λ|x|} ≤ max{|u|, |x|}

= λmax{|u|, |x|}+ (1− λ) max{|u|, |x|}
≤ λmax{|u|, |x|}+ (1− λ) max{|u|, |y|}

= λd(u, x) + (1− λ)d(u, y).

This implies that (X, d,W) is a convex metric space. Now, let E be a nonempty
convex subset of X. Then W(x, y, λ) ∈ E for each x, y ∈ E and λ ∈ I. If
λ = 0, then we conclude that 0 ∈ E. Therefore, the convex metric space
(X, d,W) must be have the property (C). Suppose that A := [0, 1]. Thus,
A is a bounded closed and convex subset of X. Note that every convergent
sequence in this metric space converges to 0 ∈ A. Let T : A→ A be a mapping
defined as

Tx =

{
0, if x = 1,
1
2 , if x 6= 1.
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We claim that T is relatively Kannan nonexpansive. For this purpose it is
sufficient to consider x = 1 and y 6= 1. Then d(Tx, Ty) = 1

2 , d(x, Tx) = 1 and
d(y, Ty) = max{y, 12}. Hence,

d(Tx, Ty) ≤ 1

2
[d(x, Tx) + d(y, Ty)].

Moreover,

d(Tx, Ty) =
1

2
≤ 1 = d(x, y),

which deduces that T nonexpansive. It now follows from Theorem 4.4 that T
has a best proximity point which is a fixed point in this case and this point is
x∗ = 1

2 .
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