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Goldie-Rad-Supplemented Modules
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Abstract

In this paper we introduce β∗∗ relation on the lattice of submod-
ules of a module M . We say that submodules X,Y of M are β∗∗

equivalent, Xβ∗∗Y , if and only if X+Y
X

⊆ Rad(M)+X
X

and X+Y
Y

⊆
Rad(M)+Y

Y
. We show that the β∗∗ relation is an equivalence relation.

We also investigate some general properties of this relation. This rela-
tion is used to define and study classes of Goldie-Rad-supplemented and
Rad-H-supplemented modules. We prove M = A ⊕ B is Goldie-Rad-
supplemented if and only if A and B are Goldie-Rad-supplemented.

1 Introduction

Throughout this paper, R denotes an associative ring with an identity and
modules are unital right R-modules. We use N ≤M and N ≤⊕ M to signify
that N is a submodule and a direct summand of M , respectively. Rad(M) and
End(M) will denote the Jacobson radical of M and the ring of endomorphisms
of M .
Let M be a module. A submodule K of M is called small in M (denoted by
K �M) if N +K 6= M for any proper submodule N of M . Lifting modules
were studied by many authors (see [6] and [10]). A module M is called lifting
if for every submodule N of M there exists a direct summand K of M such
that K ⊆ N and N/K � M/K. We call M , (⊕-)supplemented if for every
submodule N of M , there is (a direct summand K of M) K ≤ M , such that
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M = N + K and N ∩ K � K (in this case K is a (⊕-)supplement of N in
M). A module M is called weakly supplemented if for every submodule N of
M , there exists a submodule L of M such that M = N +L and N ∩L�M .
H-supplemented modules were introduced in [10] as a generalization of lifting
modules. According to [10] a module M is called H-supplemented if for every
submodule A ofM there exists a direct summandD ofM such that A+X = M
if and only if D + X = M for every submodule X of M . In [8], it is proved
that M is H-supplemented if and only if for every submodule A of M there
exists a direct summand D of M such that A+D

D � M
D and A+D

A � M
A . For

more information about H-supplemented modules we refer the reader to [8],
[9] and [10].
Recall from [2] that a module M is said to have (P ∗) property or (P ∗)-module
if for any submodule N of M there exists a direct summand D of M such that
D ⊆ N and N

D ⊆ Rad(M
D ), equivalently, for every submodule N of M there

exists a decompositionM = K⊕K ′ such thatK ⊆ N and (N∩K ′) ⊆ Rad(K ′).
Let K,L ≤M . We say K is a (weak) Rad-supplement of L in M , if M = N+K
and (N ∩K ⊆ Rad(M)) N ∩K ⊆ Rad(K). A module M is called (weakly)
Rad-supplemented if every submodule of M has a (weak) Rad-supplement.
Let M be a module. A submodule X of M is called fully invariant, if for
every f ∈ End(M), f(X) ⊆ X. A submodule N of M is projection invariant,
if for every e = e2 ∈ End(M), e(N) ⊆ N .
In [3], the authors defined and studied the β∗ relation and investigated some
properties of this relation. Based on definition of β∗ relation they introduced
two new classes of modules namely Goldie∗-lifting and Goldie∗-supplemented.
They showed that two concept of H-supplemented modules and Goldie∗-lifting
modules coincide. In this paper, motivated by [3], we change their definition
of these two classes of modules.
Section 2 is devoted to introduce the β∗∗ relation. We investigate some prop-
erties of this relation and prove that this relation is an equivalence relation.
In Section 3 we define Goldie-Rad-supplemented and Rad-H-supplemented
modules. Motivated by [3] and based on the definition of β∗∗ relation, we call
a module M , Goldie-Rad-supplemented (Rad-H-supplemented) if for any sub-
moduleN ofM , there exists a Rad-supplement submodule (a direct summand)
D of M such that Nβ∗∗D. Clearly every (P ∗)-module is Rad-H-supplemented
and every Rad-H-supplemented module is Goldie-Rad-supplemented. Let
M = A ⊕ B be a distributive module. Then M is Goldie-Rad-supplemented
(Rad-H-supplemented) if and only if A and B are Goldie-Rad-supplemented
(Rad-H-supplemented) (Theorem 3.9).

Also we obtain some conditions which under the factor module of a Rad-
H-supplemented module will be Rad-H-supplemented.

Finally we obtain the relations between Goldie-Rad-supplemented modules
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and Rad-H-supplemented modules with other types of supplemented modules.
Let M be a projective module such that every Rad-supplement submodule of
M is a direct summand. Then we show that the following statements are
equivalent: (Theorem 3.23)
(1) M is Rad-supplemented;
(2) M is (P ∗);
(3) M is amply Rad-supplemented;
(4) M is Rad-H-supplemented and Rad(M) is QSL in M ;
(5) M is Rad-⊕-supplemented;
(6) M is Goldie-Rad-supplemented and Rad(M) is QSL in M .

The texts by Mohamed and Müller [10] and Wisbauer [14] are the general
references for notions of rings and modules not defined in this work.

2 The β∗∗ Relation

The β∗ relation is defined and studied in [3]. Let X,Y ≤ M . The authors
in [3], called X and Y are β∗ equivalent, Xβ∗Y , provided X+Y

X � M
X and

X+Y
Y � M

Y .

Definition 2.1. Let M be a module and X,Y ≤M . We say X and Y are β∗∗

equivalent, Xβ∗∗Y , if and only if X+Y
X ⊆ Rad(M)+X

X and X+Y
Y ⊆ Rad(M)+Y

Y .

In this section we develop some basic properties of β∗∗ relation on the set of
submodules of M .

Lemma 2.2. The β∗∗ is an equivalence relation.

Proof. The reflexive and symmetric properties are clear. For transitivity, as-
sume Xβ∗∗Y and Y β∗∗Z. So

X+Y
X ⊆ Rad(M)+X

X and X+Y
Y ⊆ Rad(M)+Y

Y
Y+Z
Y ⊆ Rad(M)+Y

Y and Y+Z
Z ⊆ Rad(M)+Z

Z .

So we have

X + Y ⊆ Rad(M) +X and X + Y ⊆ Rad(M) + Y
Y + Z ⊆ Rad(M) + Y and Y + Z ⊆ Rad(M) + Z.

It is easy to see that X+Z ⊆ Rad(M) +X and X+Z ⊆ Rad(M) +Z. Thus,
Xβ∗∗Z.
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It is clear that any submodule contained in Rad(M) is β∗∗ equivalent to
zero submodule. Also, note that two submodules may be isomorphic but not

β∗∗ equivalent. For example, let F be a field and R =

(
F F

0 F

)
, X =

(
0 F

0 0

)
and Y =

(
0 0

0 F

)
. Then since Rad(RR) = X, they are not β∗∗ equivalent but

they are R-isomorphic. Also in M = ZZ, mZβ∗∗nZ if and only if m = n (see
[3]).

Proposition 2.3. Let f : M → N be an epimorphism. The following state-
ments hold:
(1) If X,Y ≤M such that Xβ∗∗Y , then f(X)β∗∗f(Y ).
(2) If X,Y ≤ N such that Xβ∗∗Y , then f−1(X)β∗∗f−1(Y ).
(3) If X ≤ M such that X ⊆ Rad(M), K ≤ N and f(X)β∗∗K, then
Xβ∗∗f−1(K).

Proof. (1) Suppose that Xβ∗∗Y for submodules X,Y of M . Then X + Y ⊆
Rad(M) +X and X + Y ⊆ Rad(M) + Y . Therefore we have f(X) + f(Y ) ⊆
Rad(N) + f(X) and f(X) + f(Y ) ⊆ Rad(N) + f(Y ). This implies that
f(X)β∗∗f(Y ).

(2) Let Xβ∗∗Y for submodules X,Y of N . Then X + Y ⊆ Rad(N) + X
and X + Y ⊆ Rad(N) + Y . Since f is an epimorphism f−1(X) + f−1(Y ) ⊆
Rad(M) +X and f−1(X) + f−1(Y ) ⊆ Rad(M) + Y . It follows that
f−1(X)β∗∗f−1(Y ).

(3) Assume that f(X)β∗∗K, X ⊆ Rad(M) and K ≤ N . Then, f(X)+K ⊆
Rad(N)+f(X) and f(X)+K ⊆ Rad(N)+K. Since f is an epimorphism and
X ⊆ Rad(M), we get f−1(K) +X ⊆ Rad(M) + f−1(K) and f−1(K) +X ⊆
Rad(M) +X. Therefore, Xβ∗∗f−1(K).

Proposition 2.4. Let X ≤M and K a maximal submodule of M .
(1) If C1, C2 ≤ M , Rad(M) ⊆ C2 such that C1 + C2 = M , C2 6= M and
Xβ∗∗C1. Then X " C2.
(2) If Xβ∗∗Y such that X ⊆ K, then Y ⊆ K.

Proof. (1) Assume that X ⊆ C2. Since Rad(M) ⊆ C2, we have X +C2 = M .
By assumption, C2 = M , a contradiction.

(2) Assume that Y " K. Then Y +K = M . Since Xβ∗∗Y and Rad(M) ⊆
K, we obtain K +X = M . But X ⊆ K implies that K = M , a contradiction.

Proposition 2.5. Let X1, X2, Y1, Y2 ≤ M such that X1β
∗∗Y1 and X2β

∗∗Y2.
Then (X1 +X2)β∗∗(Y1 + Y2) and (X1 + Y2)β∗∗(Y1 +X2).
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Proof. Suppose that X1β
∗∗Y1 and X2β

∗∗Y2. Then

X1 + Y1 ⊆ Rad(M) +X1 and X1 + Y1 ⊆ Rad(M) + Y1
X2 + Y2 ⊆ Rad(M) +X2 and X2 + Y2 ⊆ Rad(M) + Y2.

Hence by using above inequalities, we can easily see that (X1+X2)β∗∗(Y1+
Y2) and (X1 + Y2)β∗∗(Y1 +X2).

Corollary 2.6. Let X,Y ≤ M and K ⊆ Rad(M). Then Xβ∗∗Y if and only
if Xβ∗∗(Y +K).

Proof. (⇒) This implication follows from Proposition 2.5 and the fact that
0β∗∗K.

(⇐) Since K ⊆ Rad(M), we have Y β∗∗(Y + K). Now the implication
follows from the transitivity of the β∗∗ relation.

Corollary 2.7. Let X,Y1, . . . , Yn ≤ M . If Xβ∗∗Yi for i = 1, . . . , n. Then
Xβ∗∗

∑n
i=1 Yi.

3 Goldie-Rad-Supplemented Modules

In [3], the authors defined and study the β∗ relation and investigated some
properties of this relation. Based on definition of β∗ relation they introduced
two new classes of modules namely Goldie∗-lifting and Goldie∗-supplemented.
A module M is called Goldie∗-lifting (Goldie∗-supplemented) (G∗-lifting (G∗-
supplemented) for short) if for every submodule N of M there is a direct
summand (supplement submodule) S of M such that Nβ∗S (see [3]).

Next we introduce two new classes of modules.

Definition 3.1. Let M be a module.
(1) We say M is Goldie-Rad-supplemented if for every submodule N of M ,
there exists a Rad-supplement submodule S in M such that Nβ∗∗S.
(2) We say M is Rad-H-supplemented if for every submodule N of M , there
exists a direct summand D of M such that Nβ∗∗D.

By the definitions every Goldie∗-lifting module is Goldie∗-supplemented.
We give a general example of modules which are Rad-H-supplemented (Goldie-
Rad-supplemented) but not Goldie∗-supplemented(see Example 3.2). If M
is a module with property that every Rad-supplement submodule is direct
summand, then for M being Goldie-Rad-supplemented is equivalent to being
Rad-H-supplemented.

We have the following implications:
(P ∗)-module ⇒ Rad-H-supplemented module ⇒ Goldie-Rad-supplemented
module.
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The next example shows that Rad-H-supplemented modules (Goldie-Rad-
supplemented) modules are a proper generalization of H-supplemented mod-
ules (Goldie∗-supplemented modules).

Example 3.2. (1) A radical module M (Rad(M) = M) is Rad-H-
supplemented and hence Goldie-Rad-supplemented. This yields that any non-
supplemented module M with Rad(M) = M is Rad-H-supplemented but not
H-
supplemented. So all injective non-supplemented modules over a Dedekind
domain (e.g. the quotient field of a non-local Dedekind domain (see [10, Propo-
sition A.8])) are Rad-H-supplemented (hence Goldie-Rad-supplemented) but
not Goldie∗-supplemented (H-supplemented) by [3, Theorem 3.6]. In partic-
ular, QZ is Goldie-Rad-supplemented but not Goldie∗-supplemented.

(2) The Z-module Z is neither Rad-H-supplemented nor Goldie-Rad-
supplemented. In fact an (indecomposable)Rad-H-supplemented module with
zero radical is (local) semisimple.

Proposition 3.3. Let M be a H-supplemented module. Then M is Rad-H-
supplemented. If Rad(M)�M , then the converse holds.

Proof. Let N ≤ M . By assumption, M has a decomposition M = D ⊕ D′
such that (N+D)/N �M/N and (N+D)/D �M/D. Then M = D+D′ =
N + D′ and (N + D)/D ⊆ (Rad(M) + D)/D. Let θ : (D + D′)/D → D′,
ψ : D′/(N ∩ D′) → (N + D′)/N be natural isomorphisms and f : D′ →
D′/(N ∩ D′) be natural epimorphism. Set h = ψfθ. By a similar argument
to [3, Proposition 2.5], (N + D)/N = h((N + D)/D). Since (N + D)/D ⊆
(Rad(M) + D)/D, we have (N + D)/N ⊆ (Rad(M) + N)/N . Hence, M is
Rad-H-supplemented. For the converse, when Rad(M) � M , it is easy to
check that M is H-supplemented.

Theorem 3.4. ([3, Theorem 3.8]) Let M be a Noetherian module such that
each submodule is projection invariant. If M is Rad-H-supplemented, then M
is a finite direct sum of local modules.

Proposition 3.5. Let R be a commutative local ring with maximal ideal m. If
M is a finitely generated Rad-H-supplemented module, then M ∼= R

I1
× . . .× R

In
for some ideals I1, . . . , In of R with I1 ⊆ I2 ⊆ . . . ⊆ In  R.

Proof. It follows from [10, Proposition A.8] and Proposition 3.3.

Proposition 3.6. Let M be a module. Then M is Goldie-Rad-supplemented
if and only if for every X ≤M there exists a Rad-supplement submodule S of
M such that S +Rad(M) = X +Rad(M).
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Proof. Let M be Goldie-Rad-supplemented and X ≤ M . Then, there is a
Rad-supplement submodule S of M such that X + S ⊆ Rad(M) + X and
X+S ⊆ Rad(M)+S. Then S+Rad(M) ⊆ X+Rad(M) and X+Rad(M) ⊆
S + Rad(M). It follows that S + Rad(M) = X + Rad(M). The converse is
easy.

Proposition 3.7. Let M be a module. If for every X ≤ M , there is a Rad-
supplement submodule S of M and a H ⊆ Rad(M) such that X = S + H,
then M is Goldie-Rad-supplemented.

Proof. We prove that Xβ∗∗S. Since X + S = S + H ⊆ Rad(M) + S + H =

Rad(M) +X and X+S = S+H +S ⊆ Rad(M) +S, then X+S
X ⊆ Rad(M)+X

X

and X+S
S ⊆ Rad(M)+S

S as required.

Proposition 3.8. Let M be a Goldie-Rad-supplemented module. Then for
each X ≤ M with Rad(M) ⊆ X, we have X = S + H where S is a Rad-
supplement in M and H ⊆ Rad(M).

Proof. Let X ≤ M such that Rad(M) ⊆ X. By assumption, there exists a
Rad-supplement submodule S of M such that Xβ∗∗S. Then, S ⊆ X and
X = Rad(M) + (S ∩X) = Rad(M) + S. It completes the proof.

LetM be a module. ThenM is called distributive if its lattice of submodules is
a distributive lattice, equivalently for submodules K,L,N of M , N+(K∩L) =
(N +K) ∩ (N + L) or N ∩ (K + L) = (N ∩K) + (N ∩ L)

Theorem 3.9. Let M = A⊕B be a distributive module. Then M is Goldie-
Rad-supplemented (Rad-H-supplemented) if and only if A and B are Goldie-
Rad-supplemented (Rad-H-supplemented).

Proof. (⇒) Let X ≤ A. Then there exist submodules S,L of M such that
S + L = M and S ∩ L ⊆ Rad(S) and Xβ∗∗S. We prove that Xβ∗∗(A ∩ S).
Since Xβ∗∗S, we have X+S ⊆ Rad(M)+X and X+S ⊆ Rad(M)+S. Since
X ⊆ A, we get X + (A ∩ S) ⊆ Rad(A) + X and X + (A ∩ S) ⊆ (Rad(A) +
A ∩ S + B ∩ S + Rad(B)) ∩ A. By modularity, X + (A ∩ S) ⊆ Rad(A) + X
and X + (A ∩ S) ⊆ Rad(A) + (A ∩ S). Thus Xβ∗∗(A ∩ S). By assumption,
(A∩S)+(A∩L) = A and (A∩S)∩(A∩L) = A∩S∩L ⊆ Rad(A∩S)⊕Rad(B∩S).
This implies that A ∩ S ∩ L ⊆ Rad(A ∩ S). So (A ∩ S) is a Rad-supplement
of (A ∩ L) in A. Therefore A is Goldie-Rad-supplemented. Similarly, B is
Goldie-Rad-supplemented.

(⇐) Let U ≤ M , U1 = A ∩ U and U2 = B ∩ U . There exist L1, S1 ≤ A
such that U1β

∗∗S1, L1 + S1 = A and L1 ∩ S1 ⊆ Rad(S1). There also exist
L2, S2 ≤ B such that U2β

∗∗S2, L2 + S2 = B and L2 ∩ S2 ⊆ Rad(S2). By
Proposition 2.5, Uβ∗∗(S1 + S2). Moreover, S1 + S2 + L1 + L2 = M and
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(S1 + S2) ∩ (L1 + L2) = (S1 ∩ L1) + (S2 ∩ L2) ⊆ Rad(S1) + Rad(S2) ⊆
Rad(S1 + S2). This means that, (S1 + S2) is a Rad-supplement submodule
in M . Hence M is Goldie-Rad-supplemented. The proof for A and B being
Rad-H-supplemented is similar.

Following example shows that a factor module of a Rad-H-supplemented
module need not be Rad-H-supplemented in general.

A module M is called finitely presented if M ∼= F/K for some finitely
generated free module F and finitely generated submodule K of M .

Example 3.10. Let R be a commutative local ring which is not a valuation
ring and let n ≥ 2. By [13, Theorem 2], there exists a finitely presented
indecomposable module M = R(n)/K which cannot be generated by fewer
than n elements. By [5, Corollary 1.6], R(n) is ⊕-supplemented and hence
H-supplemented by [7, Proposition 2.1]. By Proposition 3.3, R(n) is Rad-H-
supplemented. Since M is not cyclic, it is not ⊕-supplemented, and hence not
H-supplemented. Since M is finitely generated, it is not Rad-H-supplemented
by Proposition 3.3.

Let M be a module and N,A submodules of M such that A ≤⊕ M . We
say that A is an Rad-H-supplement of N in M if, there is a direct summand
B of M such that M = A⊕B and Nβ∗∗A.

Proposition 3.11. Let M0 be a direct summand of a module M such that for
every decomposition M = N ⊕K of M , there exist submodules N ′ of N and
K ′ of K such that M = M0 ⊕ N ′ ⊕K ′. If M is Rad-H-supplemented, then
M/M0 is Rad-H-supplemented.

Proof. Let X/M0 ≤ M/M0. Since M is Rad-H-supplemented, there exists a
decomposition M = N⊕K such that Xβ∗∗N . Then (X+N)/N ⊆ (Rad(M)+
N)/N and (X+N)/X ⊆ (Rad(M)+X)/X. By hypothesis, M = M0⊕N ′⊕K ′
for N ′ ≤ N and K ′ ≤ K. Now it is easy to see that (M0 ⊕N ′)/M0 is a Rad-
H-supplement of X/M0 in M/M0.

We call a module M semilocal provided that M/Rad(M) is semisimple.
Clearly Rad-supplemented modules are semilocal. We also show that every
Rad-H-supplemented module is semilocal.

Lemma 3.12. Let M be a Rad-H-supplemented module. Then M/Rad(M)
is semisimple.

Proof. Let N/Rad(M) ≤ M/Rad(M). Since M is Rad-H-supplemented,
there exists a direct summand D of M such that Nβ∗∗D. So (N + D)/N ⊆
(Rad(M) + N)/N and (N + D)/D ⊆ (Rad(M) + D)/D. Since D ≤⊕ M ,
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M = D ⊕ D′ for some submodule D′ of M . Then M = D′ + N . It
follows that M/Rad(M) = N/Rad(M) + (D′ + Rad(M))/Rad(M). Since
N ∩ D′ ⊆ Rad(D′), M/Rad(M) = N/Rad(M) ⊕ (D′ + Rad(M))/Rad(M).
Hence M/Rad(M) is semisimple.

Proposition 3.13. Let M be a module. Then the following are equivalent:
(1) M is Rad-H-supplemented;
(2) M is semilocal and each direct summand of M/Rad(M) lifts to a direct
summand of M .

Proof. (1) ⇒ (2) By Lemma 3.12, we only prove the last statement. Let
N/Rad(M) ≤ M/Rad(M). Since M is Rad-H-supplemented, there exists
D ≤⊕ M such that Nβ∗∗D, i.e. (N + D)/N ⊆ (Rad(M) + N)/N and (N +
D)/D ⊆ (Rad(M) + D)/D. Then D ⊆ N . Hence N/Rad(M) = (D +
Rad(M))/Rad(M). This means N/Rad(M) lifts to D.

(2)⇒ (1) Let N ≤M . Then by assumption, (N+Rad(M))/Rad(M) = N
is a direct summand of M/Rad(M) = M . Hence by (2), N = L such that
M = L ⊕ K. The rest is easy by taking L as a Rad-H-supplement of N in
M .

The next proposition introduces a module which is not G∗-supplemented
(H-supplemented).

Proposition 3.14. Let R be a commutative domain with only two maximal
ideals. Then R is not a Goldie∗-supplemented R-module.

Proof. Let M1 and M2 be the maximal ideals of R. Note that RR is not
supplemented by [4, 27.21]. Also observe that if Y ≤ RR then either Y ≤M1

or Y ≤M2, and that Rad(RR) = M1∩M2 � RR. Now Claim 1: Let X ≤ RR

such that XR is not small in RR. Then X ≤ Mi if and only if Xβ∗Mi where
i ∈ {1, 2}.
Proof of claim 1. Assume that i = 1. Since RR is weakly supplemented from
[4, 17.9], there exists W ≤ RR such that X+W = R and X ∩W � RR. First
assume X ≤M1. Then W ≤M2. By the modular law, M1 = X + (M1 ∩W )
and M1 ∩W ≤ Rad(R) � R. Let K ≤ RR such that X + M1 + K = RR.
Since X ≤M1, M1 +K = RR. So RR = X + (M1 ∩W ) +K = X +K. By [3,
Theorem 2.3], Xβ∗M1. Conversely assume, Xβ∗M1. Suppose to the contrary
that X is not a submodule of M1. Then Xβ∗M2. It follows that M1β

∗M2.
Then RR = M1 + M2 + M1. By [3, Lemma 2.2], M1 + M1 = M1 = RR, a
contradiction. Thus X ≤M1.
Claim 2. There exists no supplement S ≤ RR such that M2β

∗S.
Proof of claim 2. Assume to the contrary that M2β

∗S for some supplement
S ≤ R. By Claim 1, S ≤M2. Hence there exists V ≤ RR such that V + S =
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RR and V ∩ S � S. Then V ≤ M1. From Claim 1, V β∗M1. Since X ≤ M1,
Xβ∗M1, by claim 1. From [3, Lemma 2.2] , Xβ∗V , a contradiction. Thus
Claim 2 is proved. It follows that RR is not Goldie∗-supplemented.

Corollary 3.15. Let R = {m/n ∈ Q | p - n, q - n} (see [11, p. 60, Ex-
ercise 3.67]) where p and q are distinct primes. Then RR is not Goldie∗-
supplemented.

Theorem 3.16. Let M = ⊕i∈IHi be a direct sum of Rad-H-supplemented
modules Hi (i ∈ I). Assume that each direct summand of M/Rad(M) lifts to
a direct summand of M . Then M is Rad-H-supplemented.

Proof. Clearly M/Rad(M) is semisimple by Lemma 3.12. Now M is Rad-H-
supplemented by Proposition 3.13.

The following example shows that any (finite) direct sum of Rad-H-
supplemented modules need not be Rad-H-supplemented.

Example 3.17. Let R be a commutative local ring and M a finitely gen-
erated R-module. Assume M ∼=

⊕n
i=1R/Ii. Since every Ii is fully in-

variant in R, every R/Ii is H-supplemented by [9, Theorem 2.3] and hence
Rad-H-supplemented by Proposition 3.3. By [10, Lemma A.4], M is Rad-
H-supplemented if I1 ≤ I2 ≤ . . . ≤ In. If we don’t have the condition
I1 ≤ I2 ≤ . . . ≤ In, M is not Rad-H-supplemented by Proposition 3.3.

A module M is called Rad-⊕-supplemented if for every A ≤ M , there
exists a B ≤⊕ M such that A+B = M and A ∩B ⊆ Rad(B). Clearly every
(P ∗)-module is Rad-⊕-supplemented and every Rad-⊕-supplemented module
is Rad-supplemented.

Now we investigate the relations between Rad-H-supplemented modules
and the others. A module M is called amply (Rad)-supplemented if for any
submodules K and V of M such that M = K + V , there is a submodule U of
V such that K+U = M and (K∩U ⊆ Rad(U)) K∩U � U . It is easy to show
that every amply Rad-supplemented module is weakly Rad-supplemented.

Proposition 3.18. Every amply Rad-supplemented module is Goldie-Rad-
supplemented.

Proof. Let M be amply Rad-supplemented and X ≤ M . Let X ⊆ Rad(M).
Clearly Xβ∗∗0. So assume that X * Rad(M). Since M is weakly Rad-
supplemented, there exists a submodule L of M such that X + L = M and
X ∩ L ⊆ Rad(M). By assumption, there is a Rad-supplement S of L in
X. So M = S + L and S ∩ L ⊆ Rad(S). Since S ⊆ X, we have X =
S + (L ∩X) ⊆ Rad(M) + S. It follows that Xβ∗∗S. Therefore, M is Goldie-
Rad-supplemented.
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Example 3.19. ([3, Example 3.9]) (1) Let R = Z8 and M = Z2 ⊕ Z4 ⊕
Z8. By [10, p. 97], M is an H-supplemented R-module and hence Rad-H-
supplemented R-module by Proposition 3.3. M is not lifting and since it is
finitely generated, M is not P ∗.

(2) Let R be a commutative local ring which has two incomparable ide-
als I and J . Let M = R/I ⊕ R/J . By [10, Lemma A.4(1)], M is amply
supplemented and hence amply Rad-supplemented. By Proposition 3.18, M
is Goldie-Rad-supplemented but M is not H-supplemented by [10, Lemma
A.4(3)]. Now by Proposition 3.3, M is not Rad-H-supplemented. Let F be a
field and
T = F [x]/ < x4 >= {a1 + bx + cx2 + dx3 | a, b, c, d ∈ F, x = x+ < x4 >}.
Let R = {a1 + cx2 + dx3 ∈ T}. Then R is a subring of T . Moreover, R
is a commutative local Kasch ring. Then Fx2 and Fx3 are ideals of R and
Fx2 ∩ Fx3 = 0. Then M = R/Fx2 ⊕ R/Fx3 is amply Rad-supplemented
(Goldie-Rad-supplemented) but not Rad-H-supplemented.

Let M be any module. A submodule U of M is called quasi strongly lifting
(QSL) in M if whenever (A+U)/U is a direct summand of M/U , there exists
a direct summand P of M such that P ≤ A and P + U = A+ U (see [1]).

Lemma 3.20. Let M be any module. Then the following are equivalent:
(1) M is (P ∗)-module;
(2) M is Rad-H-supplemented and Rad(M) is QSL in M .

Proof. By Lemma 3.12 and [1, Lemma 3.5 and Proposition 3.6].

Lemma 3.21. Let M be a projective module such that every Rad-supplement
submodule of M is a direct summand of M . Then the following statements
are equivalent:
(1) M is Rad-supplemented;
(2) M is amply Rad-supplemented;
(3) M is (P ∗);
(4) M is Rad-⊕-supplemented.

Proof. (1) ⇔ (2) By [12, Theorem 2.15].
(1) ⇒ (3) In [1, Lemma 3.2] the assertion is proved for any preradical τ .

Here we consider τ = Rad.
(3) ⇒ (1) and (1) ⇔ (4) are clear by definitions and the assumption that

every Rad-supplement submodule of M is a direct summand of M .

We say that a module M is strongly Rad-⊕-supplemented if M is Rad-⊕-
supplemented and everyRad-supplement submodule inM is a direct summand
of M .
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Proposition 3.22. If M is Goldie-Rad-supplemented and strongly Rad-⊕-
supplemented, then M is Rad-H-supplemented.

Proof. Let N ≤ M . Then there exists a Rad-supplement submodule S in M
such that Nβ∗∗S. By hypothesis, S is a direct summand of M . Hence M is
Rad-H-supplemented.

Now we have the following theorem:

Theorem 3.23. Let M be a projective module such that every Rad-supplement
submodule of M is a direct summand. Then the following are equivalent:
(1) M is Rad-supplemented;
(2) M is (P ∗);
(3) M is amply Rad-supplemented;
(4) M is Rad-H-supplemented and Rad(M) is QSL in M ;
(5) M is Rad-⊕-supplemented;
(6) M is Goldie-Rad-supplemented and Rad(M) is QSL in M .

Proof. (1) ⇔ (2) ⇔ (3) ⇔(5) are by Lemma 3.21.
(2) ⇔ (4) It is by Lemma 3.20.
(4) ⇔ (6) Follows from Proposition 3.22.

A module M is called refinable if whenever M = A + B for submodules
A,B, there is a direct summand C of M such that C ⊆ A and M = C + B
(see [14]). By [1, Theorem 3.7], if M is refinable, then Rad(M) is QSL in M .
Also by [1, Corollary 3.21], if RR is lifting, then for every finitely generated
projective R-module M , Rad(M) is QSL in M . Hence, we have following
corollary:

Corollary 3.24. Let M be a projective module such that every Rad-supplement
submodule is direct summand. Then the following are equivalent in case M is
refinable or RR is lifting and M is finitely generated:
(1) M is Rad-supplemented;
(2) M is (P ∗);
(3) M is amply Rad-supplemented;
(4) M is Rad-H-supplemented;
(5) M is Rad-⊕-supplemented;
(6) M is Goldie-Rad-supplemented.

Over a right perfect ring every rightR-module is Goldie-Rad-supplemented.
If RR is Rad-H-supplemented, then R is a semiperfect ring. So if every module
over a ring R is Rad-H-supplemented, then R is semiperfect. But there exists
a semiperfect ring which has a module that is not Rad-H-supplemented.
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Example 3.25. Let R = F [[x, y]] be the ring of formal power series over a
field F in the indeterminates x and y. Then R is a commutative noetherian
local domain with maximal ideal J = Rx + Ry. Therefore the ring R is
semiperfect. Since R is a domain, JR is a uniform R-module. It follows that
JR is indecomposable. Now suppose that JR is Rad-H-supplemented and
N $ J such that N * Rad(JR). Then Nβ∗∗0 or Nβ∗∗J . Then N ⊆ Rad(JR)
or N = JR. It follows that JR is not Rad-H-supplemented.

4 Open Problems

(1) By [8, Corollary 4.11], an H-supplemented module with (SIP ) is a direct
sum of hollow modules. When is every Goldie-Rad-supplemented module a
direct sum of hollow modules?
(2) Determine when a Goldie-Rad-supplemented module is Rad-supplemented.
(3) When is an arbitrary direct sum of Goldie-Rad-supplemented modules,
Goldie-Rad-supplemented?
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