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Diameter and girth of Torsion Graph
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Abstract

Let R be a commutative ring with identity. Let M be an R-module
and T (M)∗ be the set of nonzero torsion elements. The set T (M)∗ makes
up the vertices of the corresponding torsion graph, ΓR(M), with two
distinct vertices x, y ∈ T (M)∗ forming an edge if Ann(x)∩Ann(y) 6= 0.
In this paper we study the case where the graph ΓR(M) is connected
with diam(ΓR(M)) ≤ 3 and we investigate the relationship between the
diameters of ΓR(M) and ΓR(R). Also we study girth of ΓR(M), it is
shown that if ΓR(M) contains a cycle, then gr(ΓR(M)) = 3.

1 INTRODUCTION

Let R be a commutative ring with identity and M a unitary R-module. The
idea of associating a graph with the zero-divisors of a commutative ring was
introduced by Beck in [10], where the author talked about the colorings of such
graphs. He lets every elements of R is a vertex in the graph, and two vertices
x, y are adjacent if and only if xy = 0. In [5], Anderson and Livingston
introduced and studied the zero-divisor graph whose vertices are non-zero
zero-divisors while x−y is an edge whenever xy = 0. Anderson and Badawi
also introduced and investigated total graph of commutative ring in [1, 2].
The zero-divisor graph of a commutative ring has been studied extensively by
several authors [3, 4, 6, 9, 14, 15, 16]. The concept of zero-divisor graph has
been extended to non-commutative rings by Redmond [17].
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Let x ∈M . The residual of Rx by M denoted by [x : M ] = {r ∈ R| rM ⊆
Rx}. The annihilator of an R-module M , denoted by AnnR(M) = [0 : M ]. If
m ∈ M , then Ann(m) = {r ∈ R|rm = 0}. Let T (M) = {m ∈ M |Ann(m) =
0}. It is clear that if R is an integral domain then T (M) is a submodule of
M , which is called torsion submodule of M . If T (M) = 0 then the module M
is said torsion-free, and it is called a torsion module if T (M) = M .

In this paper, we investigate the concept of torsion-graph for modules as a
natural generalization of zero-divisor graph for rings. Here the torsion graph
ΓR(M) of M is a simple graph whose vertices are non-zero torsion elements of
M and two different elements x, y are adjacent if and only ifAnn(x)∩Ann(y) 6=
0. Thus ΓR(M) is an empty graph if and only if M is a torsion-free R-module.
Clearly if R is a domain or Ann(M) 6= 0, then ΓR(M) is complete. This study
helps to illuminate the structure of T (M), for example, if M is a multiplication
R-module, we show that M is finite if and only if ΓR(M) is finite.

Recall that a simple graph is finite if its vertices set is finite, and we use
the symbol |ΓR(M)| to denote the number of vertices in graph ΓR(M). Also, a
graph G is connected if there is a path between any two distinct vertices. The
distance, d(x, y) between connected vertices x, y is the length of the shortest
path from x to y, (d(x, y) =∞ if there is no such path). An isolated vertex is
a vertex that has no edges incident to it. The diameter of G is the diameter of
connected graph which is the supremum of the distance between vertices. The
diameter is zero if the graph consist of a single vertex. The girth of G, denoted
by gr(G) is defined as the length of the shortest cycle in G, (gr(G) = ∞ if
G contains no cycle). A complete graph is a simple graph whose vertices are
pairwise adjacent, the complete graph with n vertices is denoted Kn.

A ring R is called reduced if Nil(R) = 0. A ring R is von Neumann regular
if for each a ∈ R, there exists an element b ∈ R such that a = a2b. It is clear
that every von Neumann regular ring is reduced.

One may address three major problem in this area: characterization of
the resulting graphs, characterization of module with isomorphic graphs, and
realization of the connection between the structures of a module and the cor-
responding graph, in this paper we focus on the third problem.

The organization of this paper is as follows:
In section 2, we study the torsion graph of finite multiplication module, we

show that if the torsion graph of multiplication R-module M is finite(when
ΓR(M) is not empty ) then M is finite, specially if ΓR(M) has an isolated
vertex, then M ∼= M1 ⊕M2, in which M1,M2 are simple submodule of M .

In section 3, we show that ΓR(M) is connected with diam(ΓR(M)) ≤ 3 if
one of the following hold:

(1) ΓR(R) is a complete graph.
(2) R be a von Neumann regular ring and R 6∼= Ann(x) ⊕ Ann(y) for any
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x, y ∈ T (M)∗.
(3) Nil((R) 6= 0.
In section 4, we study the girth of torsion graph for an R-module M . It is

shown that if ΓR(M) contains a cycle, then gr(ΓR(M)) = 3
We follow standard notation and terminology from graph theory [12] and

module theory [8].

2 Properties of torsion graph

This section is concerned with some basic and important results in the theory
of torsion graphs over a module.

The following examples show that non-isomorphic modules may have the
same torsion graph.

Example 2.1. Let M = M1⊕M2 be an R-module, where M1 is a torsion-free
module. So T (M)∗ = {(0,m2) | m2 ∈ T (M2)∗}. Below are the torsion graphs
for some Z-modules and ring R as R-modules.

Z ⊕ Z3 R = Z9 Z ⊕ Z4 Z2 ⊕ Z2 Z ⊕ Z5 R = Z25

Lemma 2.2. If R is an integral domain, then ΓR(M) is complete.

Proof. Let R be an integral domain and x, y ∈ T (M)∗, so there is non-zero
element r, s ∈ R such that rx = sy = 0. Since R is an integral domain,
0 6= rs ∈ Ann(x) ∩Ann(y). Thus d(x, y) = 1 and ΓR(M) is complete.

Before we go on discussing the other properties of ΓR(M), we give, the
following theorem shows that for a multiplication R- module M , ΓR(M) is
finite (except, when ΓR(M) is empty) if and only if M is finite.

Theorem 2.3. Let M be an R-module with Ann(x) = Ann([x : M ]M) for all
x ∈ T (M)∗. Then ΓR(M) is finite if and only if either M is finite or M is a
torsion free R-module.

Proof. Suppose that ΓR(M) is finite and nonempty. Let x ∈ T (M)∗, hence
there is 0 6= s ∈ [x : M ]. Let N = [x : M ]M , so 0 6= Ann(x) ⊆ Ann(n) for
all n ∈ N , thus N ⊆ T (M)∗, therefore N is finite. Now if M is infinite, then
there is a n ∈ N with H = {m ∈ M | sm = n} infinite, then for all distinct
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elements m1,m2 ∈ H, s ∈ Ann(m1 −m2). So m1 −m2 ∈ T (M)∗, which is a
contradiction, therefore M be finite.

In the following example, it is shown that the condition Ann(x) = Ann([x :
M ]M) for all x ∈ T (M)∗ in the above Theorem cannot be omitted.

Example 2.4. Let R = Z and M = Z ⊕ Z3. Clearly M is not finite, but
V (ΓR(M)) = {(0, 1̄), (0, 2̄)} and so ΓR(M) is finite.

Corollary 2.5. Let M be a multiplication R-module. Then ΓR(M) is finite
if and only if either M is finite or M is a torsion free R-module.

Theorem 2.6. Let M be a multiplication R-module. If ΓR(M) has an isolated
vertex, then M = M1 ⊕M2 is a faithful R-module, where M1 and M2 are two
submodules of M such that M1 has only two elements. Especially, if M is
finite then M2 is simple.

Proof. Suppose that x ∈ T (M)∗ be an isolated vertex, so for all y ∈ T (M)∗

we have Ann(x) ∩ Ann(y) = 0 and M is faithful. If Rx ∩ Ry = 0, then there
is vertex z ∈ Rx ∩ Ry that is adjacent to x, which is a contradiction. Thus
[x : M ]y ∈ Rx ∩ Ry = 0. If [x : M ]x = 0, then [x : M ] ∈ Ann(x) ∩ Ann(y),
which is a contradiction. Therefore [x : M ]x 6= 0 and there is α ∈ [x : M ] such
that αx 6= 0. Since x is an isolated vertex Rx = {0, x}, thus αx = x. One can
easily check that M = Rx+Ann(x)M . Now suppose that w ∈ Rx∩Ann(x)M ,
thus w = rx for some r ∈ R, hence αw = rαx = rx = w and so w = rαx ∈
Ann(x)αM = 0. Therefore M = M1 ⊕M2, in which |M1| = |Rx| = 2.

Now, suppose that M be a finite multiplication R-module. Since M =
M1 ⊕M2, we have M2 is finite and so M2 is an Artinian R-module, Also by
Theorem 2.2 and Corollary 2.9 [13], M2 is cyclic, so M2

∼= R
Ann(M2)

. Assume

that
D(M2) = {m2 ∈M2|[m2 : M ][m′2 : M ]M = 0}.

We claim that D(M2) = 0. If D(M2) 6= 0, then there is a 0 6= m2 ∈M2, such
that

[m2 : M ][m′2 : M ]M = 0

for some 0 6= m′2 ∈ M2. Thus αm2 = 0 for some non-zero element α ∈ [m′2 :
M ]. Also αx ∈ Rx∩M2 = 0, so α(m2 +x) = 0 = αx, which is a contradiction,
consequently D(M2) = 0. Now we show that Ann(M2) is prime ideal of R.
Let st ∈ Ann(M2) for s, t ∈ R. So stM2 = 0, hence

[sM2 : M ][tM2 : M ]M = 0.

Since D(M2) = 0, we have sM2 = tM2 = 0. thus Ann(M2) is prime ideal of
R. Hence R

Ann(M2)
is a finite integral domain and so is a field, thus Ann(M2)

is a maximal ideal of R. Therefore M2 is a simple R-module.
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3 Diameter of torsion graph

In this section, we investigate the relationship between the diameter of ΓR(M)
and ΓR(R). First, we study the case where ΓR(M) is connected with diameter
≤ 3.

Theorem 3.1. Let M be an R-module. Then ΓR(M) is connected with
diam(ΓR(M)) ≤ 3 if one of the following hold:

(1) ΓR(R) is a complete graph.

(2) R be a von Neumann regular ring and R 6∼= Ann(x) ⊕ Ann(y) for any
x, y ∈ T (M)∗.

(3) Nil((R) 6= 0.

Proof. Let x, y ∈ T (M)∗ be two distinct elements. If Ann(x)∩Ann(y) 6=
0 or Ann(M) 6= 0 , then d(x, y) = 1. Therefore we suppose that M is
faithful and Ann(x) ∩ Ann(y) = 0. So there are two non-zero elements
s, t ∈ R such that sx = ty = 0 but sy 6= 0, tx 6= 0.

(1) Suppose that ΓR(R) is a complete graph, hence Ann(s) ∩ Ann(t) 6=
0, so x − tx − sy − y is a path of length 3. Hence d(x, y) ≤ 3, thus
diam(ΓR(M)) ≤ 3.

(2) Let R is a von Neumann regular ring. We know s = u1e1 and t = u2e2 for
some non-zero idempotent elements e1, e2 and unit elements u1, u2 such
that (1− e1)(1− e2) ∈ Ann(s) ∩ Ann(t). If Ann(s) ∩ Ann(t) = 0, then
1 ∈ Rs+Rt ⊆ Ann(x)∩Ann(y), hence R ∼= Ann(x)⊕Ann(y), which is
a contradiction. Therefore Ann(s) ∩ Ann(t) 6= 0 and x− tx− sy − y is
a path of length 3, so d(x, y) ≤ 3. Thus diam(ΓR(M)) ≤ 3.

(3) Let 0 6= a ∈ Nil(R), so an = 0 and an−1 6= 0 for some n ∈ N. Suppose
that x, y are vertices of ΓR(M) such that d(x, y) 6= 1. If ax = 0 = ay we
have d(x, y) ≤ 2. Let ax = 0 and ay 6= 0, so an−1 ∈ Ann(x) ∩ Ann(y),
hence x − ay − y is a path of length 2 and d(x, y) ≤ 2. If ax 6= 0 and
0 = ay, then x − ax − y is a path of length 2 and d(x, y) ≤ 2. Also
if ax 6= 0 and ay 6= 0, then x − ax − ay − y is a path of length 3 and
d(x, y) ≤ 3. Therefore diam(ΓR(M)) ≤ 3.

The following example shows that ΓR(R) is complete in Theorem 3.1 (1)
is crucial.
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Example 3.2. Let R = Z6 and M = Z6. Clearly V (ΓR(M)) = {2̄, 3̄, 4̄}
and vertex 3̄ is not adjacent to other vertices. This shows that ΓR(M) is not
connected graph.

In the following example, it is shown that the condition Nil(R) 6= 0 in
Theorem 3.1 (3) cannot be omitted.

Example 3.3. Let R = Z6 and M = Z6 ⊕ Z3. Clearly

V (ΓR(M)) = {(0, 1̄), (0, 2̄), (2̄, 0̄), (2̄, 1̄)(3̄, 0̄), (4̄, 0̄), (4̄, 1̄), (4̄, 2̄), (5̄, 0̄)}.

It is easy to see that (3̄, 0̄) is an isolated vertex and so ΓR(M) is not connected.

Corollary 3.4. If R = Zpn , where p is a prime number.

Z(R)∗ = {p, 2p, . . . , (p− 1)p, p2, . . . , (p− 1)p2, . . . , pn−1, . . . , (p− 1)pn−1}.

Then pn−1 ∈ Ann(x) ∩ Ann(y), for every x, y ∈ Z(R)∗ and so ΓR(R) is a
complete graph. Hence ΓR(M) is connected with diam(ΓR(M)) ≤ 3, for every
R-module M .

Theorem 3.5. Let M be a multiplication R-module and Nil((R) 6= 0. Then
ΓR(M) is connected with diam(ΓR(M)) ≤ 2.

Proof. Let 0 6= a ∈ Nil(R), so an = 0 and an−1 6= 0 for some n ∈ N. Suppose
that x, y are vertices of ΓR(M) such that d(x, y) 6= 1. If [x : M ]y 6= 0, then
there is 0 6= α ∈ [x : M ] such that x − αy − y is a path of length 2 and so
d(x, y) ≤ 2. If [y : M ]x 6= 0, then similar to the above argument, we have
d(x, y) ≤ 2. If ax = ay = 0, then we have d(x, y) ≤ 2. Let ax = 0 and ay 6= 0,
so an−1 ∈ Ann(x)∩Ann(y), hence x− ay− y is a path of length 2. Therefore
diam(ΓR(M)) ≤ 2.

Theorem 3.6. Let M be a multiplication R-module with T (M) 6= M . Then
the following hold:

(1) ΓR(M) is a complete graph if and only if ΓR(R) is a complete graph.

(2) If R be a Bézout ring, then diam(ΓR(R)) = diam(ΓR(M)).

Proof. (1) Let ΓR(M) be a complete graph and Ann(m) = 0 for some m ∈
M . Suppose that α, β are two vertices of ΓR(R). One can easily check
that αm, βm ∈ T (M)∗. Therefore Ann(αm)∩Ann(βm) 6= 0, so rαm =
rβm = 0 for some 0 6= r ∈ R. Hence rα = rβ = 0 and d(α, β) = 1.
Consequently ΓR(R) is a complete graph.

Now, let ΓR(R) be a complete graph, and x, y ∈ T (M)∗. So Ann(x) 6= 0
and Ann(y) 6= 0. Thus there are two non-zero elements r, s ∈ R such



DIAMETER AND GIRTH OF TORSION GRAPH 133

that rx = 0 = sy. Hence r[x : M ] = 0 = s[y : M ]. So for all α ∈ [x : M ]
and β ∈ [y : M ] we have rα = 0 = sβ and α, β are the vertices of
ΓR(R). Therefore 0 6= t ∈ Ann(α) ∩ Ann(β) 6= 0. Let x =

∑n
i=1 αimi

and y =
∑m

j=1 βjmj , where 0 6= αi ∈ [x : M ], 0 6= βj ∈ [y : M ]. Hence
t ∈ Ann(x)∩Ann(y) and d(x, y) = 1. Consequently ΓR(M) is a complete
graph.

(2) Let R be a Bézout ring and M be a multiplication R-module. By
(1), diam(ΓR(M)) = 1 if and only if diam(ΓR(R)) = 1. Suppose
that diam(ΓR(R)) = 2 and x, y ∈ T (M)∗ such that d(x, y) 6= 1. Let
x =

∑n
i=1 αimi and y =

∑m
j=1 βjmj , where 0 6= αi ∈ [x : M ], 0 6= βj ∈

[y : M ]. Since R is a Bézout ring,
∑n

i=1Rαi = Rα and
∑m

j=1Rβj = Rβ,
for some α, β ∈ R. Hence there exist m,m0 ∈ M such that x = αm,
y = βm0. Thus α, β ∈ Z(R)∗. If d(α, β) = 1, then d(x, y) = 1, and so
we have a contradiction. Thus d(α, β) = 2, so there exists γ ∈ Z(R)∗

such that α−γ−β is a path of length 2 and there are non-zero elements
r, s ∈ R such that

r ∈ Ann(α) ∩Ann(γ), s ∈ Ann(γ) ∩Ann(β)

Since M 6= T (M), then there is n ∈M such that γn ∈ T (M)∗. Therefore

r ∈ Ann(x) ∩Ann(γn), s ∈ Ann(γn) ∩Ann(y)

and αm = x − γn − y = βm. is a path of length 2. So d(x, y) = 2 and
diam(ΓR(M)) = 2.

Suppose that diam(ΓR(M)) = 2 and α, β ∈ Z(R)∗ such that d(α, β) 6= 1.
Since M 6= T (M), there is n ∈M such that αn 6= 0 and βn 6= 0. Hence
βn 6= αn ∈ T (M)∗. One can easily check that d(αn, βn) 6= 1. So
d(αn, βn) = 2, and there is z = γm ∈ T (M)∗ such that αn− γm− βn,
is a path of length 2. Thus rαn = 0 = rz for some 0 6= r ∈ R, so
rγ ∈ r[z : M ] = 0, hence α− γ−β is a path of length 2 and d(α, β) = 2.
Therefore diam(ΓR(R)) = 2.

Now, by similar to above argument diam(ΓR(R)) = n if and only if
diam(ΓR(M)) = n. Consequently diam(ΓR(M)) = diam(ΓR(R)).

4 Girth of torsion graph

In this section we study the girth of torsion graph.

Theorem 4.1. Let M be an R-module. If ΓR(M) contains a cycle, then
gr(ΓR(M)) = 3.
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Proof. Let x−y−z−w−x be the shortest cycle of T (M), so there are non-zero
elements r, s such that r ∈ Ann(x) ∩ Ann(y) and s ∈ Ann(y) ∩ Ann(z). If
x+ y = 0, then s ∈ Ann(x)∩Ann(z) and so x− y− z − x is a cycle, which is
a contradiction. Hence suppose that x + y 6= 0, we know that r ∈ Ann(x) ∩
Ann(x + y) and s ∈ Ann(x + y) ∩ Ann(y). Thus ΓR(M) contains a cycle
x−x+ y− y−x which is a contradiction. Consequently, gr(ΓR(M)) = 3.

As a result of Theorem4.1, we could say that the torsion graph of R-module
M can not be an n-gon for n ≥ 4.

Corollary 4.2. Let M be an R-module. If ΓR(M) is a connected graph with
|ΓR(M)| > 2, then ΓR(M) contains a cycle and gr(ΓR(M)) = 3

Proof. Let ΓR(M) is a connected graph with |ΓR(M)| > 2. Suppose that
x − y − z be the path in ΓR(M). By the same argument as in the proof of
Theorem 4.1, and if x + y = 0, then ΓR(M) x − y − z − x is a cycle, and if
x+ y 6= 0, we have ΓR(M) contains a cycle x− x+ y − y − x. Consequently,
ΓR(M) contains a cycle and so gr(ΓR(M)) = 3.

Theorem 4.3. Let M be a faithful multiplication R-module. Then
gr(ΓR(M)) = gr(ΓR(R)).

Proof. Let M be a faithful multiplication R-module. We show that ΓR(M)
contains a cycle if and only if ΓR(M) contains a cycle. Let ΓR(M) contains a
cycle, by Theorem 4.1 gr(ΓR(M)) = 3. So there are x, y, z ∈ T (M)∗ such that
x − y − z − x is a cycle. Hence r ∈ Ann(x) ∩ Ann(y), s ∈ Ann(y) ∩ Ann(z)
and t ∈ Ann(z) ∩ Ann(x) for some r, s, t ∈ R \ {0}. Therefore for all α ∈
[x : M ], β ∈ [y : M ] and γ ∈ [z : M ] we have r ∈ Ann(α) ∩ Ann(β),
s ∈ Ann(β)∩Ann(γ) and t ∈ Ann(γ)∩Ann(α). Thus α−β−γ−α is a cycle
in ΓR(R). So gr(ΓR(R)) = 3. Conversely, suppose that α−β−γ−α is a cycle
in ΓR(R). Since M is faithful, there are non-zero elements m1,m2,m3 ∈ M
such that αm1, βm2, γm3 ∈ T (M)∗. Therefore αm1 − βm2 − γm3 − αm1 is a
cycle in ΓR(M) and so gr(ΓR(M)) = 3.
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