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Abstract

The aim of the article is to describe the classification of simple iso-
lated hypersurface sin- gularities over a field of positive characteristic by
certain invariants without computing the normal form. We also give a
description of the algorithms to compute the classification which we have
implemented in the Singular libraries classifyCeq.lib and classifyReq.lib.
1 Int

1 Introduction

Simple hypersurface singularities in charateristic p > 0 were classified by
Greuel and Kröning [4] with respect to contact equivalence. Greuel and Nguyen
Hong Duc [6] classified the simple hypersurface singularities in characteristic
p > 2 with respect to right equivalence and the simple plane curve singular-
ities in characteristic 2 with respect to right equivalence. We complete the
classification of hypersurface singularities in characteristic 2.
Also we describe our implementation of a classifyer for simple singularities
with respect to contact equivalence respectively right equivalence in SINGU-
LAR [5],[2]. We use for distinguishing the different cases the blowing up as a
new tool.
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2 Basic Definitions

Let K[[x]] = K[[x1, . . . , xn]] is the local ring of formal power series and m is
its maximal ideal, K an algebraically closed field of characteristic p > 0.
The following definitions can be found in [3].

Definition 2.1. Let f ∈ m − {0} be a formal power series, then the ideal
j(f) =< fx1

, ..., fxn > is called Jacobian ideal and the K−algebra Mf =
K[[x]]/j(f) is called Milnor algebra, and µ(f) = dim(Mf ) is called the Milnor
number.

Definition 2.2. Let f ∈ m − {0} is a formal power series, then the ideal
tj(f) =< f, fx1

, ..., fxn > is called Tjurina ideal and the K−algebra Nf =
K[[x]]/tj(f) is called Tjurina algebra, and τ(f) = dim(Nf ) is called the Tju-
rina number.

Definition 2.3. Let f and g ∈ m ⊂ K[[x]]

f is called to be right equivalent to g, f
R∼ g if there exists an automorphism

φ of K[[x]] such that φ(f) = g.

f is called to be contact equivalent to g, f
c∼ g if there exists an automor-

phism φ of K[[x]] such that < φ(f) >=< g >, that is, there exists a unit u
such that φ(f) = ug.

Definition 2.4. Let f ∈ m ⊂ K[[x]]. Then f is called k − determined if all
g ∈ K[[x]] with f − g ∈ mk+1 are right equivalent to f .

Definition 2.5. Let f ∈ K[[x]] then k− jet of f is the Taylor expansion of f
up to degree k terms.

Definition 2.6. Let f ∈ m2 ⊂ K[[x]]. Then Hesse matrix of f is defined by

H(f) =

(
∂2f

∂xi∂xj
(0)

)
1≤i,j≤n

The corank of f is defined as corank(f) = n− rank(H(f)).

3 Arnold’s Classification Of Simple Singularities

Arnold gave a classification of simple singularities with respect to right equiv-
alence over the field of complex numbers [1].These are also the simple singu-
larities with respect to contact equivalence.

Normal forms of simple singularities with respect to the Arnold’s classifi-
cation are given as follows
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Name Normal form

Ak xk+1
1 + x22 + · · ·+ x2n, k ≥ 1

Dk x1x
2
2 + xk−1

1 + x23 + · · ·+ x2n, k ≥ 4
E6 x31 + x42 + x23 + · · ·+ x2n
E7 x31 + x1x

3
2 + x23 + · · ·+ x2n

E8 x31 + x52 + x23 + · · ·+ x2n

Note that for this singularaties the Milnor number is equal to the Tjurina
number and given by the index in the notation.

4 Greuel and Kröning’s Classification of Simple Singu-
larities

Greuel and Kröning gave the classification of simple singularities with respect
to contact equivalence in characteristic p > 0 [4].

Proposition 4.1. Let p = char(K). A plane curve singularity is contact sim-
ple if and only if it is contact equivalent to one of the following forms:
(i) p 6= 2

Name Normal form for f ∈ K[[x, y]] τ τ, p = 5 τ, p = 3

Ak xk+1 + y2 k ≥ 1 k if p - k + 1 k if 5 - k + 1 k if 3 - k + 1
k + 1 if p|k + 1 k + 1 if 5|k + 1 k + 1 if 3|k + 1

Dk xy2 + xk−1, k ≥ 4 k k k

E6 E0
6 x3 + y4 6 6 9

E1
6 x3 + y4 + x2y2, in char = 3 7

E7 E0
7 x3 + xy3 7 7 9

E1
7 x3 + xy3 + x2y2, in char = 3 7

E8 E0
8 x3 + y5 8 10 12

E1
8 x3 + y5 + x2y3 , in char = 3 10

E2
8 x3 + y5 + x2y2 , in char = 3 8

E3
8 x3 + y5 + xy4 , in char = 5 8

(ii) p = 2

Name Normal form for f ∈ K[[x, y]] τ

A2m−1 x2 + xym m ≥ 1 2m m even

2m − 1 m odd

A2m A0
2m x2 + y2m+1 m ≥ 1 4m

Ar2m x2 + y2m+1 + xy2m−r m ≥ 1, 1 ≤ r ≤ m − 1 4m − 2r r even

4m − 2r − 1 r odd

D2m x2y + xym m ≥ 2 2m

D2m+1 D0
2m+1 x2y + y2m m ≥ 2 4m

Dr2m+1 x2y + y2m + xy2m−r m ≥ 2, 1 ≤ r ≤ m − 1 4m − 2r

E6 E0
6 x3 + y4 8

E1
6 x3 + y4 + xy3 6

E7 x3 + xy3 7

E8 x3 + y5 8
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Proposition 4.2. Let p = char(K) > 2. A hypersurface singularity f ∈
m2 ⊂ K[[x]] is contact simple if and only if it is contact equivalent to one of
the following form:

f(x1, . . . , xn) = g(x1, x2) + x23 + · · ·+ x2n,

where g ∈ K[[x1, x2]] is one of the list in proposition 4.1 part (i).

Proposition 4.3. Let p = char(K) = 2. A surface singularity is contact sim-
ple if and only if it is contact equivalent to one of the following forms:

Name Normal form for f ∈ K[[x, y, z]] τ

Ak xy + zk+1 k + 1 k odd
k k even

D2m D0
2m z2 + x2y + xym m ≥ 2 4m

Dr2m z2 + x2y + xym + xym−rz m ≥ 2,1 ≤ r ≤ m − 1 4m − 2r

D2m+1 D0
2m+1 z2 + x2y + ymz m ≥ 2 4m

Dr2m+1 z2 + x2y + ymz + xym−rz m ≥ 2,1 ≤ r ≤ m − 1 4m − 2r

E6 E0
6 z2 + x3 + y2z 8

E1
6 z2 + x3 + y2z + xyz 6

E7 E0
7 z2 + x3 + xy3 14

E1
7 z2 + x3 + xy3 + x2yz 12

E2
7 z2 + x3 + xy3 + y3z 10

E3
7 z2 + x3 + xy3 + xyz 8

E8 E0
8 z2 + x3 + y5 16

E1
8 z2 + x3 + y5 + xy3z 14

E2
8 z2 + x3 + y5 + xy2z 12

E3
8 z2 + x3 + y5 + y3z 10

E4
8 z2 + x3 + y5 + xyz 8

Proposition 4.4. Let p = char(K) = 2. A hypersurface singularity f ∈ m2 ⊂
K[[x]] is contact simple if and only if it is contact equivalent to the following
form:

f(x1, . . . , xn) = g(x1, x2, x3) + x4x5 + · · ·+ x2kx2k+1, n = 2k + 1,

where g ∈ K[[x1, x2, x3]] is one of the list in proposition 4.3., or

f(x1, . . . , xn) = g(x1, x2) + x3x4 + · · ·+ x2k+1x2k, n = 2k,

where g ∈ K[[x1, x2]] is one of the list in proposition 4.1 part (ii).

To distinguish the different singularities in the classificatopn we need de-
tailed information on the resolution of the singularaties.In the next proposition
we give the blowing up sequences and the corresponding sequences of the Tju-
rina numbers. Here the notion A3 ← A1 means that the blowing up of A3

gives A1.

Proposition 4.5. Assume f ∈ K[[x, y]] then
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(1) A2m−1 ← A2(m−1)−1 ← . . . A3 ← A1

is the sequence of blowing ups in the resolution of theA2m−1-singularities.
The corresponding sequence of Tjurina numbers is
(. . . , 2k + 5, 2k + 4, 2k + 1, 2k, 2k − 3, . . . , 8, 5, 4, 1)

(2) A0
2m ← A0

2(m−1) ← . . . A0
2

(4m, 4m− 4, . . . , 12, 8, 4)

(3) Ar
2m ← Ar−1

2(m−1) ← . . .← A1
2(m−(r−1)) ← A0

2(m−r) ← . . .← A0
2

(4m− 2r, . . . , 4(m− r) + 5, 4(m− r) + 4, 4(m− r) + 1, 4(m− r), . . . , 8, 4)
if r is even.
(4m−2r−1, . . . , 4(m−r)+5, 4(m−r)+4, 4(m−r)+1, 4(m−r), . . . , 8, 4)
if r is odd.

(4) D2m ← A2(m−2)−1 ← . . .← A1

(2m, 2m− 4, 2m− 7, 2m− 8, 2m− 11, . . . , 1) if m is even.
(2m, 2m− 5, 2m− 6, 2m− 9, 2m− 10, . . . , 1) if m is odd

(5) D0
2m+1 ← A0

2(m−2) ← . . .← A0
2

(4m, 4m− 8, 4m− 12, . . . , 4)

(6) Dr
2m+1 ← Ar−2

2(m−2) ← Ar−3
2(m−3) ← . . . ← A1

2(m−(r−1)) ← A0
2(m−r) ←

. . .← A0
2

(4m− 2r, 4m− 2r− 4, 4m− 2r− 7, . . . , 4(m− r) + 1, 4(m− r), . . . , 8, 4)
if r is even.
(4m− 2r, 4m− 2r− 5, 4m− 2r− 6, . . . , 4(m− r) + 1, 4(m− r), . . . , 8, 4)
if r is odd.

(7) E0
6 and E1

6 , the seqence of Tjurina numbers is (8) respectively (6).

(8) E7 ← A1, the sequence of Tjurina numbers is (7, 1).

(9) E8 ← A0
2, the sequence of Tjurina numbers is (8, 4).

Proposition 4.6. Assume f ∈ K[[x, y, z]] then
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(1) Ak ← Ak−2 ← . . .← A1 k is odd
(k + 1, k − 1, . . . , 2)
Ak ← Ak−2 ← . . .← A2 k is even
(k, k − 2, . . . , 2)

(2) D0
2m ← D0

2(m−1) ← . . .← D0
4 ← A1

(4m, 4m− 4, . . . , 8, 2)

(3) Dr
2m ← Dr−1

2(m−1) ← . . . ←, D1
2(m−(r−1)) ← D0

2(m−r) ← . . . ← D0
4 ←

A1

(4m− 2r, 4m− 2r − 2, . . . , 4m− 4r + 2, 4(m− r), . . . , 8, 2)

(4) D0
2m+1 ← D0

2m−1 ← . . .← D0
5 ← A3 ← A1

(4m, 4(m− 1), . . . , 8, 4, 2)

(5) Dr
2m+1 ← Dr−1

2(m−1)+1 ← . . . ← D1
2(m−(r−1))+1 ← D0

2(m−r)+1 ← . . . ←
D0

5 ← A3 ← A1

(4m− 2r, 4m− 2r − 2, . . . , 4m− 4r + 2, 4(m− r), . . . , 8, 4, 2)

(6) E0
6 ← A5 ← A3 ← A1 (8, 6, 4, 2)

E1
6 ← A5 ← A3 ← A1 (6, 6, 4, 2)

(7) E0
7 ← D0

6 ← D0
4 ← A1 (14, 12, 8, 2)

E1
7 ← D0

6 ← D0
4 ← A1 (12, 12, 8, 2)

(8) E2
7 ← D1

6 ← D0
4 ← A1 (10, 10, 8, 2)

E3
7 ← D2

6 ← D1
4 ← A1 (8, 8, 6, 2)

(9) E0
8 ← E0

7 ← D0
6 ← D0

4 ← A1 (16, 14, 12, 8, 2)

(10) E1
8 ← E0

7 ← D0
6 ← D0

4 ← A1 (14, 14, 12, 8, 2)

(11) E2
8 ← E1

7 ← D0
6 ← D0

4 ← A1 (12, 12, 12, 8, 2)
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(12) E3
8 ← E2

7 ← D1
6 ← D0

4 ← A1 (10, 10, 10, 8, 2)

(13) E4
8 ← E3

7 ← D2
6 ← D1

4 ← A1 (8, 8, 8, 6, 2)

Proposition 4.7. Let f ∈ (x, y2)3 ⊆ K[[x, y]], char(K) = 2 then τ(f) ≥ 10.

Proof. Let f = x3 + ax2y2 + bxy4 + cy6 + h, h of weighted order at least 7
with respect to the weights 2,1 for x,y. Then ∂f

∂x = x2 + by4 + ∂h
∂x and ∂f

∂y = ∂h
∂y .

Therefore f can be reduced using ∂f
∂x to (c−ab)y6 +k, k of weighted degree at

least 7. This implies that 1, y, . . . , y5, x, xy, xy2, xy3 are linearly independent
modulo < f, ∂f∂x ,

∂f
∂y >.

Proposition 4.8. Let f ∈ (x, y2)3 ⊆ K[[x, y]], char(K) > 2 then τ(f) ≥ 9.

Proof. Let f = g + h, g weighted homogeneous of degree 6 with respect to
the weights 2 resp. 1 for x resp.y, or zero and h of weighted order at least 7.
Then 6g = 2x ∂g

∂x + y ∂g
∂y . This implies if char(K) 6= 3 then < f, ∂f∂x ,

∂f
∂y >=<

h, ∂f∂x ,
∂f
∂y >.

But the contribution of h are of weighted degree at least 7. Analyzing the
proof of the proposition 5.4 we obtain τ(f) ≥ 9. If char(K) = 3 then let
g = x3 + ax2y2 + bxy4 + cy6. We have ∂f

∂x = 2axy2 + by4 + ∂h
∂x , and ∂f

∂y =

2ax2y + bxy3 + ∂h
∂y .

In case a 6= 0 all s-polys of f, ∂f∂x ,
∂f
∂y have weighted order at least 7 (since

2x ∂g
∂x + y ∂g

∂y = 0). This implies that in case a 6= 0, 1, y, . . . , y6, x, xy, x2 are

linearly independent modulo < f, ∂f∂x ,
∂f
∂y >.

In case a = 0 we obtain that 1, y, y2, y3, x, xy, xy2, x2, x2y, x2y2 are linearly
independent modulo < f, ∂f∂x ,

∂f
∂y >. This implies that τ(f) ≥ 10 in this case.

5 Greuel and Nguyen Hong Duc’s Classification of Sim-
ple Singularities in positive Characteristic w.r.t. Right
Equivalence

The normal forms of simple singularities with respect to right equivalence [6]
are given as follows

Proposition 5.1. Let p = char(K). A plane curve singularity is right simple
if and only if it is right equivalent to one of the following forms:
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(i) p 6= 2

Name Normal form for f ∈ K[[x, y]] µ
Ak x2 + yk+1 1 ≤ k ≤ p− 2 k
Dk x2y + yk−1 4 ≤ k ≤ p k
E6 x3 + y4 p 6= 3 6
E7 x3 + xy3 p 6= 3 7
E8 x3 + y5 p 6= 3, 5 8

(ii) p = 2

Name Normal form for f ∈ K[[x, y]] µ
A1 xy 1

Proposition 5.2. Let p = char(K). A hypersurface singularity f ∈ m2 ⊂
K[[x]] is right simple if and only if it is right equivalent to one of the following
forms:
(i) p 6= 2

f(x1, . . . , xn) = g(x1, x2) + x23 + · · ·+ x2n,

where g ∈ K[[x1, x2]] is one of the list in proposition 5.1 part (i).
(ii) p = 2

f(x1, . . . , xn) = x1x2 + x3x4 + · · ·+ x2k+1x2k, n = 2k.

Proof. (i) is proved in [6].
To prove (ii) we use the splitting lemma (proposition 3 of [4]).
Let f ∈ m ⊂ K[[x]] and mult(f) = 2 then either

f ∼ x21 + x2x3+, . . . ,+x2lx2l+1 + g(x2l+2, . . . , xn)x1 + h(x2l+2, . . . , xn)

with g ∈ m2 and h ∈ m3 or

f ∼ x1x2+, . . . ,+x2l−1x2l + h(x2l+1, . . . , xn)

with h ∈ m3.
In the first case it is easy to see that the Milnor number is not finite i.e. f is
not simple.
In the second case we use induction to prove that f is simple if and only if
n = 2l. This is clear since f is simple if and only if h is simple.
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Proposition 5.3. Let f ∈ K[[x]] and µ(f) = 1 then f defines A1- singularity.

Proof. If char(K) > 2 then the splitting lemma implies that f ∼ x21 + · · · +
x2l + h(xl+1, . . . , xn) with h ∈< xl+1, . . . , xn >

3 then µ(f) = µ(h). But h ∈<
xl+1, . . . , xn >3 implies < fxl , ..., fxn >⊆< xl+1, . . . , xn >2 . This implies
µ(h) > 1. We obtain l = 1 and f defines A1- singularity.
If char(K) = 2 then either

f ∼ x21 + x2x3+, . . . ,+x2lx2l+1 + g(x2l+2, . . . , xn)x1 + h(x2l+2, . . . , xn)

with g ∈ m2 and h ∈ m3 or

f ∼ x1x2+, . . . ,+x2l−1x2l + h(x2l+1, . . . , xn)

with h ∈ m3.
In the first case it is easy to see that the Milnor number is not finite. The
second case can be settled as above.

Proposition 5.4. Let f ∈ (x, y2)3 ⊆ K[[x, y]], char(K) > 2 then µ(f) > 8.

Proof. Let f = g+h, g weighted homogeneous of degree 6 with respect to the
weights 2 respectively 1 for x respectively y or zero and h of weighted order at
least 7. If g = 0 then the leading monomials of a standard basis of < ∂f

∂x ,
∂f
∂y >

with respect to the local weighted ordering have degree at least 5. This implies
that 1, y, y2, y3, y4, x, xy, xy2, x2 are linearly independent modulo < ∂f

∂x ,
∂f
∂y >.

This implies that µ(f) ≥ 9 in this case.
If g 6= 0 then 3 cases are possible. We may assume that g = x3 + ax2y2 +
bxy4 + cy6. Over the algebraic closure of K g splits, g = (x + α1 y

2) (x +
α2 y

2) (x+α3 y
2). If α1 = α2 = α3 , we may assume ( after the transformation

x→ x−α1 y
2 ) that g = x3. Then ∂f

∂x = 3x2+ ∂h
∂x and ∂f

∂y = ∂h
∂y . If char(K) = 3

then we are in the same situation as the previous case and obtain µ(f) ≥ 9. If
char(K) 6= 3 then a minimal standard basis of < ∂f

∂x ,
∂f
∂y > contains ∂f

∂x with

leading monomial x2. ∂f
∂y is of the weighted order at least 6. This implies that

1, y, . . . , y5, x, xy, xy2, xy3 are linearly independent modulo < ∂f
∂x ,

∂f
∂y > and

therefore µ(f) ≥ 10 in this case.
If two of the αi are equal, we may assume f = x3 + x2 y2. Then ∂f

∂x = 3x2 +

2xy2+ ∂h
∂x and ∂f

∂y = 2x2y+ ∂h
∂y . If char(K) = 3 then ∂f

∂x ,
∂f
∂y are in the standard

basis and all the other elements have weighted order at least 6. This implies
that 1, y, . . . , y5, x, xy, x2 are linearly independent modulo < ∂f

∂x ,
∂f
∂y > and

µ(f) ≥ 9.
If char(K) 6= 3 then we can reduce ∂f

∂y using ∂f
∂x to a x y3 +ϕ, where deg(ϕ) ≥

6. If a = 0 then with the same argument as in the case g = x3 we obtain
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µ(f) ≥ 10. If a 6= 0 then we have x2 and x y3 in the leading ideal of <
∂f
∂x ,

∂f
∂y >. The next element in the standard basis has weighted order at least

6 i.e 1, y, . . . , y5, x, xy, xy2 are linearly independent, i.e. µ(f) ≥ 9.
Now assume that all the roots are different. Then (after some transformation)
we may assume g = x(x2+axy2+y4) and a 6= ± 2 . Then ∂f

∂x = 3x2+2axy2+∂h
∂x ,

and ∂f
∂y = 2ax2y+ 4xy3 + ∂h

∂y . If char(K) 6= 3 we use f1 := ∂f
∂x to reduce ∂f

∂y to

f2 := (a2 − 3)xy3 + a
2y

5 + h1, h1 of weighted order at least 6. If a2 = 3 then
∂f
∂x ,

a
2y

5 + h1 is a standard basis of < ∂f
∂x ,

∂f
∂y > and µ(f) = 10. If a2 6= 3 then

we obtain as standard basis {∂f∂x , f2, y
7} and also µ(f) = 10. If char(K) = 3

we conclude similar to the case g = x3 + x2y2 that µ(f) ≥ 9.

6 Description of the Classifier

In this section we give the description of our classifier and its implementa-
tion in SINGULAR. This classifier is used for computing the type and normal
forms of the simple singularities in characteristic p > 0 with respect to contact
and right equivalence.
Our classifier is based on two main algorithms
Algorithm : 1 ; classifyCeq
Algorithm : 2 ; classifyReq
First algorithm of our classifier is classifyCeq, which classifies the simple sin-
gularities in characteristic p > 0 with respect to the contact equivalence. This
algorithm further consist on two algorithms classifyC1eq and classifyC2eq.
classifyC1eq, classifies the simple singularities with respect to contact equiv-
alence when characteristic p 6= 2 and classifyC2eq, classifies the simple sin-
gularities with respect to the contact equivalence when characteristic p = 2.
The second algorithm of our classifier classifyReq, classifies the simple sin-
gularities in characteristic p > 0 with respect to the right equivalence.

Now we explain our classifier in detail.

6.1 The Algorithm(classifyCeq)

In the first case we consider char(K) 6= 2, n=number of variables= 2. If Tju-
rina number of f is not finite then f is not an isolated singularity and therefore
not simple.
For this case our classifier computes the corank(f). If corank(f) = 0 then it
gives A1- singularity and if corank(f) = 1 then it gives Ak-singularities, k > 1.
It makes a single blow-up of f at the origin and computes the difference of the
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tjurina number of f before and after the blowing-up. If the difference is less
or equal to two then it gives Ak-singularities such that τ(f) = k, otherwise it
gives Ak- singularities such that τ(f) = k + 1.
Now if corank(f) = 2 then it computes j3(f). If j3(f) = 0 then it gives f is
not simple. If j3(f) has only one factor then it is transformed to x , it gives
either f is not simple or E-singularities. If f ∈ (x, y2)3, then f is not simple.
This can be detected by τ(f) ≥ 9, cf. Proposition.4.8. When char(K) 6= 3, 5
and τ(f) ≤ 8 then for τ(f) = 6, 7, 8 it gives E0

6 , E0
7 and E0

8 singularities re-
spectively. When char(K) = 5 then for τ(f) = 6, 7, 10, 8 it gives E0

6 , E0
7 , E0

8

and E1
8 singularities respectively. When char(K) = 3 then for τ(f) = 12, 10, 8

it gives E0
8 , E1

8 and E2
8 singularities respectively. If char(K) = 3 and τ(f) = 7

then it makes a single blow-up of f at the origin. If f is smooth after this blow
up then it gives E1

6 , otherwise it gives E1
7 . If char(K) = 3 and τ(f) = 9 then

again it makes a single blow-up of f at the origin. If f is smooth after this
blow up then it gives E0

6 , otherwise it gives E0
7 . And if j3(f) has two or three

factors then for τ(f) = k it gives Dk-singularities.
If n=number of variables > 2 then our classifier splits f as explained is section-
4 and reduce the case into two variables.

Now we consider char(K) = 2, n=number of variables= 2. If Tjurina num-
ber of f is not finite then f is not an isolated singularity and therefore not
simple.
In this case our classifier checks the order of f , if ord(f) = 2 then it gives
Ak singularities. To determine k, it performs a blow-up of f at the origin
and computes the difference of the tjurina number of f before and after the
blowing-up. If the difference is equal to 4, then it gives the A0

2k singulari-
ties, where k = τ(f)/4 if τ(f). Otherwise it makes successive blow-ups and
computes the Tjurina number after each blow-up untill it gets the Tjurina
number 0. If the Tjurina number of the last singularity in the resolution is 4
then it gives Ar

2k singularities, where k = (τ(f) + 2r)/4 if τ(f) is even and
k = (τ(f) + 1 + 2r)/4 if τ(f) is odd. And for the other case it give A2k−1

singularities, where k = τ(f)/2 if τ(f) is even and k = (τ(f) + 1)/2 if τ(f)
is odd. To find value of r it makes successive blow ups and find the difference
of tjurina numbers for every two consecutive blow ups. Let t − 1 and t are
consecutive blow ups such that difference of tjurina numbers of these blow ups
becomes 4 then it gives r = t− 1.

Now if ord(f) = 3 then it computes j3(f). If j3(f) has only one factor then
it is transformed to x. If f ∈ (x, y2)3 then f is not simple. This can be detected
by τ(f) ≥ 10, cf. Proposition.4.7.If τ(f) ≤ 9 then it gives E-singularities. For
τ(f) = 6, 7 it gives E1

6 and E7 respectively. If τ(f) = 8 then it makes a single
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blow-up of f at the origin. If f is smooth after this blow up then it gives E0
6 ,

otherwise it gives E8. If j3(f) has 3 factors then it gives the D4-singularity,
and if j3(f) has two factors then it makes a blow-up and computes the differ-
ence of tjurina numbers before and after blow-up, if the difference is 8 then it
gives D0

2k+1. Otherwise it makes successive blow-ups and computes the tjurina
number after each blow-up untill it gets Tjurina number 0. If Tjurina number
of the last singularity in the resolution is 4 then it gives Dr

2k+1-singularities
with k = (τ(f) + 2r)/4 and for the other case it gives D2k-singularities with
k = τ(f)/2. To find value of r it makes successive blow ups and find the dif-
ference of Tjurina numbers for every two consecutive blow ups. Let t−1 and t
are consecutive blow ups such that difference of tjurina numbers of these blow
ups becomes 4 then it gives r = t. If ord(f) ≥ 4 then the singularity is not
simple.

In case of char(K) = 2 and n=number of variables= 3. Our classifier checks
the multiplicity of f . If the multiplicity of f is 2 then it factorizes j2(f). If
j2(f) has only one factor of multiplicity 1 then it gives the A1-singularity.
If j2(f) has two different factors then we have Ak-singularities. In order to
obtain the k we resolve the singularity. If the last singularity before becoming
smooth is A2 than we have k = τ(f) otherwise k = τ(f)− 1.
At this step our classifier makes some coordinate change and transform j2(f)
to z2. Then we have f = z2+h(x, y)+h1(x, y)z+z2φ+ψ, where φ ∈ m,ψ ∈ m4

and h, h1 are homogeneous polynomials of degree 3 and 2. Now it factorizes
g = h(x, y)+h1(x, y)z. If it is irreducible then it gives E0

6 or E1
6 corresponding

to the τ(f) = 8 or 6 respectively. If g has one linear and one quadratic factor
of multiplicity 1 then it gives D1

5 corresponding to τ(f) = 6 and D0
5, E

3
7 or

E4
8 corresponding to τ(f) = 8. To distinguish the D0

5, E
3
7 and E4

8 singularities,
it performs blow ups of f at origin to compute the sequence of the tjurina
number: (8, 4, 2) for D0

5, (8, 8, 6, 2) for E3
7 and (8, 8, 8, 6, 2) for E4

8 . Now if
g has three different factors then it gives D0

4 and D1
4 corresponding to the

τ(f) = 8, 6 respectively. If g has one factor of multiplicity 1 and one factor
of multiplicity 2 then it gives Dk singularities. To determine k, it performs
a blow-up and computes the difference of Tjurina numbers before an after
blow-up. If the difference is 4 then it gives D0

2k+1 or D0
2k singularities with

k = τ(f)/4 and if the difference is 2 then it gives Dr
2k+1 or Dr

2k singularities
with k = (τ(f) + 2r)/4, where r is the number of that blow up after which
either the difference of the Tjurina numbers of blow ups becomes 4 (i.e r 6= k−2
) or if the difference is not 4 then r = k−2. The resolution sequence separates
the cases: Dr

2m+1 , D0
2m+1 resolution have . . . ← A3 ← A1 at the end. And

Dr
2m, D0

2m resolution have . . . ← D1
4 ← A1 respectively. . . . D0

4 ← A1 at the
end cf. Proposition 4.6.
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Now if g has only one factor of multiplicity 3 then it gives Ek singularities. If
τ(f) = 10, 12, 14 then it gives E2

7 or E3
8 , E1

7 or E2
8 and E0

7 or E1
8 respectively.

These cases can be separated by the length of the Tjurina sequence i.e 5 for
E8 and 4 for E7 cf.proposition 4.6. And if τ(f) = 16 then it gives E0

8 .
If n=number of variables > 3 then our classifier splits f [7] and reduces the
case into two or three variables.

6.2 The Algorithm(classifyReq)

We consider char(K) 6= 2, n=number of variables= 2. If the Milnor number
of f is not finite then f is not simple. And if the Milnor number of f is finite
then our classifier computes corank(f). If corank(f) ≤ 1 then it gives Ak-
singularities, where 1 ≤ k = µ(f) ≤ char(K)− 2. And if corank(f) = 2 then
it computes j3(f). If j3(f) has only one factor and µ(f) ≤ 8 then it gives
E-singularities. If the factor is transformed to x and f ∈ (x, y2)3 then f is not
simple. This can be detected by µ(f) ≥ 9, cf. proposition 5.4. If char(K) 6= 3
and µ(f) = 6, 7 then it gives E6, E7 respectively. If char(K) 6= 3, 5 and
µ(f) = 8 then it gives E8. And if j3(f) has two or three factors then it gives
Dk-singularities, where 4 ≤ k = µ(f) ≤ char(K).
If char(K) 6= 2 and n=number of variables > 2 then our classifier splits f as
described in proposition-5.2 part (i) and reduces the case into two variables.
For the case when char(K) = 2, our classifier gives A1-singularity for µ(f) = 1.
This is the only normal form in this case.

7 Singular Examples

LIB"classifyCeq.lib";

ring R=2,(x,y,z),ds;

poly f1 = x2+y2+z2+x3+x2y+xy2+y3+y5;

classifyCeq(f1);

> E_8^0 = z2+x3+y5

ring R=2,(x,y),ds;

poly f2 = x2+y2+x12+x11y+x21;

classifyCeq(f2);

> A_2k^r

> A_18^9 = x2+y21+xy11
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ring R=5,(x,y),ds;

poly f3 = x3-2x2y-2xy2+y3+x4+x3y;

classifyCeq(f3);

> E_7^0 = x3+xy3

LIB"classifyReq.lib";

ring R = 7,(x,y),ds;

poly f4 = x3+2x2y-xy2-y3+xy3+3y4+3x3y2+2x2y3+3x5y+2x4y2+x7+3x6y

+3x2y5+2xy6-x4y4-3x3y5+3x6y3+2x5y4+3x3y7+2x2y8+3x5y6

+2x4y7+x4y9+3x3y10;

classifyReq(f4);

> E7 = x3+xy3

ring R=2,(x,y),ds;

poly f5 = x2+xy;

classifyReq(f5);

> A1 = xy
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