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Reflection and transmission of waves from
imperfect boundary between two heat

conducting micropolar thermoelastic solids

Kunal Sharma and Marin Marin

Abstract

The problem of reflection and transmission of plane waves at an im-
perfect boundary between two thermally conducting micropolar elastic
solid half spaces with two temperature is investigated. Amplitude ratio
of various reflected and transmitted waves are presented when a set of
coupled longitudinal wave (LD-wave) and thermal wave (T-wave) and
a set of coupled transverse wave and microrotation waves (CDI, CDII)
is made incident. The expressions for reflection and transmission coeffi-
cients which are the ratios of the amplitudes of reflected and transmitted
waves at different angles of incident wave are obtained. The correspond-
ing expressions for the normal force stiffness, transverse force stiffness,
transverse couple stiffness and perfect bonding has also been included.
Stiffness and two temperature effects on these amplitude ratios with
angle of incidence have been depicted graphically. Some special and
particular cases are also discussed.

1 Introduction

The exact nature of layers beneath the earths surface are unknown. Therefore,
one has to consider various appropriate models for the purpose of theoretical
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investigation. Modern engineering structures are often made up of materials
possessing an internal structure. Polycrystalline materials, materials with fi-
brous or coarse grain structure come in this category. Classical elasticity is
inadequate to represent the behaviour of such materials. The analysis of such
materials requires incorporating the theory of oriented media. For this reason,
micropolar theories were developed by Eringen[1,2,3] for elastic solids, fluids
and further for non-local polar fields and are now universally accepted. A
micropolar continuum is a collection of interconnected particles in the form of
small rigid bodies undergoing both translational and rotational motions.

The linear theory of micropolar thermoelasticity was developed by extend-
ing the theory of micropolar continuum to include thermal effects by Eringen[4]
and Nowacki[5]. Dost and Taborrok [6] presented the generalized thermoelas-
ticity by using Green and Lindsay theory[7].

The main difference of thermoelasticity with two temperature with respect
to the classical one is the thermal dependence. Chen et al [8, 9] have formu-
lated a theory of heat conduction in deformable bodies, which depend on two
distinct temperature, the conductive temperature φ and thermodynamic tem-
perature θ . For time independent situations, the difference between these two
temperature is proportional to the heat supply. For time dependent problems
in wave propagation the two temperature are in general different. The two
temperature and the strain are found to have representation in the form of
a travelling wave pulse, a response which occurs instantaneously throughout
the body Boley [10]. The wave propagation in the two temperature theory of
thermoelasticity was investigated by Warren and Chen [11].

Various investigators Youssef [12] , Puri and Jordan [13], Youssef and
Al-Lehaibi [14], Youssef and Al-Harby [15], Magana and Quintanilla [16],
Mukhopadhyay and Kumar [17], Roushan and Santwana [18], Kaushal et al
[19], Kaushal et al [20], Ezzat and Awad [21] and Ezzat et al. [22] studied
different problems in thermoelastic medias with two temperature.

An actual interface between two elastic media is much more complicated
and has physical properties different from those of the substrates. A general-
ization of this concept is that of an imperfectly bonded interface. In this case
displacement across the surfaces need not be continuous. Imperfect bond-
ing means that the stress components are continuous, but the displacement
field is not. The small vector difference in the displacement is assumed to
depend linearly on the traction vector. To describe the physical conditions
on the interface by different mechanical boundary conditions, significant work
has been done by different investigators. Notable among them are Baik and
Thomson [23], Rokhlin [24], Angel and Achenbach [25], Pilarski and Rose [26],
Lavrentyev and Rokhlin [27].

Recently various authors have used the imperfect conditions at an interface
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to study various types of problems e.g. Kumar and Sharma [28], Kumar etal.
[29, 30, 31,32], Ram and Sharma [33], Kumar and Sharma [34], Sharma etal.
[35], Kumar and Chawla [36, 37, 38].

The theory from [39] is a theory of thermoelasticity constructed by taking
into account the heat conduction in deformable bodies which depends om two
temperature.

In the context of in the paper [40] it is proved that the Cesaro means of the
kinetic and strain energies of a solution with finite energy become asymptotic
equal as time tends to infinity.

By using a measure of Toupin type associated with the corresponding
steady-state vibration and assuming that the exciting frequency is lower than
a certain critical frequency, in the paper [41] it is obtained a spatial decay
estimate similar to that of Saint-Venant type.

In the paper [42] the author applies the theory of semigroups of operators
in order to obtain the existence and uniqueness of solutions for the mixed
initial-boundary value problems in thermoelasticity of dipolar bodies. The
continuous dependence of the solutions upon initial data and supply terms is
also proved

The reflection and transmission of plane waves i.e. Longitudinal displace-
ment wave (LD wave), Thermal wave (T wave), Coupled transverse wave (CD-I
wave and CD-II wave) at an imperfect interface of two different micropolar
generalized thermoelastic solid half spaces with two temperature has been in-
vestigated. Stiffness and two temperature effects are depicted graphically on
the amplitude ratios for incidence of various plane waves.

2 Basic equations

Following Eringen [1], Warren and Chen [11] the field equations in an isotropic,
homogeneous, micropolar elastic medium in the context of generalized theory
of thermoelasticity with two temperature, without body forces, body couples
and heat sources, are given by

(α+ β + γ)∇
(
∇.
−→
φ
)
−γ∇×

(
∇×

−→
φ
)

+K∇×−→u −2K
−→
φ = ρj

∂2−→φ
∂t2

, (1)

K∗∇2Φ = ρ c∗
∂

∂t
(1− a∇2)Φ + ν Φ0

(
∂

∂t

)
(∇.−→u ) , (2)

and the constitutive relations are

tij = λur,rδij + µ (ui,j + uj,i) +K (uj,i − εijrφr) − νTδij , (3)

mij = αφr,rδij + βφi,j + γφj,i , i, j, r = 1, 2, 3 (4)
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where ∇2 is the Laplacian operator, λ and µ are Lame’s constants. K ,
α , β and γ are micropolar constants. tij are the components of the stress

tensor and mij are the components of couple stress tensor. −→u and
−→
φ are the

displacement and microrotation vectors, ρ is the density , ĵ is the microinertia,
K∗ is the thermal conductivity, c∗ is the specific heat at constant strain, T is
the temperature change, ν = (3λ+ 2µ+K)αT , where αT is the coefficient
of linear thermal expansion , δij is the Kronecker delta, εijr is the alternating
symbol. Thermodynamic temperature T and conductive temperature Φ are
connected by the relation T = (1− a∇2)Φ .

3 Formulation of the problem

We consider two homogeneous, isotropic, micropolar, thermoelastic solid half
spaces with two temperature (medium M1 ) and (medium M2 ) in contact with
each other. The rectangular Cartesian co-ordinate system Ox1x2x3 having
origin on the surface x3 = 0 with x3 -axis pointing vertically into the medium
M1 is introduced.

For two dimensional problem, we take

−→u = (u1 (x1, x3) , 0, u3 (x1, x3)) ,
−→
φ = (0 , φ2 (x1, x3) , 0) (5)

The following non-dimensional quantities are introduced

x
′

1 =
ω∗x1

c1
, x

′

3 =
ω∗x3

c1
, u

′

1 =
ρω∗c1
νT0

u1 , u
′

3 =
ρω∗c1
νT0

u3 , (6)

φ
′

2 =
ρc21
νT0

φ2 , t
′

= ω∗t , T
′

=
T

T0
, Φ

′
=

Φ

Φ0
, (7)

t
′

ij =
1

νT0
tij , m

′

ij =
ω∗

c1νT0
mij , τ

′

0 = ω∗τ0, a
′

= ω∗2

c21
(8)

where ω∗ =
ρc∗c21
K∗ , c21 = λ+2µ+K

ρ and T0, Φ0 are characteristic
temperatures.

The components of displacements u1 and u3 are related to the potential
functions φandψ through the following relation

u1 =
∂φ

∂x1
− ∂ψ

∂x3
, u3 =

∂φ

∂x3
+
∂ψ

∂x1
, (9)

Eqs. (6)-(8) with the aid of Eqs. (1)-(3) after suppressing the primes reduce
to
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∇2φ− p0

(
1 + τ1

∂

∂t

)
(1− a∇2)Φ− ∂2φ

∂t2
= 0, (10)

∇2ψ + a1φ2 − a2
∂2ψ

∂t2
= 0 , (11)

∇2φ2 − a3∇2ψ − a4φ2 − a5
∂2φ2

∂t2
= 0 , (12)

∇2Φ = a6
∂

∂t
(1− a∇2)Φ + a7

(
∂

∂t

)
∇2φ , (13)

where a1 = K
µ+K , a2 =

ρ c21
µ+K , a3 =

Kc21
γω∗2 , a4 = 2 a3 , a5 =

ρĵc21
γ , p0 = Φ0

T0
a6 =

ρ c∗c21
K∗ω∗ , a7 = ν2T0

ρK∗ω∗ , ∇2 = ∂
∂x2

1
+ ∂

∂x2
3

4 Boundary Conditions

The boundary conditions at the interface x3 =0 are given as

T33 = Kn[u3 − u3] , T31 = Kt[u1 − u1] , m32 = Kc[φ2 − φ2] ,

K∗ ∂T∂x3
= Kθ[T−T ] , T33 = T33 , T31 = T31, m32 = m32, K∗ ∂T∂x3

=

K∗ ∂ T∂x3
(13)

where Kn, Kt, Kc and Kθ are the normal force stiffness, transverse force
stiffness, transverse couple stiffness and thermal conductness coefficients of
unit layer thickness having dimensions N

m3 , N
m3 , N

m and N
m secK .

5 Reflection and Transmission

We consider Longitudinal displacement wave (LD-wave), Thermal wave (T-
wave), Coupled transverse and microrotational waves (CD-I wave and CD-II
wave) propagating through the medium M1 which we designate as the region
x3 >0 and incident at the plane x3 =0 with its direction of propagation making
an angle θ0 normal to the surface. Corresponding to each incident wave, we
get reflected LD-wave, T-wave, CD-I and CD-II waves in medium M1 and
transmitted LD-wave, T-wave, CD-I and CD-II waves in medium M2 . We
write all the variables without bar in medium M1 and attach bar to denote
the variables in medium M2 as shown in Fig.1.

In order to solve the equations (15)-(20), we assume the solutions of the
form
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{φ, Φ, ψ, φ2} =

{
∼
φ,
∼
Φ,
∼
ψ,

∼
φ2

}
eι{k(x1 sin θ−x3 cos θ)−ωt} (14)

where k is the wave number and ω is the angular frequency and
∼
φ,
∼
Φ,
∼
ψ,

∼
φ2

are arbitrary constants.
Making use of equation (14) in equations (9)-(12), we obtain

V 4 +D1V
2 + E1 = 0, (15)

V 4 +D2V
2 + E2 = 0, (16)

where

D1 = −( a1a3ω2a2
+ 1) 1

(a5− a4
ω2 )
− 1

a2
, E1 = 1

(a5− a4
ω2 )a2

,

D2 =
−1+(a− 1

ω2 )ia6ω−a7iωp0
a6

i
ω

, E2 =
1−aω2[−ia7p0 1

ω2−a6 i
ω ]

a6
i
ω

and V 2 = ω2

k2

Equation (15) and (16) are quadratic in V 2 , therefore the roots of these
equations give four values of V 2. Corresponding to each value of V 2 in equation
(15), there exist two types of waves in solid medium in decreasing order of their
velocities, namely a LD-wave, T-wave. Similarly corresponding to each value
of V 2 in equation (16), there exist two types of waves in solid medium, namely
a CD-I wave, CD-II wave. Let V1 , V2 be the velocities of reflected LD-wave,
T-wave and V3, V4 be the velocities of reflected CD-I wave, CD-II wave in
medium M1 .

In view of equation (14), the appropriate solutions of equations (9)-(12)
for medium M1 and medium M2 are assumed in the form

Medium M1 :

{φ, Φ} =

2∑
i=1

{1 , fi} [S0ie
ι{ki(x1 sin θ0i−x3 cos θ 0i )−ωit} + Pi] , (17)

{ψ, φ2} =

4∑
j=3

{1 , fj} [T0je
ι{kj(x1sinθ0j−x3 cos θ 0j )−ωjt} + Pj ], (18)

where

fi =
ιω(1− 1

V 2
i

)

p0(1 + aω2

V 2
i

) ιω
, fj =

−ω2(a2 − 1
V 2
j

)

a1

and Pi = Sie
ι{ki(x1 sin θ0i+x3 cos θ 0i )−ωit}, Pj = Tje

ι{kj(x1 sin θ0j+x3 cos θ 0j )−ωjt}
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Medium M2 :

{φ, Φ} =

2∑
i=1

{
1 , fi

}
[S0i e

ι
{
ki
(
x1 sin θi−x3 cos θi

)
−ωi t

}
] , (19)

{ψ, φ2} =

4∑
j=3

{
1 , fj

}
[T0j e

ι
{
kj
(
x1 sin θj −x3 cos θj

)
−ωj t

}
] , (20)

and S0i , T0j are the amplitudes of incident (LD-wave, T-wave) and (CD-I,
CD-II) waves respectively. Si and Tj are the amplitudes of reflected (LD-wave,

T-wave) and (CD-I, CD-II) waves and S
i

, T
j

are the amplitudes of transmitted

(LD-wave, T-wave) and (CD-I, CD-II) waves respectively.
We use the following extension of the Snell’s law in order to satisfy the

boundary conditions

sin θ0
V0

=
sin θ1
V1

=
sin θ2
V2

=
sin θ3
V3

=
sin θ4
V4

=
sin θ1

V1

=
sin θ2

V2

=
sin θ3

V3

=
sin θ4

V4

(21)

where

Vj =
ω

kj
Vj =

ω

kj
(j = 1, 2, 3, 4)atx3 = 0 (22)

Making use of φ , ψ, Φ and φ2 in boundary conditions (13), equations (4)-
(8) and equations (21) and (22), we obtain a system of eight non-homogeneous
equations in the following form

8∑
j=1

aijZj = Yi ; (i = 1, 2, 3, 4, 5, 6, 7, 8) (23)

where
a1i = (d1 + d2Bi)

ω2

V 2
i

+ p0(1 + a ω
2

V 2
i

)fi , a1j = d2
ω2

VjV0
sin θ0

√
Bj , a1k =

−
[(
d1 + d2(Ri)

)
ω2

V 2
i

+ (1 + a ω
2

V 2
i

)fi

]
, a1l = −d2

ω2

VjV0
sin θ0

√
Rj , a2i =

−(2d4 + d5) ω2

ViV0
sin θ0

√
Bi, a4l = d2

ω2

VjV0

√
Rj − ιKn

ω
V0

sin θ0,

a2j = 2d4
ω2

V 2
j
Bj−d5

ω2

V 2
0

sin2 θ0 −d5fj , a2k = −
(
2d4 + d5

)
ω2

ViV0
sin θ0

√
Ri ,

a2l = −
[
2d4

ω2

V 2
j

(
1− 2

V 2
j

V 2
0

sin2 θ0

)
− d5( ω

2

V 2
0

sin2 θ0 + fj)

]
,
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a3i = 0 , a3j = ι
Vj

V0
sin θ0fj , a3k = 0 , a3l = −ι ω

Vj

√
Rj fj ,

a4i = ι ωVi
Kn

√
Bi , a4j = ιKn

ω
V0

sin θ0 , a4k = ιKn
ω
Vi

√
Ri + ω2

V 2
i

(d1 +

d2Ri) + (1 + a
V 2
i

ω2 )fi,

a5i = ιKt
ω

V0
sin θ0, a5j = −ιKt

ω

Vj

√
Bj

a5k = (2d4 + d5)
ω2

ViV0

sin θ0

√
Ri − ιKt

ω

V0
sin θ0,

a5l =
ω2

V2
j

d4(1− 2
V 2
j

V 2
0

sin2 θ0)− (
ω2

V 2
0

sin2 θ0 + fj)d5 + ιKt
ω

Vj

√
Rj ,

a6i = 0 , a6j = Kcfj , a6k = 0 , a6l = ιp1
ω

Vj
fj
√
Rj −Kcfj ,

a7i = (1+a
ω2

V 2
i

)fiKθ , a7j = 0 , a7k = (1+a
ω2

V 2
i

)(ιp2
ω

Vi
fi
√
Ri−fiKθ) ,

a7l = 0 , a8i = (1 + a ω
2

V 2
i

)fi , a8j = (1 + a ω
2

V 2
i

)fj , a8k = −(1 + a ω
2

V 2
i

)fi ,

a8l = 0
d1 = λ

ρc21
, d2 = (2µ+κ)

ρc21
, d4 = 2µ

ρc21
, d5 = d2

2 , p1 = γω∗

γ ,

p2 =
K∗1
K∗ , Bi = (1− V 2

i

V 2
0

sin2 θ0), Bj = (1− V 2
j

V 2
0

sin2 θ0), Ri = (1− V 2
i

V 2
0

sin2 θ0),

Rj = (1− V 2
j

V 2
0

sin2 θ0)

( i =1, 2, j =3, 4, k =5, 6, and l =7, 8)
and

Z1 =
S1

A∗
, Z2 =

S2

A∗
, Z3 =

T3

A∗
, Z4 =

T4

A∗
,

Z5 =
S1

A∗
, Z6 =

S2

A∗
, Z7 =

T3

A∗
, Z8 =

T4

A∗
(24)

such that Z1, Z2, Z3, Z4 are the complex amplitude ratios of reflected LD-
wave, T-wave and coupled CD-I, CD-II waves in medium M1 and Z5, Z6, Z7,
Z8 are the complex amplitude ratios of transmitted LD-wave, T-wave and
coupled CD-I, CD-II waves in medium M2 .

(1) For incident LD-wave:
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A∗ = S01 , S02 = T03 = T04 = 0 , Y1 = −a11 ,

Y2 = a21 , Y3 = a31 = 0 , Y4 = a41 ,

Y5 = a51 , Y6 = −a61 , Y7 = a71 = 0 , Y8 = −a81

(2) For incident T-wave:

A∗ = S02 , S01 = T03 = T04 = 0 , Y1 = −a12 ,

Y2 = a22 , Y3 = a32 = 0 , Y4 = a42 ,

Y5 = a52 , Y6 = −a62 , Y7 = a72 = 0 , Y8 = −a82

(3) For incident CD-I wave:

A∗ = T03 , S01 = S02 = T04 = 0 , Y1 = a13 ,

Y2 = −a23 , Y3 = a33 , Y4 = a43 ,

Y5 = −a53 , Y6 = a63 = 0 , Y7 = −a73 , Y8 = a83 = 0

(4) For incident CD-II wave:

A∗ = T04 , S01 = S02 = T03 = 0 , Y1 = a14 ,

Y2 = −a24 , Y3 = a34 , Y4 = a44 ,

Y5 = −a54 , Y6 = a64 = 0 , Y7 = −a74 , Y8 = a84 = 0

6 Particular cases

Case I: Normal force stiffness
If Kt → ∞ , Kc → ∞ , Kn 6= 0 ,Kθ → ∞ then eq.(23) yield the corre-

sponding expression for the normal force stiffness with the changed values of
aij as

a5i = ι ωV0
sin θ0 , a5j = −ι ω

Vj

√
Bj , a5k = −ι ωV0

sin θ0, a5l = ι ω
Vj

√
Rj ,

a7l = 0 , a6i = 0 , a6j = fj , a6k = 0 , a6l = −fj , a7i = (1 + a ω
2

V 2
i

)fi , a7j =

0 , a7k = −(1 + a ω
2

V 2
i

)fi , i =1, 2, j =3, 4, k =5, 6, and l =7, 8)

Case II: Transverse force stiffness
As Kt 6= 0 , Kc → ∞ , Kn → ∞ , Kθ → ∞ , we obtain a system of

eight non-homogeneous equations as given by equation (23) for the transverse

force stiffness with the changed values of aij as a4i = ι ωVi

√
1− V 2

i

V 2
0

sin2 θ0 ,

a4j = ι ωV0
sin θ0 , a4k = ι ω

Vi

√
Ri , a4l = −ι ωV0

sin θ0,
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a6i = 0 , a6j = fj , a6k = 0, a6l = −fj , a7i = (1 + a ω
2

V 2
i

)fi , a7j =

0 , a7k = −(1 + a ω
2

V 2
i

)fi , a77 = a78 = 0 ,

( i =1, 2, j =3, 4, k =5, 6, and l =7, 8)
Case III:Transverse couple stiffness
As Kt → ∞ , Kc 6= 0 , Kn → ∞ , Kθ → ∞ , the boundary condi-

tions reduce to the transverse couple stiffness, yielding a system of eight non-
homogeneous equations as given by equation (23) with the changed values of
aij as

a4i = ι ωVi

√
Bi , a4j = ι ωV0

sin θ0 , a4k = ι ω
Vi

√
Ri , a4l = −ι ωV0

sin θ0,

a5i = ι ωV0
sin θ0 , a5j = −ι ω

Vj

√
Bj , a5k = −ι ωV0

sin θ0, a5l =

ι ω
Vj

√
Rj , a7i = (1 + a ω

2

V 2
i

)fi , a7j = 0 , a7k = −(1 + a ω
2

V 2
i

)fi , a7l = 0 ,

( i =1, 2, j =3, 4, k =5, 6 and l =7, 8)
Case IV: Thermal conductness
If Kt → ∞ , Kc → ∞, Kn → ∞,Kθ 6= 0 correspond, then the corre-

sponding results for the case of thermal conductness and we obtain a system of
eight non-homogeneous equations as given by equation (23) with the changed
values of aij as

a4i = ι ωVi

√
Bi , a4j = ι ωV0

sin θ0 , a4k = ι ω
Vi

√
Ri ,

a4l = −ι ωV0
sin θ0, a5i = ι ωV0

sin θ0 , a5j = −ι ω
Vj

√
Bj , a5k =

−ι ωV0
sin θ0, a5l = ι ω

Vj

√
Rj , a6i = 0 , a6j = fj , a6k = 0 , a6l =

−fj ,
( i =1, 2, j =3, 4, k =5, 6, and l =7, 8)
Case V: Perfect bonding
By putting the values Kt → ∞ , Kc → ∞, Kn → ∞,Kθ → ∞ in

equation (23), we obtain a system of eight non-homogeneous equations as
given by equation (23) with the changed values of aij as

a4i = ι ωVi

√
Bi , a4j = ι ωV0

sin θ0 , a4k = ι ω
Vi

√
Ri ,

a4l = −ι ωV0
sin θ0, a5i = ι ωV0

sin θ0 , a5j = −ι ω
Vj

√
Bj , a5k =

−ι ωV0
sin θ0, a5l = ι ω

Vj

√
Rj , a6i = 0 , a6j = fj , a6k = 0 , a6l =

−fj , a7i = (1 + a ω
2

V 2
i

)fi , a7j = 0 , a7k = −(1 + a ω
2

V 2
i

)fi , a7l = 0 ,

( i =1, 2, j =3, 4, k =5, 6, and l =7, 8)

7 Special Case

If two temperature parameters vanish i.e. a = 0, a = 0 with Φ0 = Φ0 and
Φ0= T0 yield the amplitude ratios at the imperfect boundary of two micropolar
thermoelastic solid half spaces with the changed values of aij as
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a1k = −
[(
d1 + d2Ri

) V 2
i

ω2 + fi

]
, a4k = ιKn

ω
Vi

√
Ri + ω2

V 2
i

(d1+d2Ri)+fi,

a6j = Kcfj , a6l = ιp1
ω
Vj
fj
√
Rj −Kcfj , a7i = fiKθ, a7k = (ιp2

ω
Vi
fi
√
Ri−

fiKθ), a8i = fi, a8j = fj , a8k = −fi , (i =1, 2, j =3, 4, k =5, 6, and l =7, 8)

8 Numerical results and discussion

The following values of relevant parameters for both the half spaces for nu-
merical computations are taken.

Following Eringen[39 ], the values of micropolar constants for medium M1

are taken :
λ = 9.4 × 1010Nm−2, µ = 4.0 × 1010Nm−2, κ = 1.0 × 1010Nm−2, γ =

7.79× 10−10N , ĵ = 0.002× 10−17m2, ρ = 1.74× 103Kgm−3,
and thermal parameters are taken from Dhaliwal and Singh [40]:

ν = 0.268× 105Nm−2K−1 , c∗ = 0.104× 104NmKg−1K−1 , a = 0.5m2 ,

T0 = 0.298K , Φ0 = 0.292K , K∗ = 1.7× 102Nsec−1K−1 ,

τ0 = 8.13× 10−15sec, ω = 1

Following Gauthier [41], the values of micropolar constants for medium
M2 are taken as:

λ = 7.59× 1010Nsecm−2 , µ = 0.00189× 1013Nsecm−2 ,

κ = 0.0149× 109Nsecm−2, γ = 0.0000268Nsec, ρ = 2.19× 103Kgm−3 ,
Thermal parameters for the medium M2 are taken as:

T0 = 0.296K , Φ0 = 0.295K , K∗ = 2.04× 102Nsec−1K−1,

ν = 0.2603× 107Nm−2K−1, c∗ = 0.0921× 104JKg−1K−1 , a = 0.1m2

τ0 = 7.13× 10−15 sec

The values of amplitude ratios have been computed at different angles of
incidence.
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In Figs. 2-25, for CT-theory, we represent the solid line for incident wave
for stiffness (GT), small dashes line for incident wave for transverse couple
stiffness (KC), medium dashes line for incident wave for normal force stiffness
(KN), solid line with solid circles for incident wave for thermal conductness
(KQ), solid line with plus sign for incident wave for transverse force stiffness
(KT), solid line with crosses for incident wave for thermoelastic solid (TS)
and solid line with triangles for incident wave for thermoelastic solid with two
temperature without stiffness (WS).

8.1 Incident LD-Wave

Variations of amplitude ratios |Zi| ; 1 ≤ i ≤ 8 with the angle of incidence θ0 ,
for incident LD-wave are shown in Figs. 2 through 9.

Fig. 2 depicts that the values of |Z1| for all the stiffnesses increase in the
whole range, except the values of GT which oscillate in the whole range of
θ0 . Also the values for WS remain more than the values for all the other
stiffnesses in the whole range.It is evident from fig. 3 that the values of |Z2|
for KN remain less than the values for all the other stiffnesses. The maximum
value is attained for WS near θ0 = 900 .

Fig. 4 shows that the values for |Z3| for all the stiffnesses increase for
all the values of θ except the values for GT which decrease near the grazing
incidence. The values for KC remain more than the values for all the other
stiffnesses in the whole range. The values for TS remain less than the values
for all the other stiffnesses for all the values of θ . Fig. 5 depicts that the
behavior of variation of |Z4| is similar to that of |Z3| with difference in their
magnitude values.

From fig. 6, it is evident that the values of |Z5| for GT remain less than the
values for all the other stiffnesses. The values for all the stiffnesses increase
while the values for GT decrease in the whole range. The maximum value is
attained by WS near the grazing incidence. Fig. 7 shows that the values of
|Z6| for KT remain greater than all the other stiffnesses in the whole range
except near the grazing incidence that reveals the effect of transverse force
stiffness. It is noticed that the behavior of variation of |Z6| is similar to that
of |Z5| .

It is evident from figs. 8 that the values of |Z7| for all the stiffnesses
increase from normal incidence to grazing incidence, while the values for WS
oscillate in the whole range. The values for GT are more than the values for
all the other stiffnesess for all the values of θ . There is slight difference in the
magnitude of GT and KN in the whole range of θ0 . It is noticed from fig. 9
that there is only slight difference in the amplitude of |Z7| and |Z8| .
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8.2 Incident T

-Wave
Variations of amplitude ratios |Zi| ; 1 ≤ i ≤ 8, with the angle of incidence

θ0 , for incident T-wave are shown in Figs. 10 through 17.
Fig. 10 depicts that the values of |Z1| for KQ remain more than the values

for KN, KT, GT, KC and WS in the whole range that shows the effect of
thermal conductness. Also it is noticed that the values for GT remain less
than the values for all the other stiffnesses.

Fig. 11 shows that the values of |Z2| for GT oscillate with increase in θ0

and attains peak value in the range 250 < θ0 < 350 and remain more than the
values for all the other stiffnesses in the whole range, except near the grazing
incidence. The values for WS remain greater than the values for KC, KQ, KN,
KT and TS in the whole range.

It can be noticed from fig. 12 that the values of |Z3| for all the stiffnesses
increase in the whole range, while the values for GT oscillate and attain max-
imum value in the range 250 < θ0 < 350 . The maximum value is attained by
TS near the grazing incidence. Fig. 13 depicts that the behavior of variation
of |Z4| for KT and KQ is similar with slight difference in their magnitude.
The values for TS remain more than the values for all the other stiffnesses in
the whole range that reveal the effect of two temperature.

Fig. 14 shows the values of |Z5| for WS remain more than the values for all
the other stiffnesses for all the values of θ . It is noticed that the values for all
the stiffnesses increase, while the values for GT and KC oscillate with increase
in θ0 , due to the effect of stiffness. Fig. 15 shows the values of |Z6| for GT
attains maximum value near the grazing incidence. The values for KN remain
more than the values for KC, KT, KQ, TS and WS in the whole domain. The
values for GT attain peak value in the range 300 < θ0 < 350 due to the effect
of stiffness.

Fig. 16 shows that the values of |Z7| for GT are more than the values
for all the other stiffnesses, The values for GT and KN oscillate, while all the
other stiffnesses show increase in value. Fig. 17 shows that the behavior of
variation of |Z8| is similar to that of |Z7| with difference in magnitude.

8.3 Incident CD-I Wave

Variations of amplitude ratios |Zi| ; 1 ≤ i ≤ 8, with the angle of incidence θ0

, for incident CD-I wave are shown in Figs. 18 through 25.
Fig. 18 depicts that the values of |Z1| for GT increase in the whole range

and then decrease sharply near the grazing incidence. Also it is noticed that
the values for WS decrease very sharply at the normal incidence. Also the
values for TS attain maximum value in the range 400 < θ0 < 600. It is depicted
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from fig. 19 that the behavior of variation of |Z2| is similar as that for |Z1|
with difference in magnitude. The values for all the stiffnesses oscillate in
the whole range. The maximum value is attained by GT near the grazing
incidence.

It is noticed from fig. 20 that the values of |Z3| for KQ and KN decrease
from normal incidence to grazing incidence. Also the values for KC remain
greater than the values for all the stiffnesses in the range 00 < θ0 < 820 . The
values for WS are smaller than the values for all the other stiffnesses in the
whole range of θ0 .

Fig. 21 depicts that the values of |Z4| for all the stiffnesses decrease in
the whole range, except the values for GT and TS which oscillate in the
whole range and remain less than the values for all the other stiffnesses. The
maximum value is attained by KC at the normal incidence. Fig. 22 shows
that the values of |Z5| for WS decrease sharply and the value for GT increase
for all the values of θ and then decrease sharply near the grazing incidence.
The behavior of variation of KQ and KT is similar with slight difference in
magnitude values.

Fig. 23 depicts that the values of |Z6| for all the stiffnesses oscillate in
the whole range. The maximum value is attained by WS near the normal
incidence. It is noticed from fig. 24 that the values of |Z7| for TS decrease
from normal incidence to grazing incidence and remain more than the values
for all the other stiffnesses in the whole range. It is noticed from fig. 25 that
behavior of variation of |Z8| is similar as that of |Z7| with difference in their
magnitude values.

9 Conclusion

In the present paper, the expressions for reflection and transmission coeffi-
cients of various reflected and transmitted waves has been derived for the
normal force stiffness, transverse force stiffness, transverse couple stiffness,
thermal conductness and perfect bonding. It is observed that when LD-wave
is incident, the values of amplitude ratios for all the stiffnesses increase, while
the values for GT oscillate in the whole range. It is evident that the maxi-
mum value is attained by WS near the grazing incidence for |Zi| ; 1 ≤ i ≤ 6
. Also when T-wave is incident, the values of amplitude ratios for TS attain
peak value in the intermediate range due to the effect of stiffness. The values
of amplitude ratios for all the boundary stiffnesses follow oscillatory pattern
(when CD-I wave is incident). It is also observed that the values of ampli-
tude ratios |Z1| , |Z2| , |Z5| and |Z6| for WS decrease very sharply near the
normal incidence that reveals the effect of perfect bonding. The problem is
of geographical interest and the results are supposed to be useful in theoreti-
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cal and observational studies of wave propagation in more realistic models of
micropolar solids present in the earths interior.

Figure 1: Geometry of the problem
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