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On certain proximities and preorderings on the
transposition hypergroups of linear first-order

partial differential operators

Jan Chvalina,1 Šárka Hošková-Mayerová2

Abstract

The contribution aims to create hypergroups of linear first-order
partial differential operators with proximities, one of which creates a
tolerance semigroup on the power set of the mentioned differential op-
erators. Constructions of investigated hypergroups are based on the so
called “Ends-Lemma” applied on ordered groups of differnetial opera-
tors. Moreover, there is also obtained a regularly preordered transposi-
tions hypergroup of considered partial differntial operators.

1 Introduction

Proximity spaces, belonging to classical topological structures involving gen-
eralization of metric spaces and their uniformly continuous mappings, are sit-
uated out of interest of topologists since the time of the results due to E. M.
Alfsen and J. E. Fenstad (1959) showing that these spaces can be considered
as totally bounded uniform spaces. Nevertheless, a proximity relation seems
to be very useful tool for investigation of weak hyperstructures in the sense
of Vougiouklis monograph [34] and other related papers. In particular, prox-
imities on hyperstructures yield the way for a natural generation of weak
commutativity, weak associativity and weak distributivity if the incidence of
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sets in corresponding identities is changed (or generalized in fact) by nearness
of the sets in question.

Moreover, the concept of similarity of various systems has its abstract
mathematical expression in terms of reflexive and symmetric relation on a
set. These relations are named tolerances and the use of these relations in
connection with other structures moves corresponding mathematical theories
to useful application. Many publications are devoted to systematic investi-
gations to tolerances on algebraic structures compatible with all operations
of corresponding algebras. A certain survey of important results including
valuable investment of Olomouc Algebraic School can be found in [5]. In fact
a proximity on a set is a tolerance on its powerset, so one can expect some
interesting connection between tolerances and proximities.

There are two principal approaches to proximity structures. The classical
one–used in this contribution–is based on the construction of binary relation
on the power set of a set satisfying natural axioms–see below–motivated by
Smirnoff theory of proximity spaces. The other approach consists in the ax-
iomatization of the concept “to be far”, where the basic role plays a proximal
neighbourhood of a set. This approach has been developed in the rich theory
of symtopogenous and topogenous structure by Ákos Czászár and his collabo-
rators,see [14]. In this theory the concept of a preorder and an order is playing
an important role. This shows that investigation of preordered and ordered
hyperstructures is of a certain importance.

Equations expressing laws of conservation as the continuity equation, the
motion equation, further Maxwells’ equations of the electromagnetic field, lin-
earized equations of acoustics, the equation of long-distance electrical line and
many other equations used in physical investigations and in technical applica-
tions are all linear partial differential equations of the first order. The impor-
tance of study of those equations motivates our contribution. On the other
hand algebraic (non-commutative) join spaces, called also non-commutative
transposition hypergroups constitute very important and useful class of mul-
tistructures within the framework of the contemporary algebraic hyperstruc-
tures theory—cf. [3, 6, 7], [10-13], [15-20], [22, 23, 29, 33].

Principal constructions presented in this paper are based on the rela-
tionship between binary relations and hyperoperations [5-7], [12], [14-17],
[19, 20, 31].

In particular there is used the “Ends-Lemma”-briefly the EL-theory [6, 10,
24], [30-32]. Hyperstructures associated with relations (binary and n-ary in
genral) are developed in a series of deeply worked-out papers [13], [15-20]. Or-
dered hyperstructures are investigated in [1, 22]. Motivation of compatibility
of orderings with hyperoperations can be found in the monography [12]. In
our paper we use stronger compatibility of preorderings with the corresponding
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hyperstructure than there is considered in [22].
Let Ω ⊆ Rn be an open connected subset (called a domain) of the n-

dimensional euclidean space of n-tuples of reals. As usually, C1(Ω) stands for
the ring of all continuos functions of n-variables u : Ω → R with continuous
first-order partial derivatives ∂u

∂xk
, k = 1, 2, . . . , n. We will consider partial

differential operators of the form

D(a1, . . . , an, p) =

n∑
k=1

ak(x1, . . . , xn)
∂

∂xk
+ p(x1, . . . , xn) Id,

where ak ∈ C1(Ω) for k = 1, 2, . . . , n and p ∈ C1(Ω), p(x1, . . . , xn) > 0 for any
[x1, . . . , xn] ∈ Ω. Denote by L1D(Ω) the set of all such operators which are
associated to linear first-order homogeneous partial differential equations

n∑
k=1

ak(x1, . . . , xn)
∂u

∂xk
+ p(x1, . . . , xn)u(x1, . . . , xn) = 0,

with ak, p ∈ C(Ω).
Define a binary operation “·” and a binary relation “≤” on the set L1D(Ω)

by the rule

D(a1, . . . , an, p) ·D(b1, . . . , bn, q) = D(c1, . . . , cn, pq),

in short notation:

D(~a, p) ·D(~b, q) = D(~c, pq),

where

ck(x1, . . . , xn) = ak(x1, . . . , xn) + p(x1, . . . , xn)bk(x1, . . . , xn), [x1, . . . , xn] ∈ Ω

and

D(~a, p) ≤ D(~b, q)

whenever

p ≡ q and ak(x1, . . . , xn) ≤ bk(x1, . . . , xn)

for any [x1, . . . , xn] ∈ Ω and k = 1, 2, . . . , n.
Evidently, the relation ≤ on L1D(Ω) is reflexive, antisymmetric and tran-

sitive hence (L1D(Ω),≤) is an ordered set. Moreover, it is easy to verify that
(L1D(Ω), ·) is a non-commutative group in which any right translation and any
left translation determined by arbitrary chosen operator D(a1, . . . , an, p) ∈
L1D(Ω) is an isotone selfmap of (L1D(Ω),≤). Consequently the following
theorem holds (see [10]):
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Theorem 1.1. Let Ω ⊆ Rn be a nonempty domain. Then the system of
differential operators (L1D(Ω), ·,≤) is an ordered (non-commutative) group.

Now applying a simple construction from [6], chapt. IV, we get the re-
sulting hyperstructure. The following Ends Lemma will be useful in what
follows.

Lemma 1.2. [6, 31] [Ends Lemma] Let a triple (G, ·,≤) be a quasi-ordered
semigroup. Define a hyperoperation

∗ : G×G→ P∗(G) by a ∗ b = [a · b)≤ = {x ∈ G; a · b ≤ x}

for all pairs of elements a, b ∈ G.

i) Then (G, ∗) is a semihypergroup which is commutative if the semigroup
(G, ·) is commutative.

ii) Let (G, ∗) be the above defined semihypergroup. Then (G, ∗) is a hypergroup
iff for any pair of elements a, b ∈ G there exists a pair of elements c, c′ ∈ G
with a property a · c ≤ b, c′ · a ≤ b.

Concerning application of the Ends lemma see also [30, 32] and [9, 10, 24,
25, 26].

We construct such an action using partial differential operators of the first
order, set of which is endowed with a suitable binary multiplication turning
out the set of operators into a non-commutative hypergroup. Applying the
Ends Lemma we get then a hypergroup of linear partial differential operators
acting on the ring of all continuous functions of n-variables u : Ω → R with
continuous partial derivatives of all orders.

Recall first, that a nonempty set H endowed with a binary hyperoperation

? : H ×H → P∗(H), (P∗(H) = P(H)− {∅})

is called a hypergroupoid. For any pair of elements a, b ∈ H there can be defined
two fractions a/b = {x; a ∈ x ? b} (right extension) and b\a = {x; a ∈ b ? x}
(left extension). If x, y ⊆ H then we write X ≈ Y (read X meets Y ) whenever
X,Y are incident, i.e., X ∩ Y 6= ∅. See e.g. [12, ?, 19, 20].

Now an algebraic (non-commutative) join space [28] termed also a trans-
position hypergroup can be defined as an associative hypergroupoid (H, ?)
satisfying the reproduction axiom (a ? H = H = H ? a for all a ∈ H) and
the transposition axiom (b\a ≈ c/d implies a ? d ≈ b ? c for all a, b, c, d ∈ H).
A join space satisfying the equality a ? a = {a} for any a ∈ H is called as
geometrical; in the opposite case we speak about algebraic join space.

A partially order is a binary relation R on a set X which satisfies conditions
reflexivity, antisymmetry and tranzitivity. Sometimes we need to weaken the
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definition of partial order as in [22]. We say that a partial preordered is a
relation which satisfies conditions reflexivity and transitivity. An algebraic
system (G, ·,≤) is called a partially preordered (ordered) groupoid if (G, ·) is
a groupoid and G,≤ is a partially preordered (ordered) set which satisfies
monotone condition as follows:

if x ≤ y then a · x ≤ a · y and x · a ≤ y · a for every x, y, a ∈ G.

Defining a binary hyperoperation on L1D(Ω) by

D(~a, p) ?D(~b, q) = {D(~c, s); D(~a, p) ·D(~b, q) ≤ D(~c, s)}
= {D(~c, pq); ak + pbk ≤ ck, }

where ck, s ∈ C1(Ω), k = 1, 2, . . . , n, we obtain with respect to [6], Chpt. IV,
Theorems 1.3, 1.4 and Theorem 1.1 the following result:

Theorem 1.3. Let Let Ω ⊆ Rn be a domain. The hypergroupoid (L1D(Ω), ?)
is a non-commutative algebraic join space.

Let M ⊂ Ω be a finite subset. Denote

L1
MD(Ω) = {D(~a, p)} ∈ L1D(Ω); grad p|ξ = 0 for any ξ ∈M}.

Evidently (L1
MD(Ω), ·) is a subgroup of the group (L1D(Ω), ·). We define a

binary relation RM on the set of operators L1
MD(Ω) by the condition

D(~a, p) RM D(~b, q) whenever p = q and grad ak|ξ = grad bk|ξ

for any ξ ∈ M and k = 1, 2, . . . n. Clearly, RM is an equivalence relation on
the set L1

MD(Ω). Suppose D(c1, . . . , cn, s) ∈ L1
MD(Ω) is an arbitrary operator.

Since

grad(ak + pck)|ξ = grad ak|ξ + grad p|ξck + p grad ck|ξ
= grad bk|ξ + q grad ck|ξ
= grad bk|ξ + grad q|ξck + q grad ck|ξ = grad(bk + qck)|ξ

for any ξ ∈M and k = 1, 2, . . . n, we have that

D(a1, . . . , an, p) RM D(b1, . . . , bn, q)

implies (
D(~a, p) D(~c, s)

)
RM

(
D(~b, q) D(~c, s)

)
and similarly (

D(~c, s) D(~a, p)
)

RM

(
D(~c, s) D(~b, q)

)
.
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Indeed

grad(ck + sak)|ξ = grad ck|ξ + grad s|ξak + s grad ak|ξ
= grad ck|ξ + s grad bk|ξ
= grad ck|ξ + grad s|ξbk + s grad bk|ξ = grad(ck + sbk)|ξ

ξ ∈M,k = 1, 2, . . . n. Further,

D−1(a1, . . . , an, p) = D
(
−a1
p
, . . . ,−an

p
,

1

p

)
and

D−1(b1, . . . , bn, q) = D
(
−b1
q
, . . . ,−bn

q
,

1

q

)

grad
(
−ak
p

)∣∣∣
ξ

= − grad
ak
p

∣∣∣
ξ

= − grad
(1

p
ak

)∣∣∣
ξ

= − grad
1

p

∣∣∣
ξ
ak −

1

p
grad ak

∣∣∣
ξ

=
1

p2
grad p

∣∣∣
ξ
ak −

1

p
grad ak

∣∣∣
ξ

= −1

p
grad ak

∣∣∣
ξ

= −1

q
grad bk

∣∣∣
ξ

=
1

q2
grad q

∣∣∣
ξ
− 1

p
grad bk

∣∣∣
ξ

= grad−bk
q

∣∣∣
ξ

and 1
p = 1

q , consequently

D(~a, p) RM D(~b, q) implies D−1(~a, p) RM D(~b, q).

Therefore the equivalence RM is a congruence on the group (L1
MD(Ω), ·).

Denote by Fin(Ω) the lattice of all finite subset of the domain Ω. Using
the Ends Lemma or using an union of the ends with respect to the ordering
by set inclusion a hypergroup with the carrier Fin(Ω) can be created. For
any non-empty set M ∈ Fin(Ω) we obtain the congruence RM on the group
(L1D(Ω), ·) which was described above.

Recall the definition of a proximity in the sense of Čech monograph [4]:

Definition 1.4. A binary relation p on the family of all subsets of the set H
is called a proximity on the set H if p satisfies the following conditions:

1. ∅nonpH

2. The relation p is symmetric, i.e., A,B ⊂ H, ApB implies B pA .

3. For any pair of subset A,B ⊂ H, A ∩B 6= ∅ implies ApB.

4. If A,B,C are subsets of H then (A ∪B) pC if and only if either ApC
or B pC.
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Now, setting for any pair of subsets A,B ⊂ L1
MD(Ω) that Ap(RM )B

whenever A 6= ∅ 6= B and D(a1, . . . , an, p) RM D(b1, . . . , bn, q) for some pair
[D(a1, . . . , an, p), D(b1, . . . , bn, q)] ∈ A×B, we obtain the following theorem:

Theorem 1.5. [10] Let (L1
MD(Ω), ?) be the join subspace of the join space

(L1D(Ω), ?) defined above. Then (L1D(Ω),p(RM )) is a proximity space such
that for any quadruple X,Y, U, V ⊂ L1

MD(Ω) of nonempty subsets with the
property X p(RM )Y , U p(RM )V we have

(X ? U) p(RM ) (Y ? V ).

It is easy to see that any tolerance on a group compatible as for algebras
must be transitive, hence it is a congruence. So, we can also treat semigroups
of operators with compatible tolerances and semihypergroups with proximities
induced by those.

The terminology in belowe stated constructions is overtaken from [2, 6, 8,
11, 13, 24, 26].

Let us define (as in [26]) a multiautomaton:

Definition 1.6. Let S be a nonempty set, (H,�) be a hypergroupoid and
δ : S ×H → S be a mapping satisfying the condition

δ
(
δ(s, a), b

)
∈ δ(s, a� b) (GMAC)

for any triple (s, a, b) ∈ S ×H ×H, where δ(s, a� b) = {δ(s, x);x ∈ a� b}.
Then the triple M = (S,H, δ) is called multiautomaton with the state set

S and the input hypergroupoid (H,�). The mapping δ : S ×H → S is called
a transition function or a next-state function of the multiautomaton M.

In previous definition GMAC means Generalized Mixed Associativity Condi-
tion.

Now, we shall consider smooth functions f ∈ C∞(Ω).
Let P(~a, p) : C∞(Ω)→ C∞(Ω) be a fixed chosen operator,

P(~a, p)f =

n∑
k=1

ak(x1, . . . , xn)
∂f

∂xk
+ p(x1, . . . , xn)f(x1, . . . , xn).

Denote by Ct(P) the set of all differential operators D ∈ L1D(Ω) commuting
with the operator P, i.e.,

Ct(P) = {D ∈ L1D(Ω); P ·D = D ·P}.

Since the identity operator Id belongs to Ct(P), this set endowed with the
unique operation “·” is a monoid which is called the centralizer of the operator
P within the group (L1D(Ω), ·).
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Lemma 1.7. ([26]) Operators D(~a, p), D(~b, q) from the group L1D(Ω) are
commuting if and if for any k = 1, 2, . . . , n and any point [x1, . . . , xn] ∈ Ω
there holds ∣∣∣∣ 1− p(x1, . . . , xn) 1− q(x1, . . . , xn)

ak(x1, . . . , xn) bk(x1, . . . , xn)

∣∣∣∣ = 0.

Now, for any pair Dα,Dβ ∈ Ct(P) define a hyperoperation “�” as follows:

� : Ct(P)× Ct(P)→ P∗
(
Ct(P)

)
by

Dα�Dβ = {Pn ·Dβ ·Dα;n ∈ N}.

Consider the binary relation ρP ⊂ Ct(P)× Ct(P) defined by

Dα ρP Dβ if and only if Dβ = Pn ·Dα

for some n ∈ N0. We get without any effort that
(
Ct(P), ·, ρP

)
is a quasi-

ordered monoid.
Further, Dα�Dβ = ρP(Dβ ·Dα) = [Dβ ·Dα)ρP and by Ends Lemma 1.2

we obtain that
(
Ct(P),�) is a hypergroup (non-commutative, in general).

As usually
(
Ct(P)

)+
with the operation of concatenation means the free

semigroup of finite nonempty words formed by operators from the set Ct(P).
Denote

SP =
{

(P ·D1 · · · · ·Dn)(f); f ∈ C∞(Ω),D1 · · · · ·Dn ∈
(
Ct(P)

)+}
and M(SP) the triple

(
SP, (Ct(P),�), δP

)
, where the action or transition func-

tion
δP : SP × Ct(P)→ SP

is defined by the rule

δP
(
(P ·D1 · · · · ·Dn)(f),Dα

)
= (P ·Dα ·D1 · · · · ·Dn)(f)

for any function f ∈ C∞(Ω) and any operator Dα ∈ Ct(P). The transition
function δP satisfies the Generalized Mixed Associativity Condition.

Indeed, suppose f ∈ C∞(Ω), Dα,Dβ ,D1,D2 ∈ Ct(P) are arbitrary ele-
ments. We have

δP

(
δP
(
(P ·D1 · · · · ·Dn)(f),Dα

)
,Dβ

)
= δP

(
(P ·Dα ·D1 · · · · ·Dn)(f),Dβ

)
=
(
(P ·Dβ ·Dα ·D1 · · · · ·Dn)(f)

)
∈
{

(Pn+1 ·Dβ ·Dα ·D1 · · · · ·Dn)(f), n ∈ N0

}
= δP

(
(P ·D1 · · · · ·Dn)(f),Pn ·Dα ·Dβ

)
= δP

(
(P ·D1 · · · · ·Dn)(f),Dα�Dβ

)
,
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so GMAC is satisfied, i.e., the triple M(SP) =
(
SP, (Ct(P),�), δP

)
is a multi-

automaton.
With respect to the definition of connectivity of an automaton we give the

following definition:

Definition 1.8. 1. Let A = (S,G, δ) be a multiautomaton with an input semi-
hypergroup G. If ∅ 6= T ⊂ S and δ(t, g) ∈ T for any pair [t, g] ∈ T ×G then
the triad B = (T,G, δT ) (where δT = δ|(T×G)) is called a submultiautoma-
ton of the multiautomaton A = (S,G, δ).

2. A submultiautomaton B = (T,G, δT ) of the multiautomaton A = (S,G, δ)
is said to be separated if δ(SrT,G)∩T = ∅. A nonempty multiautomaton
is said to be connected (in the sense of [2]) if it has no separated proper
submultiautomaton.

Let us define the transition function δ as follows. δ : L1D(Ω) × C1(Ω) →
L1D(Ω)

δ
(
D(~a, p), f

)
= D(~a, p) ·D(f, . . . , f, 1) = D(~c, p)

where ak + pf = ck; k = 1, 2, . . . , n.
If we define f · g =

⋃
[a,b]∈R+×R+

[af + bg)≤, similarly as in [23], we can prove

that
(
C(Ω), ·

)
is a join space. First, we will proof the GMAC, i.e.

δ
(
δ
(
D(~a, p), f

)
, g
)
∈ δ
(
D(~a, p), f · g

)
.

Indeed,

δ
(
δ
(
D(~a, p), f

)
, g
)

= δ
(
D(a1 + pf, . . . , an + pf, p), g

)
= D(a1 + pf, . . . , an + pf, p) ·D(g, . . . , g, 1)

= D(a1 + pf + pg, . . . , an + pf + pg, p) = L(D,Ω).

On the other hand

δ
(
D(~a, p), f · g

)
= δ
(

D(~a, p),
⋃

[a,b]∈R+×R+

[af + bg)≤

)
=

⋃
[a,b]∈R+×R+

δ
(

D(~a, p), [af + bg)≤

)
=

⋃
[a,b]∈R+×R+

δ
(

D(~a, p),
{
ϕ(x1, . . . , xn);

af(x1, . . . , xn) + bg(x1, . . . , xn) ≤ ϕ(x1, . . . , xn)
})
.
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Now, choosing e.g. a = 1, b = 1 we have

δ
(
D(~a, p), f + g

)
= D

(
a1 + p(f + g), . . . , an + p(f + g), p

)
.

L(D,Ω) = D
(
a1 + p(f + g), . . . , an + p(f + g), p

)
∈ δ
(
D(~a, p), f · g

)
.

Hence GMAC is satisfied. So, (C(Ω), ·) is a join space.

Creation of invariant subgroup:

Let D(~a, p) ∈ L1D(Ω) be an arbitrary operator. Then

D−1(~a, 1)·D(~b, 1) ·D(~a, p)

= D
(
−a1
p
, . . . ,−an

p
,

1

p

)
·D(a1 + b1, . . . , an + bn, p)

= D
(b1
p
, . . . ,

bn
p
, 1
)
∈ L1

1D(Ω).

Proposition 1.9. Let ∅ 6= Ω ⊆ Rn be an open domain. Then(
L1
1D(Ω), ·

)
�
(
L1D(Ω), ·).

Proof. Firstly, if
[
D(~a, 1),D(~b, 1)

]
∈ L1D(Ω)× L1

1D(Ω) is an arbitrary pair of
differential operators then

D(~a, 1) ·D−1(~b, 1) = D(a1 − b1, . . . , an − bn, 1) ∈ L1
1D(Ω)

and D(0, · · · , 0, 1) ∈ L1
1D(Ω) thus

(
L1
1D(Ω), ·

)
is a subgroup of the group(

L1D(Ω), ·
)
. Further for an arbitrary pair of operators[

D(~a, p),D(~b, q)
]
∈ L1D(Ω)× L1

1D(Ω)

we have, according the above calculation, D−1(~a, p)·D(~b, 1)·D(~a, p) ∈ L1
1D(Ω),

thus D−1(~a, p) · L1
1D(Ω) · D(~a, p) ⊆ L1

1D(Ω) hence
(
L1
1D(Ω), ·

)
is an invariant

subgroup of the group
(
L1D(Ω), ·

)
.

Denote L1
0D(Ω) =

{
D(ϕ, · · ·ϕ, 1);ϕ ∈ C(Ω)

}
.

Theorem 1.10. Let ∅ 6= Ω ⊆ Rn be an open domain. Then(
L1
0D(Ω), ·

)
�
(
L1
1D(Ω), ·

)
�
(
L1D(Ω), ·

)
and as well (

L1
0D(Ω), ·

)
�
(
L1D(Ω), ·

)
.
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Proof. Consider an arbitrary element D(~a, p) ∈ L1D(Ω) which is different from
the unit of this group and the corresponding inner automorphism Ψ~a of the
group (L1D(Ω), ·) determined by the operator D(~a, p).

Then for arbitrary D(~b, 1) ∈ L1D(Ω) we have

Ψ~a

(
D(b1, . . . , bn, 1)

)
= D−1(a1, . . . , an, p) ·D(b1, . . . , bn, 1) ·D(a1, . . . , an, p)

= D
(
−a1
p
, . . . ,−an

p
,

1

p

)
·D(a1 + b1, . . . , an + bn, p)

= D
(a1(p− 1)

p
+ b1, . . . ,

an(p− 1)

p
+ bn, 1

)
∈ L1D(Ω),

thus Ψ~a(L1D(Ω), ·) = (L1D(Ω), ·), consequently
(
L1
1D(Ω), ·

)
�
(
L1D(Ω), ·

)
.

Similarly, denoting by Ψ~a(L1
1D(Ω), ·) → (L1

1D(Ω), ·) the inner automor-
phism of the group (L1

1D(Ω), ·) detemined by the element D(a1, . . . , an, 1) ∈
L1
1D(Ω) we have for an arbitrary operator D(ϕ, . . . , ϕ, 1) ∈ L1

0D(Ω):

Ψ~a

(
D(ϕ, . . . , ϕ, 1)

)
= D(−a1, . . . ,−an, 1) ·D(ϕ, . . . , ϕ, 1) ·D(a1, . . . , an, 1)

= D(−a1, . . . ,−an, 1) ·D(a1 + ϕ, . . . , an + ϕ, 1)

= D(ϕ, . . . , ϕ, 1) ∈ L1
0D(Ω),

i.e. Ψ~a(L1
0D(Ω)) = L1

0D(Ω) (here Ψ~a | L1
0D(Ω) = Id). Thus

(
L1
0D(Ω), ·

)
�(

L1
1D(Ω), ·

)
.

In a similar way we obtain the third assertion.

The just proved theorem allows us to define two proximities on the hyper-
group

(
L1D(Ω), ∗

)
which are compatible in the above mentioned sense. De-

note by H one of carriers L1
1D(Ω), L1

0D(Ω) of normal subgroups of the group(
L1D(Ω), ·

)
. Denoting shortly by L1/H the corresponding decomposition of

the set L1D(Ω), i.e. in fact one of systems L1D(Ω)/L1
1D(Ω), L1D(Ω)/L1

0D(Ω)
of equivalence-block of operators then for any subset U ⊆ L1D(Ω) its star
St(U,L1/H) in the covering L1/H of L1D(Ω) is union of all blocks from L1/H
incident with U.

Define U pH V for U, V ⊆ L1D(Ω) whenever St(U,L1/H) ≈ St(V,L1/H)
(i.e. these sets has non-empty intersection). In our considerations by a prox-
imity (space) we mean a proximity (space) in the sense [4, p. 439], cf. Defini-
tion 1.4 above.

Theorem 1.11. Let Ω ⊆ Rn be an open domain and H ∈ {L1
1D(Ω),L1

0D(Ω)}.
The binary relation

pH ⊆ P(L1D(Ω))× P(L1D(Ω))
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is a proximity on the set L1D(Ω), compatible in the sense U, V,W ⊆ L1D(Ω),
U pH V implies (U ∗ V ) pH (V ∗W ) and (W ∗ U) pH (W ∗ V ), consequently(
P(L1D(Ω)), ∗,pH

)
is a tolerance semigroup.

Proof. Evidently, the above defined relation pH satisfies the condition 1 from
Definition 1.4, i.e. ∅non pH L1D(Ω) and moreover it is also symmetrical,
so condition 2 is also satisfied. Further, if U, V ⊆ L1D(Ω), U ≈ V then
St(U,L1/H) ≈ St(V,L1/H), thus U pH V. (condition 3)
Since St(U ∪ V,L1/H) = St(U,L1/H) ∪ St(V,L1/H) (in fact, the mapping
St(−,L1/H) : P(L1D(Ω)) → P(L1D(Ω)) is a totally additive idempotent clo-
sure operation), we obtain that condition 4 from Definition 1.4 is also satisfied.

Now suppose U, V,W ⊆ L1D(Ω) are subsets such that U pH V . Then
we have St(U,L1/H) ≈ St(V,L1/H) which means that there exists a block
B ∈ L1/H, B ∈ St(U,L1/H) which is of the form B = H ·D(~a, p) for a suitable
operator D(~a, p) ∈ U ∩B and B ∈ St(V,L1/H). There exists also an operator

D(~b, q) ∈ V ∩B such that B = H ·D(~b, q). In fact

St(U ∗W,L1/H) = St
( ⋃
[D,F ]∈U×W

D ∗ F,L1/H
)

=
⋃

[D,F ]∈U×W

St
(
D ∗ F,L1/H

)
and

D ∗ F
{

D(~c, s);D · F ≤ D(~c, s)
}
.

For any operator D(~θ, ϑ) ∈ L1D(Ω) we have

D(~a, p) ·D(~θ, ϑ) ∈ B ·D(~θ, ϑ)

and
D(~b, q) ·D(~θ, ϑ) ∈ B ·D(~θ, ϑ).

Since any translation of each decomposition-block from L1/H is a block of the
same decomposition, there holds

B ·D(~θ, ϑ) ⊂ St
(
U ∗W,L1/H

)
and simultaneously

B ·D(~θ, ϑ) ⊂ St
(
V ∗W,L1/H

)
.

Consequently,

B ·D(~θ, ϑ) ⊂ St
(
U ∗W,L1/H

)
∩ St

(
V ∗W,L1/H

)
,
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hence

St
(
U ∗W,L1/H

)
≈ St

(
V ∗W,L1/H

)
,

which means (U∗W ) pH (V ∗W ). In a similar way we can verify the implication:
U pH V implies (W ∗ U) pH (W ∗ V ).

In the interesting paper [22] of Heidary and B. Davvaz there is defined
a partially preordered (ordered) semihypergroup–Definition 2.4, p. 87. In de-
tails: An algebraic structure (H, ·,≤) is called G,≤ is a partially preordered
(ordered) semihypergroup, if (H, ·) is a semihypergroup and “≤” is a partial
preordered(ordered) relation on H such that the monotonicity condition holds
as follows:

x ≤ y then a · x ≤ a · y for every x, y, a ∈ H,

where, if A and B are non-empty subsets of H, then we say that A ≤ B if for
every a ∈ A there exists b ∈ B such that a ≤ b.

In the same paper [22, p. 87], there is defined a regular equivalence relation
on the right and on the left and also a strongly regular equivalence-one-sided
and both-sided, as well. These concepts are overtaken from the monograph [4].
In connection with the above concept of the regularity of a binary relation we
introduce the notion of a regular preorder (preordering).

Definition 1.12. A semihypergroup (H, ·) with a reflexive and transitive bi-
nary relation “≤” on the carrier H is said to be regularly preordered on the
right (on the left) if for any triplet a, x, y ∈ H such that x ≤ y there follows

x · a ≤̄ y · a (a · x ≤̄ a · y, respectively),

where for A,B ⊆ H the relationship A ≤̄B means that for any t ∈ A there
exists s ∈ B such t ≤ s and for any s′ ∈ B there exists t′ ∈ A such that t′ ≤ s′.
The preordering “≤” on H is called regular if it is regular on the right and on
the left. If both conditions are satisfied we say that a semihypergroup (H, ·,≤)
is regularly ordered.

Construction

Let δ : L1D(Ω) × C1(Ω) → L1D(Ω) be the action of the join space (C1(Ω), ◦)
on the transposition hypergroup (L1D(Ω), ∗) defined by

δ
(
D(a1, . . . , an, p), f

)
= D(a1, . . . , an, p) ·D(f, . . . , f, 1)

= D(a1 + pf, . . . , an + pf, p)
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for any pair
[

D(a1, . . . , an, p), f
]
∈ L1D(Ω)× C1(Ω).

As above, we write sometimes D(~a, p) instead of D(a1, . . . , an, p). Now,
define a binary relation “≤1

δ” on the set L1D(Ω) by the rule

D(a1, . . . , an, p) ≤1
δ D(b1, . . . , bn, q)

it there is a function f ∈ C1(Ω) such that

δ
(
D(a1, . . . , an, p), f

)
= D(b1, . . . , bn, q),

i.e.
D(a1, . . . , an, p) ·D(f, . . . , f, 1) = D(b1, . . . , bn, q),

where bk = ak + fbk, k = 1, 2, . . . , n and p = q.
It is easy to see that the binary relation “≤1

δ” is reflexive and transitive, i.e.
is is a preordering on the set L1D(Ω). Indeed, D(~a, p) ·D(0, . . . , 0, 1) = D(~a, p),
thus the relation is reflexive.

If D(~a, p) ≤1
δ D(~b, q) and D(~b, q) ≤1

δ D(~c, s) we have δ
(
D(~a, p), f

)
= D(~b, q)

and δ
(
D(~b, q), g

)
= D(~c, s) for suitable functions f, g ∈ C1(Ω). Then

D(~c, s) = D(~b, q) ·D(g, . . . , g, 1) = D(~a, p) ·D(f, . . . , f, 1) ·D(g, . . . , g, 1)

= D(~a, p) ·D(f + g, . . . , f + g, 1),

hence D(~a, p) ≤1
δ D(~c, s), so the relation “≤1

δ” is also transitive.

Theorem 1.13. Let Ω ∈ Rn be an open domain. The triad (L1D(Ω), ∗,≤1
δ)

is a regularly preordered transposition hypergroup, i.e. a regularly preordered
noncommutative join space.

Proof. Let D(~a, p),D(~b, q),D(~c, s) ∈ L1D(Ω) be an arbitrary triplet such that

D(~a, p) ≤1
δ D(~b, q). We are going to show that

D(~a, p) ∗D(~c, s) ≤̄1
δ D(~b, q) ∗D(~c, s)

and
D(~c, s) ∗D(~a, p) ≤̄1

δ D(~c, s) ∗D(~b, q).

If D(~a, p) ≤1
δ D(~b, q) there exists a function f ∈ C1(Ω) such that D(~b, q) =

D(~a, p) · D(~f, 1). Here ~f = (f1, · · · , fn) = (f, · · · , f) thus

D(~b, q) = D(
−−−−→
a+ pf, p) = D(a1 + pf, · · · , an + pf, p).

Now suppose

D(~d, u) ∈ D(~a, p) ∗D(~c, s) =
{

D(~Γ, γ),
−−−−→
a+ pc ≤ ~Γ, γ = ps

}
.
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Here ~Φ ≤ ~Ψ (for ~Φ = (Φ1, . . . ,Φn),~Ψ = (Ψ1, . . . ,Ψn)) means Ψk(x1, . . . , xn) ≤
Φk(x1, . . . , xn) for any points [x1, . . . , xn] ∈ Ω. We have

−−−−→
a+ pc ≤ ~d and u =

ps. Denote ~g =
−−−−→
d+ pf and h = ps, i.e. ~g = (g1, . . . , gn), gk = dk + pf,

k = 1, 2, . . . , n.
Then

D(~g, h) = D(
−−−−→
d+ pf, ps) = D(~d, ps) ·D

(1

s
~f, 1
)

= δ
(

D(~d, u),
1

s
~f
)
,

thus D(~d, u) ≤1
δ D(~g, h). Further, from

−−−−→
a+ pc ≤ ~d it follows

−−−−→
a+ pc +

−→
pf ≤

−−−−→
d+ pf and

D(~g, h) = D(
−−−−→
d+ pf, ps) ∈

{
D(~θ, ϑ); D(

−−−−−−−−→
a+ pc+ pf, ps) ≤ D(~θ, ϑ)

}
= D(

−−−−→
a+ pf, p) ∗D(~c, s) = D(~b, q) ∗D(~c, s).

Now suppose D(~g, h) ∈ D(~b, q)∗D(~c, s) is an arbitrary operator. Since
−−−−→
a+ pf =

~b, q = p, we have

D(~b, q) ∗D(~c, s) =
{

D(~ξ, t); D(
−−−→
b+ qc, qs) ≤ D(~ξ, t)

}
=
{

D(~ξ, t); D(
−−−−−−−−→
a+ pf + pc, ps) ≤ D(~ξ, t)

}
,

thus
−−−−−−−−→
a+ pf + pc ≤ ~g and h = ps. Then there exists a function λ ∈ C1(Ω),

~λ ≥ ~0, which means ~λ = (λ1, · · · , λn, λk(x1, . . . , xn) ≥ 0 for k = 1, 2, . . . , n–

such that
−−−−−−−−→
a+ pc+ pf + ~λ = ~g. Further,

D(~g, h) = D(
−−−−−−−−→
a+ pc+ pf + ~λ, ps) = D(

−−−−→
a+ pc+ ~λ, ps) ·D(pf, . . . , pf, 1)

= δ
(
D(
−−−−→
a+ pc+ ~λ, ps), pf

)
i.e. D(

−−−−→
a+ pc+ ~λ, ps) ≤̄1

δ D(~g, h) and
−−−−→
a+ pc ≤ −−−−→a+ pc+ ~λ, which means

D(
−−−−→
a+ pc+ ~λ, ps) ∈ D(~a, p) ∗D(~c, s).

Consequently
D(~a, p) ∗D(~c, s) ≤̄1

δ D(~b, q) ∗D(~c, s).

Now we verify that the preordering “≤̄1
δ” is the preordering of the hypergroup

(L1D(Ω), ∗) regular on the left. So, suppose D(~d, u) ∈ D(~c, s) ∗ D(~a, p), thus

D( ~c+ sa, sp) ≤ D(~d, u) which means ( ~c+ sa ≤ ~d and sp = u.
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Then D(~d, u) ·D(~f, 1) = D(
−−−−→
d+ uf, u) = D(

−−−−−→
d+ spf, sp), hence

−−−−−−−−→
c+ sa+ spf =

−−−→
c+ sa+

−−→
spf ≤ ~d+

−−→
spf. (1)

However, D(
−−−−−→
d+ spf, sp) = δ

(
D(~d, u), f

)
, i.e. D(~d, u) ≤̄1

δ D(
−−−−−→
d+ spf, sp).

Further, since D(~b, q) = D(~a, p) ·D(~f, 1) = D(
−−−−→
a+ pf, p), we have

D(~c, s) ∗D(~b, q) = D(~c, s) ∗D(
−−−−→
a+ pf, p)

=
{

D(~ϕ, t); D(
−−−−−−−−→
c+ sa+ spf, sp) ≤ D(~ϕ, t)

}
.

With respect to the inequality (1) we obtain

D(
−−−−−→
d+ spf, sp) ∈ D(~c, s) ∗D(~b, q).

It remains to show that for any operator D(~θ, ϑ) ∈ D(~c, s)∗D(~b, q) there exists

an operator D(~Γ, γ) ∈ D(~c, s) ∗D(~a, p) such that D(~Γ, γ) ≤̄1
δ D(~θ, ϑ).

Thus, suppose D(~θ, ϑ) ∈ D(~c, s) ∗ D(~b, q), i.e. D(
−−−→
c+ sb, sq) ≤ D(

−→
θ , ξ). As

above, ~b =
−−−−→
a+ pf and q = p, hence D(

−−−→
c+ sb, sq) = D(

−−−−−−−−→
c+ sa+ spf, sp). From

D(
−−−→
c+ sb, sq) ≤ D(θ, ξ) there follows

−−−−−−−−→
c+ sa+ spf ≤ ~θ

thus there exists a vector ~λ ≥ ~0 with the property
−−−−−−−−→
c+ sa+ spf+~λ = ~θ. Denote

Γ =
−−−−−−−→
c+ sa+ λ, γ = sp. Then

−−−→
c+ sa ≤ −−−→c+ sa~λ = Γ thus

D(~Γ, γ) ∈
{

D(~ψ, v); D(
−−−→
c+ sa, sp) ≤ D(~ψ, v)

}
= D(~c, s) ∗D(~a, p).

Further,

δ
(
D(Γ, γ), f

)
= D(Γ, γ) ·D(f, 1) = D(

−−−−−−−→
c+ sa+ λ, sp) · (f, 1)

= D(
−−−−−−−−−−−−→
c+ sa+ spf + λ, sp) = D(~θ, ξ).

Hence
D(~c, s) ∗D(~a, p) ≤̄1

δ D(~c, s) ∗D(~b, q)

and the proof is complete.
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Summer School, Horńı Lipová, Czech Republic (1994), 19–30.
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