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Abstract

We provide irreducibility criteria for multiplicative convolutions of
polynomials with integer coefficients, that is, for polynomials of the form
hdeg f ·f(g/h), where f, g, h are polynomials with integer coefficients, and
g and h are relatively prime. The irreducibility conditions are expressed
in terms of the prime factorization of the leading coefficient of the poly-
nomial hdeg f · f(g/h), the degrees of f, g, h, and the absolute values of
their coefficients. In particular, by letting h = 1 we obtain irreducibility
conditions for compositions of polynomials with integer coefficients.

1 Introduction

To decide whether the sum of two relatively prime polynomials is an irre-
ducible polynomial, or in general, if a linear combination of two relatively
prime polynomials is irreducible, is by no means an easy problem, and no
general answer in this respect seems to be available. This problem may be
raised for various classes of polynomials, like for instance polynomials with
coefficients in an arbitrary unique factorization domain, or for multivariate
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polynomials over an arbitrary field. However, for some particular classes of
such linear combinations of polynomials of the form n1f + n2g some progress
was recorded by using some information on the canonical decomposition of n1
and n2, or on the canonical decomposition of the coefficients of f and g, or on
their absolute values. Inspired by the work of Fried [8] and Langmann [9] in
connection with Hilbert’s irreducibility theorem, Cavachi [6] investigated the
problem of the irreducibility of polynomials of the form f(X) + pg(X), with p
prime, f(X), g(X) relatively prime polynomials with rational coefficients, and
deg f < deg g. Given two relatively prime polynomials f(X), g(X) ∈ Q[X]
with deg f < deg g, an explicit bound p0 was provided in [7] such that for all
prime numbers p > p0, the polynomial f(X) + pg(X) is irreducible over Q.
In [4], explicit upper bounds have been derived for the number of factors over
Q of a linear combination n1f(X) + n2g(X), covering also the case deg f =
deg g. In [5] the same methods along with a Newton polygon argument have
been used to find irreducibility conditions for linear combinations of the form
f(X) + pkg(X). In [2] similar methods have been employed to study the irre-
ducibility of some classes of compositions of polynomials, while in [3] the study
focused on the irreducibility of some classes of multiplicative convolutions of
polynomials, which offer considerably more flexibility to such irreducibility re-
sults, as they include linear combinations and compositions of polynomials as
well.

Given two polynomials g(X) = b0 + b1X + · · ·+ bnX
n, h(X) = c0 + c1X +

· · · + clX
l ∈ Z[X], bncl 6= 0, by a multiplicative convolution of g and h we

understand any polynomial of the form

m∑
i=0

aig(X)ih(X)m−i,

with a0, a1, . . . , am ∈ Z, m ≥ 1, a0am 6= 0. If we associate to a0, a1, . . . , am
the polynomial f(X) = a0 + a1X + · · ·+ amX

m, and assume that h 6= 0, then

m∑
i=0

aig(X)ih(X)m−i = h(X)mf

(
g(X)

h(X)

)
.

The aim of this paper is to complement some of the results in [3] and [2], by
providing similar irreducibility conditions for the case when am is divisible by a
sufficiently large prime power. The irreducibility results that we will obtain for
this kind of convolutions will be expressed in terms of the prime factorization
of the leading coefficient of the polynomial hdeg ff(g/h), the degrees of f , g,
h, and the absolute value of their coefficients. We use the same notation that
was used in [3]. Given a polynomial f(X) = a0+ · · ·+amXm ∈ Z[X] of degree
m ≥ 0, we let
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H(f) = max{|a0|, . . . , |am|} and L(f) =

m∑
i=0

|ai| ,

and if m > 0 we let

H1(f) = max{|a0|, . . . , |am−1|} and L1(f) =

m−1∑
i=0

|ai| .

Our main results refer to the case deg h < deg g:

Theorem 1.1. Let f(X) = a0 + a1X + · · ·+ amX
m, g(X) = b0 + b1X +

· · ·+ bnX
n and h(X) = c0 + c1X + · · ·+ clX

l ∈ Z[X] be polynomials of degree
m,n and l respectively, with m ≥ 1, n > l, a0 6= 0, and g, h relatively prime.
Put

d = max{ i : i < m and ai 6= 0} and β = 1 + [H1(g) +H(h)]/|bn|.

Assume that am = pkq with p a prime number, q a non-zero integer, p - qadbncl
and k is a positive integer prime to (m− d)(n− l). If

|am| >
d∑
i=0

|ai| · [|q|n|bn|mnL(h(βX))]m−i,

then the polynomial hm · f(g/h) is irreducible over Q. The same conclusion
holds in the wider range

|am| >
d∑
i=0

|ai| · [|q|
n
m |bn|nL(h(βX))]m−i,

provided that f is irreducible over Q.

We also obtain the following irreducibility criterion, by replacing the hy-
pothesis “f irreducible” by a simple numerical condition.

Corollary 1.2. Let f(X) = a0 + a1X + · · ·+ amX
m, g(X) = b0 + b1X +

· · ·+ bnX
n and h(X) = c0 + c1X + · · ·+ clX

l ∈ Z[X] be polynomials of degree
m,n and l respectively, with m ≥ 1, n > l, a0 6= 0, and g, h relatively prime.
Put

d = max{ i : i < m and ai 6= 0} and β = 1 + [H1(g) +H(h)]/|bn|.
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Assume that am = pkq with p a prime number, q a non-zero integer, p - qadbncl
and k is a positive integer prime to (m− d)(n− l). If

|am| > max

{
d∑
i=0

|ai| · |q|m−i,
d∑
i=0

|ai| · [|q|
n
m |bn|nL(h(βX))]m−i

}
,

then the polynomial hm · f(g/h) is irreducible over Q.

One of the corollaries of the main result in [2] is the following irreducibility
criterion for compositions of polynomials with integer coefficients.

Corollary 1.3. ([2, Corollary 4]) Let f(X) =
∑m
i=0 aiX

i and g(X) =∑n
i=0 biX

i in Z[X] be non-constant polynomials of degree m and n respectively,
with a0 6= 0. If am = p · q with p a prime satisfying

p > max

{
|q|m−1L1

(
f

(
X

|q|

))
, |q|n−1|bn|mnL1

(
f

(
X

|q|n/m|bn|n

))}
,

then the polynomial f ◦ g is irreducible over Q.

By taking h(X) = 1 in Corollary 1.2 we obtain the following irreducibility
criterion for compositions of polynomials, that complements Corollary 4 in [2].

Corollary 1.4. Let f(X) = a0+a1X+· · ·+amXm and g(X) = b0+b1X+
· · · + bnX

n ∈ Z[X] be polynomials of degree m ≥ 1 and n ≥ 1 respectively,
a0 6= 0. Put

d = max{ i : i < m and ai 6= 0}

and assume that am = pkq with p a prime number, q a non-zero integer,
p - qadbn and k is a positive integer prime to (m− d)n. If

|am| > max

{
d∑
i=0

|ai| · |q|m−i,
d∑
i=0

|ai| · [|q|
n
m |bn|n]m−i

}
,

then the polynomial f ◦ g is irreducible over Q.

Perhaps a comparison with [3] is in place. For the sake of convenience, we
quote a similar irreducibility criterion derived from the main result of [3].

Corollary 1.5. ([3, Corollary 1]) Let f(X) = a0 + a1X + · · · + amX
m,

g(X) = b0 + b1X + · · · + bnX
n and h(X) = c0 + c1X + · · · + clX

l ∈ Z[X] be
polynomials of degree m,n and l respectively, with m ≥ 1, n > l, a0 6= 0, f
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irreducible over Q, and g, h relatively prime. Let β = 1+[H1(g)+H(h)]/|bn|.
If am = pq with p a prime satisfying

|am| >
m−1∑
i=0

|ai| · [|q|n|bn|mnL(h(βX))]m−i,

then the polynomial hm · f(g/h) is irreducible over Q.

It is apparent that in Corollary 1.5 the hypothesis is less restrictive with
regard to p, the requirement p - qadbncl being added in Theorem 1.1. The
condition that k is coprime to (m − d)(n − l) is automatically satisfied when
k = 1, which is the case dealt with in Corollary 1 from [3]. However, as the
cofactor q can be much bigger when applying Corollary 1.5 than when using
Theorem 1.1, the latter result is applicable to polynomials f having the leading
coefficient am somewhat smaller.

2 Proof of the main results

For the proof of Theorem 1.1 we need the following lemma from [1], which
extends Capelli’s Theorem to multiplicative convolutions of polynomials.

Lemma 2.1. Let K be a field, f, g, h ∈ K[X], f irreducible over K, g and
h relatively prime, and f(α) = 0. If

g − αh can
=

K(α)
const ·

r∏
i=1

φi(X)ei ,

then

hdeg f · f(g/h)
can
=
K
const ·

r∏
i=1

NK(α)/Kφi(X)ei .

In particular, the degree of every irreducible factor of hdeg f · f(g/h) must be
a multiple of deg f .

Here F
can
=
K
const·

r∏
i=1

φi(X)ei means that the φi’s are irreducible overK and

prime to each other. For a proof of this result in the case when char(K) = 0,
which is relevant here, we refer the reader to [3].

Another result that will be needed in the proof of Theorem 1.1 is the
following lemma in [5], whose proof relies on Newton’s polygon method.
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Lemma 2.2. Let u, v ∈ Z[X] be two polynomials with deg v = n and
deg u = n − d, d ≥ 1. Let also p be a prime number that divides none of the
leading coefficients of u and v, and let k be any positive integer prime to d. If
u(X) + pkv(X) may be written as a product of two non-constant polynomials
with integer coefficients, say f1 and f2, then one of the leading coefficients of
f1 and f2 must be divisible by pk.

We will also use the following basic lemma.

Lemma 2.3. Let f(X) = a0 + a1X + · · ·+ anX
n ∈ C[X] be a polynomial

of degree n. If for a positive real δ we have

|an|
δn

> L1

(
f

(
X

δ

))
,

then all the roots of f lie in the disk |z| < 1
δ .

Proof: Assume that f has a root θ ∈ C with |θ| ≥ 1
δ . Then we have

0 =
|f(θ)|
|θn|

≥ |an| −
|an−1|
|θ|

− · · · − |a0|
|θ|n
≥ |an| − |an−1|δ − · · · − |a0|δn. (1)

On the other hand, according to our hypothesis, we have |an|δn > L1

(
f
(
X
δ

))
,

so in fact we have |an| > |an−1|δ + · · ·+ |a0|δn, which contradicts (1). �

We will now proceed with the proof of Theorem 1.1.

Proof of Theorem 1.1 Let f(X), g(X) and h(X) be as in the statement
of the theorem. Let us assume to the contrary that hm · f(g/h) factors as
hm · f(g/h) = F1 · F2, with F1, F2 ∈ Z[X], and degF1 ≥ 1,degF2 ≥ 1. Let
t1, t2 ∈ Z be the leading coefficients of F1 and F2, respectively. By comparing
the leading coefficients in the equality

hm · f(g/h) = a0h
m + · · ·+ adg

dhm−d + amg
m = F1 · F2

one finds that
pkqbmn = t1 · t2. (2)

By Lemma 2.2 with a0h(X)m + · · ·+ adg(X)dh(X)m−d instead of u(X), and
qg(X)m instead of v(X), since p - qadbncl and k is prime to (m−d)(n− l), we
deduce that one of the leading coefficients of F1 and F2, say that of F2, will
be divisible by pk. Then, in view of (2), it follows that t1 will divide qbmn . In
particular we have

|t1| ≤ |q| · |bn|m. (3)
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Let now f = hm · f(g/h) − amgm. Then hm · f(g/h) = f + amg
m, and

since a0 6= 0, the polynomials f and gm are algebraically relatively prime.
Next, we will estimate the resultant R(gm, F1). Since gm and F1 are also

algebraically relatively prime, R(gm, F1) must be a non-zero integer number,
so in particular we must have

|R(gm, F1)| ≥ 1. (4)

Let r = degF1 ≥ 1, and consider the decomposition of F1, say

F1(X) = t1(X − θ1) · · · (X − θr),

with θ1, . . . , θr ∈ C. Then

|R(gm, F1)| = |t1|mn
∏

1≤j≤r

|gm(θj)| . (5)

Since each root θj of F1 is also a root of hm · f(g/h), we have

gm(θj) = −f(θj)

am
(6)

and moreover, since f and gm are relatively prime, f(θj) 6= 0 and gm(θj) 6= 0
for any j ∈ {1, . . . , r}. Combining (5) and (6) we obtain

|R(gm, F1)| = |t1|
mn

|am|r
·
∏

1≤j≤r

∣∣f(θj)
∣∣ . (7)

We now proceed to find an upper bound for
∣∣f(θj)

∣∣. In order to do this,
we have to find an upper bound for the moduli of the roots of f . To this end,
we first fix a positive real number δ such that |am|/δm > L1(f(X/δ)). Later
on we shall specify how to choose a convenient value of δ. By Lemma 2.3 we
see that all the roots λi of f will verify

|λi| <
1

δ
. (8)

Let now θ1, . . . , θmn be the roots of hm · f(g/h). Since g and h are relatively
prime, one has h(θj) 6= 0 and f(g(θj)/h(θj)) = 0 for j = 1, . . . ,mn. Thus, for
a given θj , there exists ij ∈ {1, . . . ,m} such that g(θj)/h(θj) = λij , a root of
f . By (8) we then have ∣∣∣∣ g(θj)

h(θj)

∣∣∣∣ < 1

δ
. (9)



80 A.I. Bonciocat, N.C. Bonciocat and M. Cipu

Recall that f = a0h
m + a1gh

m−1 + · · ·+ adg
dhm−d. Using (9), we derive that

∣∣f(θj)
∣∣ =

∣∣∣∣∣
d∑
i=0

aig(θj)
ih(θj)

m−i

∣∣∣∣∣ ≤ |h(θj)|m · L1(f(X/δ)). (10)

Combining now (7), (10) and (3) we deduce the following upper bound for
|R(gm, F1)| :

|R(gm, F1)| ≤ |q|mn|bn|m
2n ·

[
|h(θj)|mL1(f(X/δ))

|am|

]r
. (11)

The inequality (9) allows us to find also an upper bound for |h(θj)|, as
follows. We rewrite (9) as

δ|b0 + b1θj + · · ·+ bnθ
n
j | < |c0 + c1θj + · · ·+ clθ

l
j |,

which further gives

δ|bn| · |θj |n < (|c0|+ δ|b0|) + (|c1|+ δ|b1|)|θj |+ · · ·+ (|cl|+ δ|bl|)|θj |l

+δ|bl+1| · |θj |l+1 + · · ·+ δ|bn−1| · |θj |n−1

< (H(h) + δH1(g)) · (1 + |θj |+ · · ·+ |θj |n−1).

Hence, for |θj | > 1 we obtain

δ|bn| · |θj |n < (H(h) + δH1(g)) · |θj |
n − 1

|θj | − 1
< (H(h) + δH1(g)) · |θj |

n

|θj | − 1
,

that is

|θj | < 1 +
H(h) + δH1(g)

δ|bn|
. (12)

Note that this inequality is trivially satisfied when |θj | ≤ 1. Denoting by γ
the right-hand side of (12), we find that for any root θj of hm · f(g/h) it holds

|h(θj)| < L(h(γX)),

which combined with (11) yields

|R(gm, F1)| ≤ |q|mn|bn|m
2n ·

[
L(h(γX))mL1(f(X/δ))

|am|

]r
. (13)

The next step is to choose δ so that inequalities (4) and (13) contradict each
other. Since degF1 = r ≥ 1, all it remains to prove is that our assumption
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on the size of |am| will imply on the one hand |am| > δmL1(f(X/δ)) for a
suitable δ > 0, and on the other hand will force

|q|mn|bn|m
2n · L(h(γX))mL1(f(X/δ))

|am|
< 1,

or equivalently

|am| > |q|mn|bn|m
2nL(h(γX))mL1(f(X/δ)).

It will be therefore sufficient to have |am| > δmL1(f(X/δ)) for a δ > 0

as small as possible satisfying δm ≥ |q|mn|bn|m
2nL(h(γX))m, that is δ ≥

|q|n|bn|mnL(h(γX)). Recalling the definition of γ, the last inequality reads

δ ≥ |q|n|bn|mn
l∑
i=0

|ci|
(

1 +
H1(g)

|bn|
+
H(h)

δ|bn|

)i
.

A suitable candidate for δ is

δ0 = |q|n|bn|mn
l∑
i=0

|ci|
(

1 +
H1(g) +H(h)

|bn|

)i
≥ 1,

because

1 +
H1(g) +H(h)

|bn|
≥ 1 +

H1(g)

|bn|
+
H(h)

|bn|δ0
.

By the definition of β, the positive real number δ0 just found coincides with
|q|n|bn|mnL(h(βX)), which proves that for

|am| > [|q|n|bn|mnL(h(βX))]m · L1

(
f

(
X

|q|n|bn|mnL(h(βX))

))
=

d∑
i=0

|ai| · [|q|n|bn|mnL(h(βX))]m−i

we actually have |R(gm, F1)| < 1, a contradiction. Therefore hm ·f(g/h) must
be irreducible over Q, and this proves the first part of the theorem.

Assuming now that f is irreducible over Q, the proof goes as in the first
part, except that according to Lemma 2.1, the degree of every irreducible
factor of hm · f(g/h) must be a multiple of m, so in particular we must have
deg(F1) = r ≥ m. In this case we need to prove that our assumption on the
size of pk implies again |am| > δmL1(f(X/δ)) for a suitable δ > 0, and at the
same time it forces the inequality

|q|n|bn|mn ·
L(h(γX))mL1(f(X/δ))

|am|
< 1,
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or equivalently

|am| > |q|n|bn|mnL(h(γX))mL1(f(X/δ)),

which in view of (13) will contradict (4). It will be therefore sufficient to find a
δ > 0 such that δm ≥ |q|n|bn|mnL(h(γX))m, that is δ ≥ |q|n/m|bn|nL(h(γX)),
which, recalling the definition of γ, reads

δ ≥ |q| nm |bn|n
l∑
i=0

|ci|
(

1 +
H1(g)

|bn|
+
H(h)

δ|bn|

)i
.

A suitable candidate for δ in this case is

δ1 = |q| nm |bn|n
l∑
i=0

|ci|
(

1 +
H1(g) +H(h)

|bn|

)i
= |q| nm |bn|nL(h(βX)) ≥ 1,

so the contradiction |R(gm, F1)| < 1 follows now if

|am| > [|q| nm |bn|nL(h(βX))]m · L1

(
f

(
X

|q| nm |bn|nL(h(βX))

))
=

d∑
i=0

|ai| · [|q|
n
m |bn|nL(h(βX))]m−i.

This completes the proof of the theorem. �

Proof of Corollary 1.2 We apply Theorem 1.1 twice. On taking g(X) = X
and h(X) = 1, we first note that if f(X) = a0 + a1X + · · · + amX

m ∈ Z[X]
is a polynomial of degree m ≥ 1, with a0 6= 0, and am = pkq with p a prime,
q a non-zero integer, p - qad, and k is a positive integer prime to m − d and
such that pk > |q|m−1L1(f(X/|q|)), then f is irreducible over Q. Now by the
second part of Theorem 1.1, the polynomial hm · f(g/h) must be irreducible
over Q. So, if p satisfies the hypothesis of Corollary 1.2, then both polynomials
f and hm · f(g/h) will be irreducible over Q.
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