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On generalized
Lebesgue-Ramanujan-Nagell equations

Attila Bérczes and István Pink

Abstract

We give a brief survey on some classical and recent results concerning
the generalized Lebesgue-Ramanujan-Nagell equation. Moreover, we
solve completely the equation x2 + 11a17b = yn in nonnegative integer
unknowns with n ≥ 3 and gcd(x, y) = 1.

1 Generalized Ramanujan-Nagell equations

Mixed polynomial-exponential equations are of classical and recent interest.
One of the most famous equation of this type is the so-called Ramanujan-
Nagell equation, that is

x2 + 7 = 2n, (1)

where the unknowns (x, n) are positive integers. In 1913 Ramanujan [76]
conjectured that the above equation has only the solutions

(x, n) ∈ {(1, 3), (3, 4), (5, 5), (11, 7), (181, 15)}.

Ljunggren posed the same problem in 1943 and Nagell [70] confirmed it in 1948.
His proof in English was published in 1960 (see [72]). Subsequently, Chowla,
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Lewis and Skolem [32] gave an other proof which uses Skolem’s p-adic method
(see also Hasse [43]).
In 1960, Apéry [3] showed that if D > 0 is a given positive integer with D ≡ 7
(mod 8), D 6= 7 then the equation

x2 +D = 2n, (2)

has at most two positive integer solutions (x, n). Note that equation (2) pos-
sesses exactly two solutions if D = 23 or D = 2k − 1 for some k ≥ 4. Indeed
we have

(x, n) =

{
(3, 5), (45, 11) if D = 23

(1, k), (2k−1 − 1, 2k − 2) if D = 2k − 1, (k ≥ 4).
(3)

Browkin and Schinzel [21] conjectured that apart from the values D occur-
ring in (3) equation (2) has at most one solution. By making a clever use of
the hypergeometric method Beukers [17] confirmed the conjecture of Browkin
and Schinzel.

Since then several extensions concerning equation (2) have been considered
by many authors. Let D1, D2, a, b be given non-zero integers with D1 ≥ 1, a ≥
1, b ≥ 2 and suppose that gcd(b,D1D2) = 1. Consider the equation

D1x
2 +D2 = abn, (4)

in positive integer unknowns (x, n). If D1 = 1 then equation (4) is usually
called generalized Ramanujan-Nagell equation. (Note that if (a,D1, D2, b) =
(1, 1, 7, 2) then we get the original Ramanujan-Nagell equation). There are
many results in the literature concerning upper bounds for the number of
solutions of special cases of (4). Denote by N(a,D1, D2, b) the number of
solutions of (4).

1.1 Upper bounds for N(a,D1, D2, b) with D2 > 0

In 1960 Apéry [4] considered equation (4) with (a,D1, b) = (1, 1, p) with p an
odd prime. He showed that for every fixed (p,D2) with D2 > 0 and p - D2 the
equation

x2 +D2 = pn (5)

has at most two solutions, that is N(1, 1, D2, p) ≤ 2. The proof of the above
result depends on elementary algebraic number theory. We mention that this
result is sharp since for (p,D2) = (3, 2) or (p,D2) = (4k2 + 1, 3k2 + 1), k ≥ 1
equation (5) possesses exactly two solutions. Namely, we have

(x, n) =

{
(1, 1), (5, 3) if (p,D2) = (3, 2)

(k, 1), (8k3 + 3k, 3) if (p,D2) = (4k2 + 1, 3k2 + 1), (k ≥ 1).
(6)
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Thus there exist infinitely many pairs (p,D2) for which equation (5) has ex-
actly two solutions.

Later several papers appeared improving the upper bound on the num-
ber of solutions of (5). For instance, Bender and Herzberg [11] proved that
if p is sufficiently large compared to D2, that is p > C(D2) with C(D2) ef-
fectively computable, then apart from the pairs (p,D2) belonging to (6) we
have N(1, 1, D2, p) ≤ 1. As a consequence of a more general result, Le [49]
proved that there exists an absolute constant C1 such that N(1, 1, D2, p) ≤ 1 if
max{D2, p} > C1, unless (p,D2) is given by (6). It was already noted by Beuk-
ers [17] that distinct solutions in positive integers x and n to (5) correspond
to integers m ≥ 2 for which

λm − λmc
λ− λc

= ±1,

where λ is an algebraic integer in Q(
√
−D2) and λc denotes the complex

conjugate of λ. By applying the powerful result of Bilu, Hanrot and Voutier
[19] on primitive divisors of Lucas and Lehmer sequences, Bugeaud and Shorey
[25] improved the above mentioned results of Bender and Herzberg and Le.
They proved, among others, that equation (5) has at most one solution, unless
(p,D2) is given by (6) (i.e. N(1, 1, D2, p) ≤ 1 holds if and only if (p,D2) is
not of the form (6)).

In a series of papers Le [46]-[52] investigated equation (4) with

D1 ≥ 1, D2 ≥ 1, a ∈ {1, 2, 4}, gcd(b,D1D2) = 1 and a = 4 if b = 2. (7)

He then obtained many results on equation (4) including an uniform upper
bound for the number of solutions N(a,D1, D2, p) of (4). More precisely, he
proved that for equation (4) satisfying assumptions (7) with b = p a prime one
has

N(a,D1, D2, p) ≤ 2

except for N(4, 1, 7, 2) = 5 and N(4, 3, 5, 2) = N(4, 1, 11, 3) = N(4, 1, 19, 5)
= 3 (see [51], [52]).
We mention that the above theorem is sharp in the sense that there are infinite
families of (D1, D2, p) with N(1, 1, D2, p) = 2 (see (6)). By using the above
mentioned result of Bilu, Hanrot and Voutier on primitive divisors of Luca
and Lehmer sequences, Bugeaud and Shorey [25] considerably improved this
result by means of the exact determination of all triples (D1, D2, p) for which
equation (4) under assumptions (7) has more than one solution. Namely, they
proved that if one considers equation (4) satisfying assumptions (7) with b = p
a prime then we have

N(a,D1, D2, p) ≤ 1,
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except for N(4, 13, 3, 2) = N(2, 7, 11, 3) = N(4, 7, 1, 2) = N(2, 1, 1, 5) =
N(2, 1, 1, 13) = N(4, 1, 3, 7) = N(1, 6, 1, 7) = 2, N(1, 2, 1, 3) = 3, and when
(D1, D2, p) belongs to one of three explicitly given infinite families (see the
terminology of [25]). In the latter case, we always have N(a,D1, D2, p) = 2,
except for N(4, 1, 7, 2) = 5 and N(4, 3, 5, 2) = N(4, 1, 11, 3) = N(4, 1, 19, 5) =
3. Note, that the cases N(1, 2, 1, 3) = 3 and N(1, 6, 1, 7) = 2 were proved by
Leu and Li [58] and Mollin [67], respectively.

By applying the theory of binary quadratic forms Saradha and Srinivasan
[78] gave a necessary condition under which equation (4) has no solution.
Using this result they solved completely several equations of the form (4) with
D1 = 1 and b = p, a prime (see e.g. Theorems 1.3-1.6 of [78]). Equation
(4) was also considered in the case when b is a positive composite integer.
For example, Bugeaud and Shorey [25] solved completely equation (4) with
(a,D1, D2, b) ∈ {(1, 1, 19, 55), (1, 1, 341, 377)}.

1.2 Upper bounds for N(a,D1, D2, b) with D2 < 0

In [17] Beukers dealt also with the case D2 < 0 and showed that if a = 1, D1 =
1, b = 2 then equation (4) has at most four solutions for every D2 < 0, that is
N(1, 1, D2, 2) ≤ 4. This result is sharp since there exist infinitely many values
of D2 for which (4) has exactly four solutions with a = 1, D1 = 1, b = 2.
Namely, if D2 = −(22k − 3 · 2k+1 + 1), k ≥ 3 then

(x, n) = (2k − 3, 3), (2k − 1, k + 2), (2k + 1, k + 3), (3 · 2k − 1, 2k + 3)

are solutions of the equation (4) with a = 1, D1 = 1, b = 2. Le [45] improved
this result by proving among others that if D2 6= −(22k − 3 · 2k+1 + 1) with
k ≥ 3, then there are at most three solutions to (4) with a = 1, D1 = 1, b = 2.
In [18] Beukers extended his investigations concerning equation (4) wit b = p
an odd prime. He showed that if a = D1 = 1, D2 < 0 is fixed and p an
odd prime not dividing D2 then equation (4) has at most four solutions (i.e.
N(1, 1, D2, p) ≤ 4). Further, he gave a family of such equations having three
solutions. Namely, let m ≥ 1, l ≥ 1, ε ∈ {±1} and suppose that p is an odd
prime of the form p = 4m2+ε and let D2 = ((pl−ε)/4m)2−pl. Then equation
(4) with a = 1, D1 = 1, b = p has the following solutions

(x, n) =

(
pl − ε

4m
· 2m, 1

)
,

(
pl − ε

4m
, l

)
,

(
2mpl + ε

pl − ε
4m

, 2l + 1

)
.

Here we mention a result of Yuan [95], who proved that N(1, 1, D2, p) ≤ 3 if
max(p,D2) > 1032 and (p,D2) 6= (4m2 +ε, ((pl−ε)/4m)2−pl). By combining
the hypergeometric method with lower bounds for linear forms in logarithms
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of algebraic numbers Bauer and Bennett [10] improved the above result of
Beukers and Yuan by proving that N(1, 1, D2, p) ≤ 3 holds for (4), where
D2 < 0 is a given integer and p is in odd prime not dividing D2.

For further generalizations and extensions of equations of Ramanujan- Nag-
ell type (4) the interested reader may consult some results of de Weger [92].
By applying the theory on linear forms in logarithms of algebraic numbers,
the basis reduction algorithm of Lenstra, Lenstra and Lovász [57], and the
Fincke-Pohst algorithm (see [39]) for finding short lattice vectors, de Weger
[92] extended the theory into two more directions. In the first place he studied
for fixed integer k and primes p1, . . . , ps the generalized Ramanujan-Nagell
equation

x2 + k = pz11 · · · pzss
in unknown integers x, z1, . . . , zs with x ≥ 1, zi ≥ 0 (1 ≤ i ≤ k). As an
illustration of his method he computed all 16 nonnegative numbers x such
that x2 + 7 has no prime divisors larger than 20 explicitly, the largest being
y = 273. Secondly, he considered the equation

x+ z = y2

in integers x, y, z with x > z, y > 0, x and |z| composed of fixed primes. As
an illustration he computed all 388 solutions where x and |z| are composed of
the primes 2, 3, 5 and 7, the largest solution being 199290375− 686 = 141172.
For further developments into this direction see e.g. Smart [83] and Wildanger
[93].

2 Generalized Lebesque-Nagell equations

There are many results concerning the equation

x2 +D = yn, (8)

where D > 0 is a given integer and x, y, n are positive integer unknowns with
n ≥ 3. Results obtained for general superelliptic equations clearly provide
effective finiteness results for this equation, too (see for example [82], [80], [14]
and the references given there).

2.1 The equation x2 +D = yn with fixed D

The first result concerning the above equation was due to V. A. Lebesgue
[56] who proved that there are no solutions for D = 1. Nagell [69],[71] solved
it for D = 3, 4 and 5. It is for this reason that equation (8) is called the
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Lebesgue-Nagell equation. Ljunggren [59] solved completely (8) for D = 2 (see
also [60]). In his elegant paper [35], Cohn gave a fine summary of the earlier
results on equation (8). Further, he developed a method by which he found
all solutions of the above equation for 77 positive values of D ≤ 100 (see also
[36]). For D = 74 and D = 86, equation (8) was solved by Mignotte and de
Weger [66]. By using the theory of Galois representations and modular forms
Bennett and Skinner [13] solved (8) for D = 55 and D = 95. On combining
the theory of linear forms in logarithms with Bennett and Skinner’s method
and with several additional ideas, Bugeaud, Mignotte and Siksek [23] gave all
the solutions of (8) for the remaining 19 values of D ≤ 100.

2.2 The equation x2 +D = yn with D in some infinite set

Let S = {p1, . . . , ps} denote a set of distinct primes and S the set of non-
zero integers composed only of primes from S. Put P := max{p1, . . . , ps} and
denote by Q the product of the primes of S. In recent years, equation (8) has
been considered also in the more general case when D is no longer fixed but
D ∈ S with D > 0. It follows from Theorem 2 of Shorey, van der Poorten,
Tijdeman and Schinzel [81] that in (8) n can be bounded from above by an
effectively computable constant depending only on P and s. Győry, Pink and
Pintér [42] derived an effective upper bound for n which depends only on Q.
Cohn [34] showed that if D = 22k+1 then equation (8) has solutions only when
n = 3 and in this case there are three families of solutions. The case D = 22k

was considered by Arif and Abu Muriefah [5]. They conjectured that the only
solutions are given by (x, y) = (2k, 22k+1) and (x, y) = (11 ·2k−1, 5 ·22(k−1)/3),
with the latter solution existing only when (k, n) = (3M+1, 3) for some integer
M ≥ 0. Partial results towards this conjecture were obtained in [5] and [33]
and it was finally proved by Arif and Abu Muriefah [8]. For an other result
concerning the case D = 2a we refer to [53]. Arif and Abu Muriefah [6] proved
that if D = 32k+1 then (8) has exactly one infinite family of solutions. The
case D = 32k has been solved by Luca [61] under the additional hypothesis
that x and y are coprime. This was extended by Tao [87] to arbitrary positive
integers x, y (and D = 32k). In [62] Luca solved completely equation (8) if
D = 2a3b and gcd(x, y) = 1. Abu Muriefah [1] established that equation (8)
with D = 52k may have a solution only if 5 divides x and p does not divide
k for any odd prime p dividing n. For related results concerning the case
D = 5m one may consult the paper of Tao [88]. The case D = 2a3b5c7d

with gcd(x, y) = 1, where a, b, c, d are non-negative integers was studied by
Pink [74] and for a ≥ 1 and gcd(x, y) = 1 all the solutions of (8) were listed.
The complete solution of (8) in the cases when D = 72k and D = 2a5b were
given by Luca and Togbe [64], [65]. In [68] Abu Muriefah, Luca and Togbe
determined all solutions of (8) with D = 5a13b and gcd(x, y) = 1. Further, in
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this paper the authors gave a summary on the methods dealing with equation
of type (8). In the case D = 2a5b13c equation (8) was handled by Goins, Luca
and Togbe [41].

Let p ≥ 5 be an odd prime with p 6≡ 7 (mod 8). Arif and Abu Muriefah [9]
determined all solutions of equation (8) withD = p2k+1, where gcd(n, 3h0) = 1
and n ≥ 3. Here h0 denotes the class number of the field Q(

√
−p). In [7] they

also obtained partial results if D = p2k, where p is an odd prime. In the
particular case when gcd(x, y) = 1, D = p2, p prime with 3 ≤ p < 100 Le [54]
gave all the solutions of equation (8). The case D = p2k with 2 ≤ p < 100
prime and gcd(x, y) = 1 was solved by Bérczes and Pink [15]. If in (8) D = a2

with 3 ≤ a ≤ 501 and a odd Tengely [89] solved completely equation (8) under
the assumption (x, y) ∈ N2, gcd(x, y) = 1. The equation A4 + B2 = Cn for
AB 6= 0 and n ≥ 4 was completely solved by Bennett, Ellenberg and Ng [12]
by means of the modular method (see also Ellenberg [38]). In [77] Saradha and
Srinivasan discussed equation (8) for D = pα1

1 · · · pαr
r = DsD

2
t , where Ds is the

square-free part of D and α1, . . . αr are nonnegative integer unknowns. They
obtained several interesting results concerning the case Ds ≤ 10000. Further,
for the case D = pl, p ∈ {11, 19, 43, 67, 163}, it was proved in the same paper
[77] that equation (8) may have a solution if l = 3β5γ .

Le and Zhu [55] solved completely equation (8) with D = pl with p ∈
{11, 19, 43, 67, 163}, where the class number h(−p) = 1. Here h(−p) denotes
the class number of the imaginary quadratic field Q(

√
−p). In [96] Zhu dis-

cussed equation (8) withD = pa , p a prime and n = 3. For an other result with
D = pa we refer to Bugeaud [22]. Bérczes and Pink [16] extending the above
result of Saradha and Srinivasan and Le and Zhu solved completely equation
(8) for D = d2l+1 in the case h(−d) ∈ {2, 3}, where d > 0 is a square-free inte-
ger and h(−d) is the class number of the imaginary quadratic field Q(

√
−d).

Cenberci and Senay [30] considered equation (8) with D = qm, y = p, where
p and q are odd primes satisfying q2 + 1 = 2p2 and other additional con-
ditions. Demirpolat, Cenberci and Senay [37] established that equation (8)
with D = 112k+1 has exactly only one family of solution, when n is an odd
integer. Cangül, Soydan and Simsek [29] solved completely equation (8) with
D = 112k. Cangül, Demirci, Luca, Pintér and Soydan [27] found all solutions
of (8) with D = 2a11b and gcd(x, y) = 1. The case D = 2a3b11c has been
considered by Cangül, Demirci, Inam, Luca and Soydan [28], where all the
solutions of (8) were given with gcd(x, y) = 1. Except for the case when xab is
odd, the complete solution of (8) with D = 5a11b and gcd(x, y) = 1 has been
obtained by Cangül, Demirci, Soydan and Tzanakis [26]. Pink and Rábai [75]
gave all solutions of equation (8) if D = 5a17b and gcd(x, y) = 1. Godinho,
Marques and Togbe [40] solved completely (8) the case D = 2a5b17c under the
assumption gcd(x, y) = 1. Soydan [84] gave all the solutions of the Diophan-
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tine equation (8) with D = 7a11b for the nonnegative integers a, b, x, y, n ≥ 3,
where x and y are coprime, except when a, x is odd and b is even. Cenberci
and Peker [31] treated the case D = 19a, while Soydan, Ulas and Zhu [85]
solved completely (8) with D = 2a19b and gcd(x, y) = 1. Xiaowei [94] gave a
classification of solutions of equation (8) with D = p2k and gcd(x, y) = 1.

There are many papers in the literature concerning various extensions and
generalizations of equations of type (8). Namely, several authors considered
the equation

x2 +D = byn, (9)

where b is a nonnegative integer which is not necessarily 1. To give an ex-
haustive survey on results in this direction is beyond the scope of this paper.
Hence we only mention a few papers dealing with equations of type (9). The
interested reader may consult these papers an the references therein.

In connection with equation (9) we only mention some results of Bugeaud
and Shorey [25], where among other important resuts, they solved completely
(9) with (D, b) = (7, 4). Further, in the same paper they determined all the
solutions of (9) when D is square-free, D 6≡ 7 (mod 8) and h(−4D) equals 1 or
a power of 2, where h(−4D) equals the class number of the unique quadratic
order of discriminant −4D. Tengely [89] solved completely equation (9) with
(D, b) = (a2, 2) odd prime n for all a ∈ {3, 4, . . . , 501}. In [90] Tengely proved
that equation (9) with (D, b) = (q2m, 2), where q and n > 3 are odd primes has
finitely many solutions (x, y,m, n, q) under the assumption that y is not the
sum of two consecutive intgers. Further, he gave all the solutions of (9) in the
case (D, b) = (32m, 2). Abu Muriefah, Luca, Siksek and Tengely [2] considered
equation (9) with b = 2 and D ≡ 1 (mod 4) and gave some sharp conditions
for n to be satisfied, in order to have a solution. Luca, Tengely and Togbe [63]
solved completely (9) with b = 4 and D ≡ 3 (mod 4), 1 ≤ D ≤ 100. For other
related results concerning equations (8) and (9) we mention some excellent
surveys of Abu Muriefah and Bugeaud [24] and Saradha and Srinivasan [79].
For recent surveys we refer to Hu and Le [44] and Virgolici [91], respectively.

3 The ”classical” method and a new result

In this section we would like to present the method which is most important
for the proof of most results claiming complete solution of Lebesgue-Nagell
type equations. The key ingredient of this method is the powerful result of
Bilu, Hanrot and Voutier [19] concerning primitive prime prime divisors of
Lucas sequences. To illustrate the method we solve completely the equation

x2 + 11a17b = yn (10)
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in nonnegative integer unknowns (x, y, a, b, n) with

x ≥ 1, y ≥ 2, a ≥ 0, b ≥ 0, n ≥ 3 and gcd(x, y) = 1. (11)

Theorem 3.1. Consider equation (10) satisfying (11). Then all solutions of
(10) are

(x, y, a, b, n) ∈ {(4, 3, 1, 0, 3), (58, 15, 1, 0, 3), (2, 5, 2, 0, 3), (9324, 443, 3, 0, 3),

(14, 15, 1, 2, 3), (7670, 389, 2, 2, 3), (670, 111, 1, 4, 3), (8, 3, 0, 1, 4)}.

Proof. We note that since n ≥ 3, it follows that n is either a multiple of
4, or n is a multiple of an odd prime p. Furthermore, if d | n is such that
d ∈ {4, p} with p an odd prime and (x, y, a, b, n) is a solution of our equation
(10), then (x, yn/d, a, b, d) is also a solution of our equation (10) satisfying the
same restrictions. Thus, we may replace n by d and y by yn/d, and from now
on assume that n ∈ {3, 4} or n ≥ 5 a prime. Hence, in what follows we will
distinguish between the cases n ∈ {3, 4} and n ≥ 5 a prime.

The cases n ∈ {3, 4}.

In these cases we apply the following approach: we transform equation (10)
into several elliptic equations written in cubic and quartic models, respectively,
for which we need to determine all their {11,17}-integral points.

For n = 3 we write a and b in the form a = 6a1 + a2, b = 6b1 + b2, where
a1, b1, a2, b2 are nonnegative integers with a2, b2 ∈ {0, 1, 2, 3, 4, 5}. Hence equa-
tion (10) takes the form

X2 = Y 3 − 11a217b2 , a2, b2 ∈ {0, 1, 2, 3, 4, 5}, (12)

where
X =

x

113a1173b1
, Y =

y

112a1172b1
. (13)

Now, we use an appropriate program package (e.g. MAGMA [20]) to determine
the S-integral points on the elliptic curves occurring in (12), where in our case
S = {11, 17}. The solutions to (12) satisfying X > 0 and Y > 0 are

(X,Y, a2, b2) ∈ {(4, 3, 1, 0), (58, 15, 1, 0), (2, 5, 2, 0),

(9324, 443, 3, 0), (68, 17, 0, 2), (14, 15, 1, 2), (7670, 389, 2, 2),

(34848, 1067, 4, 2), (5060, 297, 2, 3), (670, 111, 1, 4)}.

Then, by using substitution (13) we infer that the solutions of our original
equation (10) satisfying (11) with n = 3 are

(x, y, a, b, n) = {(4, 3, 1, 0, 3), (58, 15, 1, 0, 3), (2, 5, 2, 0, 3), (9324, 443, 3, 0, 3),
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(14, 15, 1, 2, 3), (7670, 389, 2, 2, 3), (670, 111, 1, 4, 3)}.

Next, we consider equation (10) satisfying (11) with n = 4. We apply a similar
argument as above. Namely, if n = 4 we reduce our equation (10) to several
elliptic curves of Ljunggren-type. For this, consider (10) and write a and b
now in the form a = 4a1 +a2, b = 4b1 + b2, where a1, b1, a2, b2 are nonnegative
integers with a2, b2 ∈ {0, 1, 2, 3}. Hence equation (10) takes the form

X2 = Y 4 − 11a217b2 , a2, b2 ∈ {0, 1, 2, 3}, (14)

where
X =

x

112a1172b1
, Y =

y

11a117b1
. (15)

We use MAGMA again to find all S-integral points on the Ljunggren-type
curve (14) and to conclude that the only solution of (14) with X > 0 and
Y > 0 is (X,Y, a2, b2) = (8, 3, 0, 1). This implies, via the transformation (15),
that our original equation (10) has only one solution satisfying (11) with n = 4.
Namely, we get (x, y, a, b, n) = (8, 3, 0, 1, 4).

The case n ≥ 5 a prime.

In this case the Primitive Divisor Theorem of Bilu, Hanrot and Voutier [19]
can be applied very efficiently.
Recall that a Lucas-pair is a pair (α, β) of algebraic integers such that α + β
and αβ are non-zero coprime rational integers and α/β is not a root of unity.
Given a Lucas-pair (α, β) one defines the corresponding Lucas sequence by

Ln =
αn − βn

α− β
, (n = 0, 1, 2...).

A prime number p is called a primitive divisor of Ln if p divides Ln but does
not divide (α− β)2L1 · · ·Ln−1.

Lemma 3.2 (Primitive Divisor Theorem). Let Ln = Ln(α, β) be a Lucas
sequence. If n ≥ 5 is a prime then Ln has a primitive prime divisor except for
finitely many pairs (α, β) which are explicitly determined in Table 1 of [19].

We are now in position to finish the proof of Theorem 3.1. We write
equation (10) in the form

x2 + dc2 = yn,

where dc2 = 11a17b and d > 0 is the square-free part of 11a17b, that is
d ∈ {1, 11, 17, 187} according to the parities of the exponents a and b. By
factorizing the above equation in the imaginary quadratic field K = Q(

√
−d)

we get
(x+ c

√
−d)(x− c

√
−d) = yn. (16)
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By reducing equation (10) modulo 8 we easily see that x is even and y is odd.
Since gcd(x, y) = 1, a standard argument shows that the ideals (x + c

√
−d)

and (x− c
√
−d) are coprime in K. The class number h(−d) of K = Q(

√
−d)

belongs to {1, 1, 4, 2} according to d ∈ {1, 11, 17, 187}, respectively. Since
n ≥ 5 is prime we obtain that gcd(h(−d), n) = 1 and so (16) implies that

x+ c
√
−d = εδn, (17)

where δ is an algebraic integer in K and ε is a unit in K. The group of units
of K is UK = {±1,±i} if d = 1 and UK = {±1} if d ∈ {11, 17, 187}. Thus,
since n ≥ 5 is prime, the unit factor ε occurring in (17) can be absorbed into
δn. More precisely, we may write

x+ c
√
−d = γn, (18)

for some algebraic integer γ. Furthermore, {1,
√
−d} is an integral basis for

OK if d ∈ {1, 17}, while if d ∈ {11, 187} then {1, 1+
√
−d

2 } is an integral basis
for OK. Hence we may write γ occurring in (18) in the form

γ = u+ v
√
−d, (19)

where either both u and v are integers, or both 2u and 2v are odd integers,
the last case occurring when d = 11 or d = 187. By conjugating relation (18)
and using (19) we get

Ln =
γn − γn

γ − γ
=

(u+ v
√
−d)n − (u− v

√
−d)n

2v
√
−d

=
c

v
. (20)

We easily see that the sequence Ln occurring in (20) is a Lucas sequence
with the choice α = u + v

√
−d and β = u − v

√
−d. Further, obviously

v | c holds and the prime factors of c belong to {11, 17}. By Lemma 3.2 we
conclude that for n ≥ 5 prime the Lucas sequence Ln always has a primitive
prime divisor except for finitely many exceptions, which are explicitely given
in Table 1 of [19]. Consider first the case when Ln does not have a primitive
prime divisor. Now, a quick look at Table 1 of [19] reveals that we necessarily
have

n = 5, γ =
1 +
√
−11

2
and γ =

1−
√
−11

2
, (21)

which leads to y = γγ = 3. Hence using (10) we get that 35 = x2 + 11a17b,
implying that our equation (10) does not have a solution with n ≥ 5 in this
case.
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Next consider the case when Ln appearing in (20) has a primitive prime
divisor p. It is well known, that if such a p exists then it satisfies p ≡ ±1
(mod n), where the sign coincides with(

(γ − γ)2

p

)
=

(
−4dv2

p

)
=

(
−d
p

)
. (22)

Here
( ·
·
)

stands for the Legendre symbol. Clearly p ∈ {11, 17} and hence

n | 11± 1 or n | 17± 1. (23)

Since n ≥ 5 is prime (23) implies that the only possibility for p to be a primitive
prime divisor of Ln is

p = 11 (24)

occurring only if n = 5 and d = 17. To finish the proof we have to solve our
original equation (10) with d = 17 and n = 5. In this case equation (10) takes
the form

x2 + 17c2 = y5,

where c = 11a/217b−1/2 with a even and b odd. By using (20) with n = 5 and
d = 17 we get

L5 = c/v, (25)

which by L5 = 5u4 − 170u2v2 + 289v4 and c = 11a/217b−1/2 can be rewritten
as

v(5u4 − 170u2v2 + 289v4) = 11a/217b−1/2. (26)

Since u and v are coprime, we have the possibilities

v = ±11a/217b−1/2, v = ±11a/2, v = ±17b−1/2, v = ±1. (27)

By using (24) and (25) we easily see that the first two cases lead again to the
conclusion that L5 has no primitive prime divisor, which is impossible. So we
look at the last two possibilities.

If v = ±17b−1/2 we obtain by (26) that

5u4 − 170u2v2 + 289v4 = ±11a/2. (28)

On dividing both sides of (28) by v4 we obtain the Ljunggren-type curves

5T 4 − 170T 2 + 289 = ±VW 2, (29)

where V ∈ {±1,±11} and T = u/v,W = 11a/4/v2 if a/2 is even and T =
u/v,W = 11a−2/4 if a/2 is odd. Since v = ±17b−1/2 we observe that we
have to give all the 17-integral points on the curves defined by (29). By using
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MAGMA we get that the only {17}-integral point on the curves in (29) is
(T,W ) = (0,±17) occurring if V = 1. Since T = u/v this leads to u = x = 0
which is a contradiction in view of (11).

Finally, if v = ±1 we obtain by (26) that

5u4 − 170u2v2 + 289v4 = ±11a/217b−1/2. (30)

We follow the above approach to get the curves

5T 4 − 170T 2 + 289 = ±VW 2, (31)

where V ∈ {1, 11, 17, 187}. By using MAGMA again, we obtain that the only
{17}-integral point on the curves in (30) is (T,W ) = (0,±17), occurring if
V = 1, whence we arrive, as above, to x = 0. Hence we may conclude that
our equation (10) has no solutions satisfying (11) with n ≥ 5 prime.

Remark. In the case n ∈ {3, 4} we have to search the S-integral points on
some elliptic curves written in cubic and quartic models. The resolution of
such equations can be accomplished by the method of Pethő et al. [73] and
Stroeker and Tzanakis [86]. The powerful theorem of Bilu, Hanrot and Voutier
applied for the case n ≥ 5 works also for other values of D = pa11 · · · p

ak
k , where

p1, . . . , pk are fixed primes provided that some conditions are satisfied (see for
example [24], [68]). Moreover, in some cases we have to solve an equation of the
form F (U, V ) = W , where both V and W are S-units for S = {p1, . . . pk} and
F is a homogenous polynomial of degree (n − 1)/2. Thus, the last necessary
condition is that we can find all the solutions of these equations which in
several cases lead to curves of genus 2.
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indeterminées, Norsk. Mat. Forensings Skifter 13 (1923), 65–82.

[70] T. Nagell, Løsning till oppgave nr 2, Norsk. Mat. Tidsskrift 30
(1948), 62–64.



On generalized Lebesgue-Ramanujan-Nagell equations 69

[71] T. Nagell Contributions to the theory of a category of diophantine
equations of the second degree with two unknowns, Nova Acta Reg.
Soc. Upsal. IV Ser. 16, Uppsala 1955, pp. 1–38.

[72] T. Nagell The Diophantine equation x2 + 7 = 2n, Ark. Math. 4
(1960), 185–187.
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