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About some split central simple algebras

Diana Savin

Abstract

In this paper we study certain quaternion algebras and symbol alge-
bras which split.

1 Introduction

Let K be a field such that all vector spaces over K are finite dimensional. Let
A be a simple K-algebra and Z (A) be the centre of A. We recall that the K-
algebra A is called central simple if Z (A) = K.
Let K be a field with charK ̸= 2. Let HK (α, β) be the generalized quaternion
algebra with basis {1, e1, e2, e3} and the multiplication given by

· 1 e1 e2 e3
1 1 e1 e2 e3
e1 e1 α e3 αe2
e2 e2 −e3 β − βe1
e3 e3 −αe2 βe1 −αβ

.

A natural generalization of the quaternion algebras are the symbol algebras.
Let n be an arbitrary positive integer, let K be a field whose char(K) does
not divide n and contains a primitive n-th root of unity. Denote K∗ = K\{0},
a, b ∈ K∗ and let S be the algebra over K generated by elements x and y,
where

xn = a, yn = b, yx = ξxy.
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p-adic fields
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This algebra is called a symbol algebra and it is denoted by
(

a, b
K,ξ

)
. J. Milnor,

in [19], calls it the symbol algebra because of its connection with the K-theory
and with the Steinberg symbol. For n = 2, we obtain the quaternion algebra.
Quaternion algebras and symbol algebras are central simple algebras.
Quaternion algebras and symbol algebras have been studied from several
points of view: from the theory of associative algebras ([20], [12], [6], [7], [9],
[16], [23]), from number theory ([18], [12], [21], [15]), analysis and mecanics
([14]).
In this paper, we will determine certain split quaternion algebras and split
symbol algebras, using some results of number theory (ramification theory in
algebraic number fields, class field theory).
Let K ⊂ L be a fields extension and let A be a central simple algebra over the
field K. We recall that A is called split by L and L is called a splitting field
for A if A⊗K L is a matrix algebra over L.
In [12] appear the following criterions to decide if a quaternion algebra or a
symbol algebra is split.

Proposition 1.1. The quaternion algebra HK (α, β) is split if and only if the
conic C (α, β) : αx2 + βy2 = z2 has a rational point over K(i.e. if there are
x0, y0, z0 ∈ K such that αx2

0 + βy20 = z20).

Theorem 1.1. Let K be a field such that ζ ∈ K, ζn = 1, ζ is a primitive root,
and let α, β ∈ K∗. Then the following statements are equivalent:

i) The cyclic algebra A =
(

α,β
K,ζ

)
is split.

ii) The element β is a norm from the extension K ⊆ K( n
√
α).

Remark 1.1. ([16]) Let K be an algebraic numbers field such that [K : Q] is
odd and α, β∈Q∗. Then, the quaternion algebra HK (α, β) splits if and only if
the quaternion algebra HQ (α, β) splits.

If in Proposition 1.1 we have K = Q, to decide if the conic C (α, β) :
αx2 + βy2 = z2 has a rational point, we will use Minkovski-Hasse theorem.

Minkovski-Hasse Theorem. ([4]) A quadratic form with rational coeffi-
cients represents zero in the field of rational numbers if and only if it repre-
sents zero in the field of real numbers and in all fields of p-adic numbers (for
all primes p).
For a quadratic form in three variables, Minkovski-Hasse Theorem can be re-
formulate as the following:
The form with rational coefficients αx2 + βy2 − z2 with nonzero rational coef-
ficients α and β represents zero in the field of rational numbers if and only if
for all primes p (including p = ∞), we have
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(
α, β

p

)
= 1,

where
(

α,β
p

)
is the Hilbert symbol in the p-adic field Qp.

Corollary 1.1. ([4])
i) If p is not equal with 2 or ∞ and p does not enter into the factorizations of
α and β into prime powers (which means that α and β are p-adic units), then
the form αx2 + βy2 − z2 represents zero in the p-adic fields Qp and thus for

all such p the Hilbert symbol
(

α,β
p

)
= 1.

ii)
(

α,β
∞

)
= 1, if α > 0 or β > 0,(

α,β
∞

)
= −1, if α < 0 and β < 0,

where
(

α,β
∞

)
is the Hilbert symbol in the field R.

Corollary 1.2. ([4])
The product of the Hilbert symbols in the p-adic fields satisfy∏

p

(
α, β

p

)
= 1,

where p-runs through all prime numbers and the symbol ∞.

Now we recall a result about primes of the form q = x2 + ny2 which we
will use for study the quaternion algebras.

Theorem 1.2. ([5], [11], [22], [3]) For an odd prime positive integer q, the
following statements are true:
i) q = x2 + 3y2 for some x, y ∈ Z if and only if q ≡ 1(mod 3) or q = 3;
ii) q = x2 + 5y2 for some x, y ∈ Z if and only if q ≡ 1; 9(mod 20) or q = 5;
iii) q = x2 + 6y2 for some x, y ∈ Z if and only if q ≡ 1; 7(mod 24);
iv) q = x2 + 7y2 for some x, y ∈ Z if and only if q ≡ 1; 2; 4(mod 7) or q = 7;
v) q = x2 + 10y2 for some x, y ∈ Z if and only if q ≡ 1; 9; 11; 19(mod 40);
vi) q = x2 + 13y2 for some x, y ∈ Z if and only if q ≡ 1; 9; 17; 25; 29; 49(mod
52) or q = 13;
vii) q = x2 + 14y2 for some x, y ∈ Z if and only if q ≡ 1; 9; 15; 23; 25; 39(mod
56);
viii) q = x2 + 15y2 for some x, y ∈ Z if and only if q ≡ 1; 19; 31; 49(mod 60);
ix) q = x2 + 21y2 for some x, y ∈ Z if and only if q ≡ 1; 25; 37(mod 84);
x) q = x2 + 22y2 for some x, y ∈ Z if and only if q ≡ 1; 9; 15; 23; 25; 31; 47;
49; 71; 81(mod 88);
xi) q = x2 + 30y2 for some x, y ∈ Z if and only if q ≡ 1; 31; 49; 79(mod 120).
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We recall some properties of cyclotomic fields and Kummer fields which
will be necessary in our proofs.

Proposition 1.2. ([2]) Let q be an odd positive prime integer and ξ be a
primitive root of order q of the unity. Then the ring Z [ξ] is a principal domain
for q∈{3, 5, 7, 11, 13, 17, 19} .

Proposition 1.3. ([13]) Let l be a natural number, l ≥ 3 and ζ be a primitive
root of the unity of l-order. If p is a prime natural number, l is not divisible

with p and f
′
is the smallest positive integer such that pf

′

≡ 1 mod l, then we
have

pZ[ζ] = P1P2....Pr,

where r =
φ (l)

f
′ , φ is the Euler’s function and Pj , j = 1, ..., r are different

prime ideals in the ring Z[ζ].

Proposition 1.4. ([13]) Let ξ be a primitive root of the unity of q−order,
where q is a prime natural number and let A be the ring of integers of the
Kummer field Q(ξ, q

√
µ) . A prime ideal P in the ring Z[ξ] is in A in one of

the situations:
i) It is equal with the q−power of a prime ideal from A, if the q−power

character
(
µ
P

)
q
= 0;

ii) It is a prime ideal in A, if
(
µ
P

)
q
= a root of order q of unity, different

from 1.
iii) It decomposes in q different prime ideals from A, if

(
µ
P

)
q
= 1.

Theorem 1.3. ([1],[15])) Let K be an algebraic number field, v be a prime
of K and K ⊆ L be a Galois extension. Let w be a prime of L lying above v
such that Kv ⊆ Lw is a unramified extension of Kv of (residual) degree f. Let
b = πm

v · uv ∈ K∗
v , where πv denote a prime element in Kv and uv a unit in

the ring of integers Ov,m ∈ Z. Then b ∈ NLw /Kv
(L∗

w) if and only if f | m.
In particular, every unit of Ov is the norm of a unit in Lw.

2 Main Results.

In the paper [21] we proved the following Propositions:

Proposition 2.1. For α = −1, β = q, where q is a prime number, q ≡3 (mod
4), K = Q, the algebra HQ (−1, q) is a division algebra.
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Proposition 2.2. If K = Q
(√

3
)
, then the quaternion algebra HK (−1, q) ,

where q is a prime number, q ≡ 1 ( mod 3), is a split algebra.

In [16] appear the following results:

Proposition 2.3. If q is an odd prime positive integer, then:
i) the algebra HQ (−1, q) is a split algebra if and only if q ≡ 1 (mod 4).
ii) the algebra HQ (−2, q) is a split algebra if and only if q ≡ 1 or 3 (mod 8).

In what follows we will give a sufficient condition such that the algebras
HQ (α, q) , where α∈{−3,−5,−6,−7,−10,−13,−14,−15,−21,−22,−30} are
split algebras.

Proposition 2.4. Let q be a prime positive integer. The following statements
holds true:
i)if q ≡ 1(mod 3) or q = 3, then the algebra HQ (−3, q) is a split algebra;
ii)if q ≡ 1; 9(mod 20) or q = 5, then the algebra HQ (−5, q) is a split algebra;
iii) if p ≡ 1; 7(mod 24), then the algebra HQ (−6, q) is a split algebra;
iv) if p ≡ 1; 2; 4(mod 7) or q = 7, then the algebra HQ (−7, q) is a split algebra;
v) if q ≡ 1; 9; 11; 19(mod 40), then the algebra HQ (−10, q) is a split algebra;
vi) if q ≡ 1; 9; 17; 25; 29; 49(mod 52), then the algebra HQ (−13, q) is a split
algebra;
vii) if q ≡ 1; 9; 15; 23; 25; 39(mod 56), then the algebra HQ (−14, q) is a split
algebra;
viii) if q ≡ 1; 19; 31; 49(mod 60), then the algebra HQ (−15, q) is a split algebra;
ix) if q ≡ 1; 25; 37(mod 84), then the algebra HQ (−21, q) is a split algebra;
x) if q ≡ 1; 9; 15; 23; 25; 31; 47; 49; 71; 81(mod 88), then the algebra HQ (−22, q)
is a split algebra;
xi) if q ≡ 1; 31; 49; 79(mod 120), then the algebra HQ (−30, q) is a split algebra.

Proof. The proof is immediately using Proposition 1.1 and Theorem 1.2.

We asked ourselves if the converse statements in Proposition 2.4 are true.
We obtained that these are true for the algebras HQ (−3, q) , HQ (−5, q) ,
HQ (−7, q) , HQ (−13, q) .

Proposition 2.5. Let q be a prime positive integer. The following statements
holds true:
i) the algebra HQ (−3, q) is a split algebra if and only if q ≡ 1(mod 3) or q = 3;
ii) the algebra HQ (−5, q) is a split algebra if and only if q ≡ 1, 9(mod 20) or
q = 5;
iii)the algebra HQ (−7, q) is a split algebra if and only if if p ≡ 1, 2, 4(mod 7)
or q = 7;
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iv) the algebra HQ (−13, q) is a split algebra if and only if q ≡ 1; 9; 17; 25; 29; 49
(mod 52).

Proof. For i), ii), iii), iv) we proved the implication ” ⇐ ” in Proposition 2.4
We prove the implication ” ⇒ ” only for i) and iv) (proofs for ii) and iii) are
similar).
i) ” ⇒ ” If the algebra HQ (−3, q) is a split algebra, applying Proposition 1.1
it results that the form −3x2 + qy2 − z2 represents zero in the field of rational
numbers. According to Minkovski-Hasse Theorem, this is equivalent with the
form −3x2 + qy2 − z2 represents zero in the field of real numbers and in all
fields of p-adic numbers. The last statement is equivalent to the Hilbert sym-

bol
(

−3,q
p

)
= 1, for all primes p (including p = ∞).

According to Corollary 1.1 the Hilbert symbols
(−3,q

∞
)
= 1 and

(
−3,q
p

)
= 1,

for all primes p ̸= 2, 3, q.
Case 1: if q = 3.
Similarly with i) The algebra HQ (−3, 3) is a split algebra if and only if the
form −3x2 + 3y2 − z2 represents zero in the field of rational numbers.This is
true, a solution is (x0, y0, z0) = (1, 1, 0) .
Case 2: if q ̸= 3.

We detemine the values of q for which the Hilbert symbols
(

−3,q
q

)
= 1,(−3,q

3

)
= 1 and

(−3,q
2

)
= 1 Using the properties of the Hilbert symbol we

have: (
−3, q

q

)
=

(
−1, q

q

)
·
(
3, q

q

)
=

(
−1

q

)
·
(
3

q

)
= (−1)

q−1
2 ·

(
3

q

)
.

Applying Reciprocity law we obtain rapidly that the Hilbert symbol
(

−3,q
q

)
=

1 if and only if q ≡ 1 (mod 3).(−3,q
2

)
= (−1)

−3−1
2 · q−1

2 = 1.

Using Corollary 1.2 or direct calculations we obtain that
(−3,q

3

)
= 1 if and

only if q ≡ 1 (mod 3).
From the previously proved and from Proposition 2.4, it results that the alge-
bra HQ (−3, q) is a split algebra if and only if q ≡ 1 (mod 3).
iv) ” ⇒ ” If the algebra HQ (−13, q) is a split algebra, similarly with i), we

obtain that for q ̸= 13 :
(

−13,q
q

)
= 1,

(−13,q
13

)
= 1,

(−13,q
2

)
= 1.

Using the properties of Hilbert symbol and Legendre symbol, similarly with
i), we obtain that q ≡ 1; 9; 17; 25; 29; 49 (mod 52).
If q = 13, similarly with i) The algebra HQ (−13, 13) is a split algebra.

Corollary 2.1. Let q be an odd positive prime integer and let K be an al-
gebraic numbers field such that [K : Q] is odd. The following statements hold
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true:
i) the algebra HK (−3, q) splits if and only if the algebra HQ (−3, q) splits if
and only if q = x2 + 3y2 for some x, y ∈ Z;
ii) the algebra HK (−5, q) splits if and only if the algebra HQ (−5, q) splits if
and only if q = x2 + 5y2 for some x, y ∈ Z;
iii) the algebra HK (−7, q) splits if and only if the algebra HQ (−7, q) splits if
and only if q = x2 + 7y2 for some x, y ∈ Z;
iv) the algebra HK (−13, q) splits if and only if the algebra HQ (−13, q) splits
if and only if q = x2 + 13y2 for some x, y ∈ Z.

Proof. The proof is immediate using Theorem 1.2., Proposition 2.5 and Re-
mark 1.1.

A question which can appears is the following: when in general a quaternion
algebra HQ (−n, q) (where n, q ∈ N∗, q is a prime number) is a split algebra?
In [16] we find the following result: ”let an odd prime q and n∈ Z such that
q − n is a square. Then HQ (n, q) splits if and only if q ≡ 1 (mod 4)”’.
In the future, we will study when a quaternion algebra HQ (n, q) , where q−n
is not a square, is a split algebra.

Let q be an odd prime positive integer. Let K be an algebraic number field
and p be a prime (finite of infinite) of K. Let Kp be the completion of K with
the respect to p- adic valuation and let ξ be a primitive root of order q of unity

such that ξ∈Kp. We consider the symbol algbebra A =
(

α,β
Kp,ξ

)
, α, β∈K∗

p . In

the paper [21], we determined some symbol algebras of degree q = 3 over a
local field, which are split algebras.

Proposition 2.6. ([21]) Let p be a prime positive integer, p ≡ 2 (mod 3) and

let the Kp− algebra A =

 α, p3l

Kp, ε

 , where ε is a primitive root of order 3

of the unity, l ∈ N∗, α ∈ K,K = Q (ε) . Let P be a prime ideal of the ring of
integers of the field L = K ( 3

√
α) , lying above p. Then p3l is a norm from L∗

P

and the local Artin symbol

 LP /Kp

(p3l)

 is the identity.

Proposition 2.7. ([21]) Let p be a prime positive integer, p ≡ 1 (mod 3)and

let Kp1−algebra A =

 α, p3l

Kp1 , ε

 , where ε is a primitive root of order 3 of the
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unity, l ∈ N∗, α ∈ K,K = Q (ε) and p1 is a prime element in Z[ε], p1 | p. Let
P be a prime ideal in the ring of integers of the field L = K ( 3

√
α) , lying above

p1. Then p3l ∈ NLP /Kp1
(L∗

P ) and the local Artin symbol

 LP /Kp1

(p3l)

 is

the identity in the Galois group Gal (LP /Kp1) .

Now we generalise these results, finding some symbol algebras of degree
q ∈ {3, 5, 7, 11, 13, 17, 19} over local fields, which are split algebras. We obtain
the following result:

Proposition 2.8. Let p be a prime positive integer and q ∈
{3, 5, 7, 11, 13, 17, 19} . Let ξ be a primitive root of order q of the unity and

the cyclotomic field K = Q (ξ) . Let Kp1−algebra A =

 α, pql1
Kp1 , ξ

 , where

l ∈ N∗, α ∈ K and p1 is a prime element in Z[ξ], p1 | p. Let P be a prime
ideal in the ring of integers of the field L = K ( q

√
α) , lying above p1. Then

pql1 ∈ NLP /Kp1
(L∗

P )

Proof. We denote with OL the ring of integers of the field L = K ( q
√
α) .

Case 1. If < p >=
(
Z∗
q , ·

)
, from Proposition 1.3, we obtain that p is a prime

in the ring Z [ξ] , therefore p1 = p and the q- power character
(

α
pZ[ξ]

)
q
= 1.

Applying Proposition 1.4 it results that p is totally split in OL : pOL = P1P2 ·
... · Pq, where Pi∈Spec(OL), i = 1, q.
If we denote with g the number of decomposition of the ideal pOL, with ei
the ramification index of p at Pi and with fi =[OL/Pi : OK/pOK ] the residual
degree of p (i = 1, q), since the fields extension K ⊂ L is a Galois extension we
have e1 = e2 = ... = eq = e, f1 = f2 = ... = fq = f and efg = [L : K] = q. But
g = q, therefore e = f = 1. It is known that [LP : Kp] = ef, then LP = Kp,
for each P∈Spec(OL), P |pOL. We obtain that p is the norm of itself in the
trivial extension Kp ⊆ LP .
Case 2. If < p > ̸=

(
Z∗
q , ·

)
, applying Proposition 1.3, we obtain that the

number of decomposition of the ideal pZ [ξ] in the product of prime ideals in

the ring Z [ξ] is g
′
= φ(q)

f ′ = q−1

f ′ , where f
′
= ord(Z∗

q ,·)
p. Using Proposition

1.2, it results that there are p1, p2, ..., pg′ , prime elements in Z [ξ] such that
pZ [ξ] = p1Z [ξ] · p2Z [ξ] · ... · pg′Z [ξ] .

Subcase 2 a). If the q− power character
(

α
p1Z[ξ]

)
q
= 1, similarly with the



About some split central simple algebras 271

case 1, we obtain that p1 is a norm of itself in the trivial extension Kp1
⊆ LP ,

where P is a prime ideal of OL lying above p1.

Subcase 2 b). If the q− power character
(

α
p1Z[ξ]

)
q
is a root of order q

of unity different fromn 1, applying Proposition 1.4 we obtain that p1OL∈
Spec(OL). Knowing that efg = [L : K] = q and g = e = 1, it results that the
residual degree is f = q, therefore f |ql. Applying Theorem 1.3, we obtain that

pql1 ∈NLP /Kp1
(L∗

P ) .
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