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Monogenic functions in a finite-dimensional
semi-simple commutative algebra

S. A. Plaksa and R. P. Pukhtaievych

Abstract

We obtain a constructive description of monogenic functions tak-
ing values in a finite-dimensional semi-simple commutative algebra by
means of holomorphic functions of the complex variable. We prove that
the mentioned monogenic functions have the Gateaux derivatives of all
orders. For monogenic functions we prove also analogues of classical in-
tegral theorems of the holomorphic function theory: the Cauchy integral
theorems for surface and curvilinear integrals, the Morera theorem and
the Cauchy integral formula.

Introduction. William Hamilton (1843) constructed an algebra of non-
commutative quaternions over the field of real numbers R, and developing the
hypercomplex analysis began. C. Segre [1] constructed an algebra of commu-
tative quaternions {x + iy + jz + kt : i2 = j2 = −1, ij = k, x, y, z, t ∈ R}
over the field R that can be considered as a two-dimensional commutative
semi-simple algebra of bicomplex numbers {z1 + jz2 : j2 = −1, z1, z2 ∈ C}
over the field of complex numbers C.

A theory of functions of a bicomplex variable was developed in papers
of many authors (see, e.g., [2, 3, 4, 5, 6]). In particular, in the papers of
F. Ringleb [2] and J. Riley [3], it is proved that any analytic function of a
bicomplex variable can be constructed with an use of two holomorphic func-
tions of complex variables. In addition, G. Price [4] considered multicomplex
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algebras and proved some analogues of results obtained for analytic functions
of a bicomplex variable.

A. K. Bakhtin [7] considered the multidimensional complex space Cn as
an algebra isomorphic to the n-dimensional commutative semi-simple algebra
over the field C. He introduced a vector generalization of the module and the
argument of a complex number. Using these notions, for functions given in
Cn, he established analogues of some results of the theory of mappings of the
complex plane.

A relation between spatial potential fields and analytic functions given in
commutative algebras was established by P. W. Ketchum [8] who shown that
every analytic function Φ(ζ) of the variable ζ = xe1 + ye2 + ze3 satisfies the
three-dimensional Laplace equation in the case where the elements e1, e2, e3

of a commutative algebra satisfy the condition

e2
1 + e2

2 + e2
3 = 0 , (1)

because
∂2Φ

∂x2 +
∂2Φ

∂y2 +
∂2Φ

∂z2 ≡ Φ′′(ζ) (e2
1 + e2

2 + e2
3) = 0 , (2)

where Φ′′ := (Φ′)′ and Φ′(ζ) is defined by the equality dΦ = Φ′(ζ)dζ. An
algebra is called harmonic if there exists a harmonic triad {e1, e2, e3} satis-
fying the equality (1). P.W. Ketchum [8] considered the C. Segre algebra of
quaternions [1] as an example of harmonic algebra.

I. P. Mel’nichenko [9] noticed that doubly differentiable in the sense of
Gateaux functions form the largest algebra of functions Φ satisfying identically
the equality (2), where Φ′′ is the Gateaux second derivative of function Φ. He
proved that there does not exist a three-dimensional harmonic algebra with
unit over the field R, but he found all three-dimensional harmonic algebras
over the field C and constructed all harmonic bases in these algebras (see [10]).

Constructive descriptions of monogenic (i.e. continuous and differentiable
in the sense of Gateaux) functions in three-dimensional harmonic algebras
by means holomorphic functions of the complex variable are obtained in the
papers [11, 12, 13]. Such descriptions make it possible to prove the infinite
differentiability in the sense of Gateaux of monogenic functions and integral
theorems for these functions that are analogous to classical theorems of the
complex analysis (see, e.g., [14]).

In this paper we obtain similar results for monogenic functions given in a
commutative finite-dimensional semi-simple algebra over the field of complex
numbers and give some examples indicating relations between the mentioned
functions and multidimensional Laplace equations.
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1. A constructive description of monogenic functions in a finite-
dimensional semi-simple commutative algebra.

Let An be a n-dimensional semi-simple commutative associative Banach
algebra over the field of complex numbers C, where 2 ≤ n <∞, and a basis of
An be formed by idempotents I1, I2, . . . , In satisfying the multiplication table:

Ik
2 = Ik , IkIp = 0 , k, p = 1, 2 , . . . , n , k 6= p . (3)

The unit of An is represented as 1 = I1 + I2 + · · ·+ In
Let us consider the vectors e1 = 1, e2, . . . , em in An, where 2 ≤ m ≤ 2n,

and these vectors are linearly independent over the field of real numbers R. It
means that the equality

m∑
j=1

βjej = 0, βj ∈ R,

holds if and only if βj = 0 for all j = 1, 2, . . . ,m .

Let Em := {ζ =
m∑
j=1

xjej : xj ∈ R} be the linear span of the vectors

e1, e2, . . . , em over the field R.
Let Ω be a domain in Em. We say that a continuous function Φ : Ω→ An

is monogenic in Ω if Φ is differentiable in the sense of Gateaux in every point
of Ω, i.e. if for every ζ ∈ Ω there exists an element Φ′(ζ) ∈ An such that

lim
ε→0+0

(Φ(ζ + εh)− Φ(ζ)) ε−1 = hΦ′(ζ) ∀h ∈ Em.

Φ′(ζ) is the Gateaux derivative of the function Φ in the point ζ .
In turn, if Φ′ is a monogenic function in the domain Ω, then we denote the

Gateaux derivative of the function Φ′ by Φ′′ and call Φ′′ by the Gateaux second
derivative. Further, in the same way we define the Gateaux s-th derivative
Φ(s).

Consider the decomposition of function Φ : Ω → An with respect to the
basis {I1, I2, . . . , In}:

Φ(ζ) =

n∑
k=1

Wk(x1, x2, . . . , xm) Ik .

In the case where the complex-valued functions Wk are R-differentiable, i.e.

Wk(x1+4x1, x2+4x2, . . . , xm+4xm)−Wk(x1, x2, . . . , xm) =

m∑
j=1

∂Wk

∂xj
∆xj+
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+ o

(√√√√ m∑
j=1

(∆xj)2

)
,

m∑
j=1

(∆xj)
2 → 0 ,

the function Φ is monogenic in the domain Ω if and only if the following
Cauchy – Riemann conditions are satisfied in Ω:

∂Φ

∂x2
=

∂Φ

∂x1
e2,

∂Φ

∂x3
=

∂Φ

∂x1
e3, . . . ,

∂Φ

∂xm
=

∂Φ

∂x1
em. (4)

Consider the decompositions of vectors e1, e2, . . . , em with respect to the
basis {I1, I2, . . . , In}:

e1 =

n∑
k=1

Ik, ej =
n∑
k=1

ajkIk , ajk ∈ C , j = 2, 3, . . . ,m. (5)

Consider the linear continuous functionals fk : An → C , k = 1, 2, . . . n ,
satisfying the equalities

fk(Ik) = 1, fk(Ip) = 0, p = 1, 2, . . . n , p 6= k . (6)

It follows from (6) that the maximal ideal

Ik :=
{
ζ =

n∑
p=1, p 6=k

αpIp, αp ∈ C
}

is the kernel of functional fk.
Let Mk := {ζ ∈ Em : fk(ζ) = 0} for a fixed k ∈ {1, 2, . . . , n}. We say

that a domain Ω ⊂ Em is convex with respect to the set of directions Mk if Ω
contains the segment {ζ1 + α(ζ2 − ζ1) : α ∈ [0, 1]} for all points ζ1, ζ2 ∈ Ω
such that ζ2 − ζ1 ∈Mk .

In what follows, we assume that the equality fk(Em) = C holds, where
fk(Em) is the image of Em under the mapping fk.

Lemma 1. Let a domain Ω ⊂ Em be convex with respect to the set of
directions Mk for some k ∈ {1, 2, . . . , n}, fk(Em) = C and Φ : Ω → An be a
monogenic function in Ω. If ζ1, ζ2 ∈ Ω and ζ2 − ζ1 ∈Mk , then

Φ(ζ2)− Φ(ζ1) ∈ Ik . (7)

Proof. Inasmuch as fk(Em) = C, then there exists an element e∗2 ∈ Em
such that fk(e∗2) = i. Consider the linear span E∗ := {ζ = xe∗1 + ye∗2 + ze∗3 :
x, y, z ∈ R} of the vectors e∗1 := 1 , e∗2 , e

∗
3 := ζ2 − ζ1 and denote Ω∗ := Ω ∩E∗.
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Now, the relations (7) is proved in a such way as Lemma 2.1 [11], in the
proof of which one must take Ω∗, fk, {αe∗3 : α ∈ R} instead of Ωζ , f , L,
respectively. Lemma 1 is proved.

Let Dk := fk(Ω) for k = 1, 2, . . . , n . Let Ak be the linear operator which
assigns a holomorphic function Fk : Dk → C to every monogenic function
Φ : Ω→ An by the formula

Fk(ξk) = fk(Φ(ζ)), (8)

where ξk = fk(ζ) and ζ ∈ Ω . It follows from Lemma 1 that the value Fk(ξk)
does not depend on a choice of a point ζ for which fk(ζ) = ξk .

Similar operators A which map monogenic functions taking values in cer-
tain commutative algebras onto holomorphic functions of the complex variable
are explicitly constructed in the papers [10, 11]. Furthermore, principal ex-
tensions of holomorphic functions of the complex variable are used there as
generalized inverse operators A(−1) satisfying the equality AA(−1)A = A. It
was also established for every monogenic function Φ that values of the mono-
genic function Φ − A(−1)AΦ belong to a certain maximal ideal I of given
algebra. Finally, after describing all monogenic functions taking values in the
ideal I, constructive descriptions of monogenic functions taking values in the
mentioned algebras by means of holomorphic functions of the complex variable
are obtained in the paper [11].

Let us emphasize that operators generalized inverse to the operators Ak can
not be expressed in the form of principal extensions of holomorphic functions
of the complex variable. Indeed, in the general case, the mentioned principal
extensions are not defined in the domain Ω where a monogenic function Φ :
Ω→ An is given.

In what follows, ξk := fk(ζ) for all ζ ∈ Em.
Let us introduce the linear operator Bk which assigns a function Φk : Ω→

An to every holomorphic function Fk : Dk → C by the following formula:

Φk(ζ) = Fk(ξk)Ik ∀ ζ ∈ Ω . (9)

Lemma 2. Let a domain Ω ⊂ Em be convex with respect to the set of direc-
tions Mk for some k ∈ {1, 2, . . . , n}, fk(Em) = C and a function Fk : Dk → C
be holomorphic in the domain Dk . Then the function (9) is monogenic in Ω,

and the Gateaux s-th derivative Φ
(s)
k is a monogenic function in Ω for any s.

Proof. Let h :=
m∑
j=1

hjej ∈ Em be an arbitrary nonzero element. Denote

ηk := fk(h) = h1 +
m∑
j=2

ajkhj , where ajk are the coefficients of decomposition

(5). It is follows from the equalities (3) and (5) that ηkIk = hIk.
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Therefore, in the case where ηk 6= 0 we have the following relations:

lim
ε→0+0

Φk(ζ + εh)− Φk(ζ)

ε
= Ik lim

ε→0+0

Fk(ξk + εηk)− Fk(ξk)

ε
=

= ηkIk lim
ε→0+0

Fk(ξk + εηk)− Fk(ξk)

εηk
= hIkF

′
k(ξk) .

If ηk = 0, then h ∈ Ik. Therefore, hIk = 0 and the following equalities hold:

lim
ε→0+0

Φk(ζ + εh)− Φk(ζ)

ε
= Ik lim

ε→0+0

Fk(ξk)− Fk(ξk)

ε
= 0 .

Thus, the function (9) is monogenic in Ω and Φ′k(ζ) = F ′k(ξk)Ik.

In a similar way one can establish that the Gateaux s-th derivative Φ
(s)
k is

a monogenic function in Ω for any s . Lemma 2 is proved.

It is clear that Bk is a generalized inverse operator for the operator Ak,
i.e. AkBkAk = Ak .

Lemma 3. Let a domain Ω ⊂ Em be convex with respect to the set of direc-
tions Mk for some k ∈ {1, 2, . . . , n} and fk(Em) = C. Then every monogenic
function Φ : Ω→ An can be expressed in the form

Φ(ζ) = BkAkΦ(ζ) + Φ0k(ζ) ∀ ζ ∈ Ω,

where Φ0k : Ω→ Ik is a monogenic function taking values in the ideal Ik.
Proof. Consider the function Φ0k(ζ) = Φ(ζ)−BkAkΦ(ζ) which is mono-

genic in Ω due to Lemma 2. It is evident that

Fk := AkΦ0k = AkΦ−AkBkAkΦ = AkΦ−AkΦ = 0 .

Therefore, taking into account the equality (8), we obtain

Fk(ξk) = fk(Φ0k(ζ)) = 0 .

Thus, Φ0k(ζ) ∈ Ik. Lemma 3 is proved.

Associate with a set Λ ⊂ Em the set ΛR := {(x1, x2, . . . , xm) ∈ Rm : ζ =
m∑
j=1

xjej ∈ Λ} in Rm.

In the following lemma we describe all monogenic functions given in a
domain Ω ⊂ Em and taking values in the ideal Ik.

Lemma 4. If a domain Ω ⊂ Em is convex with respect to the set of
directions Mk and fk(Em) = C for all k ∈ {1, 2, . . . , n}, then every monogenic
function Φ0k : Ω→ Ik can be expressed in the form

Φ0k(ζ) =

n∑
p=1, p 6=k

Fp(ξp)Ip ∀ ζ ∈ Ω ,
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where Fp : Dp → C is a function holomorphic in the domain Dp .
Proof. Inasmuch as the function Φ0k takes values in the ideal Ik,

Φ0k(ζ) =

n∑
p=1, p 6=k

Wp(x1, x2, . . . , xm)Ip, (10)

where Wp : ΩR → C.
Taking into account the definition of operator Ap and the equalities (6),

(10), we obtain Fp(ξp) := (ApΦ0k)(ξp) = fp(Φ0k(ζ)) = Wp(x1, x2, . . . , xm) .
Lemma 4 is proved.

The next theorem follows immediately from Lemmas 3, 4.

Theorem 1. Suppose that a domain Ω ⊂ Em is convex with respect to
the set of directions Mk and fk(Em) = C for all k ∈ {1, 2, . . . , n}. Then every
monogenic function Φ : Ω→ An can be expressed in the form

Φ(ζ) =

n∑
k=1

Fk(ξk)Ik ∀ ζ ∈ Ω , (11)

where Fk : Dk → C is a function holomorphic in the domain Dk .

Remark. The condition of convexity of Ω with respect to the set of
directions Mk is essential for the truth of Theorem 1 in the case m < 2n, see
Example 1 in [13]. In the case m = 2n, the mention condition can be omitted.
In this case, the statement of Theorem 1 can be proved in such a way as the
Ringleb theorem [3, p. 136] for analytic functions of a bicomplex variable.

It is evident that the next statement follows from the equality (11) because
its right-hand part is a monogenic function in the domain D := {ζ ∈ Em :
fk(ζ) ∈ Dk, k = 1, 2, . . . , n}.

Theorem 2. Suppose that a domain Ω ⊂ Em is convex with respect to
the set of directions Mk and fk(Em) = C for all k ∈ {1, 2, . . . , n}. Suppose
also that a function Φ : Ω→ An is monogenic in Ω. Then Φ can be continued
to a function monogenic in the domain D.

A. K. Bakhtin [7] proved a polycylindrical Riemann theorem. In particular,
it follows from this theorem in the case Em = An that one can map the domain
D onto the unit polydisk by means a mapping of the form (11) in the domain
Ω = D. It is clear that this mapping is a monogenic function in D.

The following statement is true for monogenic functions in an arbitrary
domain Ω.

Theorem 3. Let fk(Em) = C for all k ∈ {1, 2, . . . , n}. Then for every
monogenic function Φ : Ω→ An in an arbitrary domain Ω ⊂ Em, the Gateaux
s-th derivative Φ(s) is a monogenic function in Ω for any s.
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Proof. Inasmuch as a ball is a convex set, in a ball Θ ⊂ Ω with the center
in an arbitrary point ζ0 ∈ Ω we have the equality (11). Now, the statement of
theorem follows from Lemma 2. The theorem is proved.

2. Integral theorem for a curvilinear integral.
In the paper [15] for functions differentiable in the sense of Lorch in an

arbitrary convex domain of a commutative associative Banach algebra, some
properties similar to properties of holomorphic functions of complex variable
(in particular, the integral Cauchy theorem and the integral Cauchy formula
and the Morera theorem) are established. The convexity of the domain in the
mentioned results from [15] is withdrawn by E. K. Blum [16].

In this paper, using the representation (11) of monogenic functions, we
prove the integral Cauchy theorem and the integral Cauchy formula for mono-
genic functions Φ : Ω → An given only in a domain Ω of the linear span Em
instead of domain of whole algebra An.

Let us note that a priori the differentiability of the function Φ in the sense of
Gateaux is a restriction weaker than the differentiability of this function in the
sense of Lorch. Moreover, note that the integral Cauchy formula established
in the papers [15, 16] is not applicable to a monogenic function Φ : Ω → An
because it deals with an integration along a curve on which the function Φ is
not given, generally speaking.

We say that γ is a Jordan rectifiable curve in Em if γR is a Jordan rectifiable
curve in Rm.

For a continuous function Ψ : γ → An of the form

Ψ(ζ) =

n∑
k=1

Uk(x1, x2, . . . , xm)Ik + i

n∑
k=1

Vk(x1, x2, . . . , xm)Ik, (12)

where (x1, x2, . . . , xm) ∈ γR and Uk : γR → R, Vk : γR → R , we define an
integral along a Jordan rectifiable curve γ by the equality∫

γ

Ψ(ζ)dζ :=

m∑
j=1

ej

n∑
k=1

Ik

∫
γR

Uk(x1, x2, . . . , xm)dxj+

+ i

m∑
j=1

ej

n∑
k=1

Ik

∫
γR

Vk(x1, x2, . . . , xm)dxj

where dζ := e1dx1 + e2dx2 + · · ·+ emdxm.
To establish a Cauchy integral theorem for a curvilinear integral, consider

the following auxiliary statement:

Lemma 6. Suppose that a domain Ω ⊂ Em is convex with respect to
the set of directions Mk and fk(Em) = C for all k ∈ {1, 2, . . . , n}. Suppose
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also that Φ : Ω→ An is a monogenic function and γ is an arbitrary rectifiable
curve in Ω. Then ∫

γ

Φ(ζ)dζ =

n∑
k=1

Ik

∫
γk

Fk(ξk)dξk , (13)

where γk is the image of γ under the mapping fk and Fk is the same function
as in (11).

Proof. The equality (13) follows immediately from the representation
(11), the equality dζ = dξ1I1 + dξ2I2 + · · · + dξnIn and the multiplication
rules (3). Lemma 6 is proved.

We understand a triangle 4 as a plane figure bounded by three line seg-
ments connecting three its vertices. Denote by ∂4 the boundary of triangle
4 in relative topology of its plane.

Let Ω be a domain in Em and Φ : Ω→ An be a monogenic function in Ω.
Inasmuch as every triangle 4 ⊂ Ω can be included in a convex subset of the
domain Ω, using Lemma 6 and the integral Cauchy theorem for holomorphic
function Fk, we obtain immediately the following equality:∫

∂4

Φ(ζ) dζ = 0 . (14)

Now, similarly to the proof of Theorem 3.2 [16] we can prove the following

Theorem 4. Let Φ : Ω → An be a monogenic function in a domain
Ω ⊂ Em. Then for every closed Jordan rectifiable curve γ homotopic to a
point in Ω, the following equality holds:∫

γ

Φ(ζ)dζ = 0 .

For functions taking values in the algebra An, the following Morera theorem
can be established in the usual way:

Theorem 5. If a function Φ : Ω → An is continuous in a domain
Ω ⊂ Em and satisfies the equality (14) for every triangle 4 ⊂ Ω, then the
function Φ is monogenic in the domain Ω.

Let ζ ∈ Em. An inverse element ζ−1 is of the following form:

ζ−1 =
1

ξ1
I1 +

1

ξ2
I2 + · · ·+ 1

ξn
In , (15)

and it exists if and only if ξk 6= 0 for all k ∈ {1, 2, . . . , n}.
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Let ζ0 =
n∑
k=1

ξ0k Ik (here ξ0k ∈ R) be a point in a domain Ω ⊂ Em. In a

neighbourhood of ζ0 contained in Ω let us take a circle C(ζ0) with the center
at the point ζ0. By Ck we denote the image of C(ζ0) under the mapping fk.
We assume that the circle C(ζ0) embraces the set {ζ0 + ζ : ζ ∈

⋃n
k=1Mk}. It

means that Ck bounds a domain D′k and ξ0k ∈ D′k for all k ∈ {1, 2, . . . , n}.
We say that the curve γ ⊂ Ω embraces once the set {ζ0 +ζ : ζ ∈

⋃n
k=1Mk},

if there exists a circle C(ζ0) which embraces the mentioned set and is homo-
topic to γ in the domain Ω \ {ζ0 + ζ : ζ ∈

⋃n
k=1Mk}.

Theorem 6. Suppose that a domain Ω ⊂ Em is convex with respect to
the set of directions Mk and fk(Em) = C for all k ∈ {1, 2, . . . , n}. Suppose
also that Φ : Ω → An is a monogenic function in Ω. Then for every point
ζ0 ∈ Ω the following equality is true:

Φ(ζ0) =
1

2πi

∫
γ

Φ(ζ) (ζ − ζ0)
−1
dζ, (16)

where γ is an arbitrary closed Jordan rectifiable curve in Ω, that embraces
once the set {ζ0 + ζ : ζ ∈

⋃n
k=1Mk}.

Proof. Inasmuch as γ is homotopic to C(ζ0) in the domain Ω \ {ζ0 + ζ :
ζ ∈

⋃n
k=1Mk}, it follows from Theorem 4 that

1

2πi

∫
γ

Φ(ζ) (ζ − ζ0)
−1
dζ =

1

2πi

∫
C(ζ0)

Φ(ζ) (ζ − ζ0)
−1
dζ .

Further, using the equality (15), Lemma 6 and the integral Cauchy formula
for holomorphic function Fk, we obtain immediately the following equalities:

1

2πi

∫
C(ζ0)

Φ(ζ) (ζ − ζ0)
−1
dζ =

n∑
k=1

Ik
1

2πi

∫
Ck

Fk(ξk)

ξk − ξ0k
dξk =

=

n∑
j=k

Fk(ξ0k) Ik = Φ(ζ0) ,

where ζ0 = ξ01I1 + ξ02I2 + · · ·+ ξ0nIn. The theorem is proved.

3. Examples.

• Consider the algebra A2. It coincides with the algebra of bicomplex
numbers and is isomorphic to the C. Segre [1] algebra of commutative
quaternions mentioned in Introduction. It is clear that the basis e1 = 1,
e2 = i, e3 = j, e4 = k satisfies the condition

e2
1 + e2

2 + e2
3 + e2

4 = 0 ,
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and monogenic functions Φ(ζ) of the variable ζ = xe1 + ye2 + ze3 + te4

with x, y, z, t ∈ R satisfy the four-dimensional Laplace equation because

∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
+
∂2Φ

∂t2
= Φ′′(ζ)(e2

1 + e2
2 + e2

3 + e2
4) = 0 .

• Consider in the algebra A2 three elements

e1 = 1, e2 =
i√
2
, e3 =

i√
2

(I1 − I2),

which satisfy the conditions (1). Then every monogenic function Φ(ζ) of
the variable ζ = xe1 + ye2 + ze3 satisfies the three-dimensional Laplace
equation due to the equalities (2).

• In the algebra A3, all bases satisfying the equality (1) and the inequality
e2
k 6= 0 for k = 1, 2, 3 are described in Theorem 1.10 [10].

• Consider the following basis in An:

e1 = 1, ek = iIk−1 for k = 2, 3, . . . , n− 1 , en = iIn−1 − iIn ,

that satisfies the equality

e2
1 + e2

2 + · · ·+ e2
n = 0 . (17)

Then monogenic functions Φ(ζ) of the variable ζ =
n∑
k=1

xkek with xk ∈ R

satisfy the n-dimensional Laplace equation because

∂2Φ

∂x2
1

+
∂2Φ

∂x2
2

+ · · ·+ ∂2Φ

∂x2
n

= Φ′′(ζ)(e2
1 + e2

2 + · · ·+ e2
n) = 0 .

• If in the algebra An one consider the elements

e1 = 1, e2 = I2, e3 = I3, . . . , en = In,

en+1 = i, en+2 = iI2, en+3 = iI3, . . . , e2n = iIn

satisfying the equality

e2
1 + e2

2 + · · ·+ e2
2n = 0 ,

then monogenic functions Φ(ζ) of the variable ζ =
2n∑
j=1

xjej with xj ∈ R

satisfy 2n-dimensional Laplace equation because

∂2Φ

∂x2
1

+
∂2Φ

∂x2
2

+ · · ·+ ∂2Φ

∂x2
2n

= Φ′′(ζ)(e2
1 + e2

2 + · · ·+ e2
2n) = 0.
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4. Cauchy integral theorem for a surface integral. Along with
monogenic functions Φ : Ω→ An satisfying the Cauchy – Riemann conditions
(4), consider a hyperholomorphic function Ψ : Ω → An having continuous
partial derivatives of the first order in a domain Ω and satisfying the equation

∂Ψ

∂x1
e1 +

∂Ψ

∂x2
e2 + · · ·+ ∂Ψ

∂xm
em = 0 (18)

in every point of this domain.
In the scientific literature the different denominations are used for functions

satisfying equations of the form (18). For example, in the papers [17, 18]
they are called regular functions, and in the papers [19, 20] they are called
monogenic functions. We use the terminology of the papers [21, 22].

Note that the class of hyperholomorphic functions does not coincide with
the class of monogenic functions. In particular, every monogenic function
Φ : Ω → An satisfies the equality (18) due to the equalities (4) in the case
where the vectors e1, e2, . . . , em satisfy the condition (17), where one ought to
set n = m.

Let Ω be a bounded domain in Em. For a continuous function Ψ : Ω→ An
of the form (12), where (x1, x2, . . . , xm) ∈ ΩR and Uk : ΩR → R, Vk : ΩR → R,
we define a volume integral by the equality∫

Ω

Ψ(ζ) dx1dx2 . . . dxm :=

n∑
k=1

Ik

∫
ΩR

Uk(x1, x2, . . . , xm) dx1dx2 . . . dxm+

+ i

n∑
k=1

Ik

∫
ΩR

Vk(x1, x2, . . . , xm) dx1dx2 . . . dxm.

We say that Σ is a piece-smooth hypersurface in Em if ΣR is a piece-
smooth hypersurface in Rm. For a continuous function Ψ : Σ → An of the
form (12), where (x1, x2, . . . , xm) ∈ ΣR and Uk : ΣR → R, Vk : ΣR → R , we
define a surface integral on a piece-smooth surface Σ with the differential form

σ :=
m∑
j=1

ej
m∧

q=1,q 6=j
dxq by the equality

∫
Σ

Ψ(ζ)σ :=

m∑
j=1

ej

n∑
k=1

Ik

∫
ΣR

Uk(x1, x2, . . . , xm)

m∧
q=1,q 6=j

dxq+

+ i

m∑
j=1

ej

n∑
k=1

Ik

∫
ΣR

Vk(x1, x2, . . . , xm)

m∧
q=1,q 6=j

dxq .
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If a domain Ω ⊂ Em has a closed piece-smooth boundary ∂Ω and a function
Ψ : Ω→ An is continuous together with partial derivatives of the first order up
to the boundary ∂Ω, then the following analogue of the Gauss – Ostrogradsky
formula is true: ∫

∂Ω

Ψ(ζ)σ =

∫
Ω

( m∑
j=1

∂Ψ

∂xj
ej

)
dx1dx2 . . . dxm . (19)

Now, the next theorem is a result of the formula (19) and the equality (18).

Theorem 7. Suppose that Ω has a closed piece-smooth boundary ∂Ω.
Suppose also that the function Ψ : Ω → An is hyperholomorphic in Ω and is
continuous together with partial derivatives of the first order up to the boundary
∂Ω. Then ∫

∂Ω

Ψ(ζ)σ = 0.

Note that an analogue of the Cauchy integral theorem for a surface integral
is proved in the paper [23] for hyperholomorphic functions given in domains
with non piece-smooth boundaries and taking values in an arbitrary finite-
dimensional commutative associative Banach algebra but in the case of three-
dimensional domains only.
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[2] F. Ringleb, Beiträge zur funktionentheorie in hyperkomplexen systemen,
I, Rend. Circ. Mat. Palermo, 57(1)(1933), 311 – 340.

[3] J. D. Riley, Contributions to the theory of functions of a bicomplex vari-
able, Tohoku Math. J., 5(2)(1953), 132 – 165.

[4] G. B. Price, An introduction to multicomplex spaces and functions, New
York, Marcel Dekker, 1991.
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