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Finite geometric spaces, Steiner systems and
cooperative games

Antonio Maturo and Fabrizio Maturo

Abstract

Some relations between finite geometric spaces and cooperative
games are considered. The games associated to Steiner systems, in par-
ticular projective and affine planes, are considered. The properties of
winning and blocking coalitions are investigated.

1 Introduction

A first study on relations between projective planes and cooperative games is
in [38], where the points of the Fano plane are considered to be the players
of a cooperative game and the lines are winning coalitions. A formalization
of semi-simple cooperative games as a set of players with a set of winning
coalitions is in [33]. Some relations between projective planes and cooperative
games are introduced in [31]. The research of blocking coalitions gave rise to
the geometric theory of blocking sets, studied by various authors (see, e.g., [2],
[3], [4], [5], [6], [8], [9], [10], [11], [12], [22], [23], [24], [35], [37]).

In this paper we wish to deepen some aspects of the relationship between
semi-simple cooperative games and finite geometric spaces. We introduce the
concepts of cooperative games associated to geometric spaces and geometric
spaces associated to semi-simple cooperative games. In particular the rank 2
geometries, with particular reference to Steiner systems, are investigated.

Some new results on blocking coalitions are presented.
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2 Finite geometric spaces

Let us recall some fundamental definitions (see, e.g., [7], [14], [16], [19], [36]).

Definition 2.1. A geometry is a pair G = (Ω, I), with Ω a non-empty set,
called the support and I is a symmetric and reflexive relation on Ω, i.e. such
that:

• ∀(x, y) ∈ Ω2, (x, y) ∈ I ⇒ (y, x) ∈ I;

• ∀x ∈ Ω, (x, x) ∈ I.

In the sequel, if (x, y) ∈ I, we say that x and y are incident and we write
xIy or yIx.

Definition 2.2. Let G = (Ω, I) be a geometry. A flag of G is a set F of
elements of Ω that are mutually incident. A flag F is called maximal if there
is no element x ∈ Ω− F such that F ∪ {x} is also a flag.

Definition 2.3. We say that a geometry G = (Ω, I) has rank k (k ≥ 2), we
write G = (Ω1,Ω2, ...,Ωk, I), if there exists a finite sequence (Ω1,Ω2, ...,Ωk) of
non-empty subsets of Ω such that:

• {Ω1,Ω2, ...,Ωk} is a partition of Ω;

• each maximal flag of G intersects each set Ωi in exactly one element.

The elements of Ωi are called elements of type i.

Remark 2.1. (Notation with ”contains”) Let G = (Ω1,Ω2, ...,Ωk, I) be a
geometry of rank k. In the usual geometric notation, if x ∈ Ωi, y ∈ Ωj , i ≤
j, xIy, we say also that ”x is contained in y” or ”y contains x”.

Remark 2.2. (Notation with ”belongs”) In an alternative geometric notation,
if x ∈ Ωi, y ∈ Ωj , i < j, xIy, we say also that x is belonging to y. From this
point of view, y can be seen as the set of x ∈ Ωi such that xIy.

For k = 2 we have the following definition.

Definition 2.4. A geometry of rank 2 (called also geometric space or inci-
dence structure) is a geometry G = (Ω, I) where one can partition Ω into two
sets P, B such that:

• ∀x ∈ P,∃y ∈ B : xIy;

• ∀y ∈ B,∃x ∈ P : xIy;

• ((x, y) ∈ P2 ∩ I) ∨ ((x, y) ∈ B2 ∩ I)⇒ x = y.
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The elements of P are called points and the elements of B blocks. In this case
one also writes G = (P,B, I).
The blocks are called lines if for any two distinct points P and Q there is
exactly one block, called line PQ, that is incident with P and Q.

In the geometric notation we can identify every block with the set of the
points incident with it. If r and s are two blocks we denote with r ∩ s the set
of the points that are incident with r and s. If r ∩ s 6= ∅, i.e. there exists a
point P such that PIr and PIs, we say that r intersects s.

Definition 2.5. A projective space is a geometric space G = (P,B, I) such
that (see e.g. [7], [36]):

(PS1) (line axiom). For any two distinct points P and Q there is exactly one
line that is incident with P and Q, called the line PQ;

(PS2) (Veblen-Young axiom) Let A,B,C,D four distinct points such that
AB intersects CD. Then AC intersects BD.

(PS3) Any line is incident with at least three points.

A projective space G = (P,B, I) is said to be nondegenerate if:

(PS4) There are three points not incident to the same line.

Definition 2.6. A projective plane (or projective space with dimension 2) is
a nondegenerate projective space G = (P,B, I) in which the axiom (PS2) is
replaced by the stronger axiom:

(PS2S) Two lines intersect in at least a point.

From now on we suppose that the projective spaces we consider are non-
degenerate.

Remark 2.3. From the previous axioms it follows that a projective plane has
at least 7 points and 7 lines. It is well known that there exists a projective
plane with 7 points and 7 lines, called the Fano plane ([7], [19]).

Definition 2.7. If A,B are points of a projective space G = (P,B, I), the
line AB is said to be the 1-dimensional subspace of P spanned or generated
by the set {A,B}. If G = (P,B, I) is nondegenerate, for any points A,B,C
distinct and such that C doesn’t belong to the line AB, we define plane ABC,
or 2-dimensional subspace of P spanned or generated by the set {A,B,C},
the union of the lines CX, with X ∈ AB.

For recurrence we can consider projective spaces and subspaces with greater
dimensions.
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Definition 2.8. Let A = {A1, A2, ..., An, An+1}, n ≥ 2, be a set of points of
P such that:

(SP1) The set {A1, A2, ..., An} spans a (n-1)-dimensional subspace Sn−1 of
P;

(SP2) An+1 doesn’t belong to Sn−1;

We define n-dimensional subspace of P spanned or generated by the set A,
the union of the lines An+1X, with X ∈ Sn−1.

Definition 2.9. Let G = (P,B, I) be a nondegenerate projective space. We
say that the dimension of G is n if there exists a n-dimensional subspace equal
to P. In this case the (n-1)-dimensional subspaces are called hyperplanes.

Remark 2.4. In particular:

• a degenerate projective space has dimension 1;

• a projective plane is a projective space with dimension 2 and the hyper-
planes are the lines;

• a projective space with dimension greater than 2 has dimension 3 if and
only if a line and a plane have at least a point in common.

Definition 2.10. A geometric space is finite if the sets P,B are finite.

Let G = (P,B, I) be a projective space. We have the following results ([7],
[16], [19]):

Proposition 2.1. If a line has exactly q + 1 points, q > 2, then all the lines
have the some number of points. The number q is said to be the order of G.

Proposition 2.2. If G = (P,B, I) is a projective space of dimension d and
order q then the number of points, equal to the number of hyperplanes, is:

Θd(q) = qd + qd−1 + ...+ q + 1. (1)

The number of lines through a fixed point of G, equal to the number of points
of a hyperplane, is:

Θd−1(q) = qd−1 + ...+ q + 1. (2)

Corollary 2.1. If G = (P,B, I) is a projective plane then the number of points
of G, equal to the number of lines, is:

Θ2(q) = q2 + q + 1. (3)
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The number of lines through a fixed point of G, equal to the number of points
of a line, is:

Θ1(q) = q + 1. (4)

3 Cooperative games

Let us recall some fundamental definitions on cooperative games (see, e.g.,
[21], [26], [27], [30], [32], [38]).

Let P = {P1, P2, ..., Pn}, n ≥ 2 be a finite set, called the set of players.

Definition 3.1. A function v : 2P → R such that:

(C1) v(∅) = 0;

(C2) (superadditivity) ∀A,B ∈ 2P, (A ∩B) = ∅ ⇒ v(A ∪B) ≥ v(A) + v(B);

is called the characteristic function on P. The pair C = (P, v) is called the
cooperative game with n players and the subsets of P are called coalitions.

Remark 3.1. For every A ∈ P the number v(A) is interpreted as the total
gain (utility) that the players belonging to A can have certainly forming a
coalition, independently on the actions of the players not belonging to A. We
assume the condition of ”side payment”, i.e. in every coalition A any player
can transfer an amount of his gain to another player belonging to A and so
it is important only the total gain of the coalition. The condition (C2) is a
consequence of the fact that the total gain obtained with an alliance between
two disjoint coalitions is not inferior to the one without cooperation.

We write v(i) to denote v(Pi). By (C2) it follows that in a cooperative
game C = (P, v) we have

v(P) ≥ Σni=1v(i). (5)

If

v(P) > Σni=1v(i) (6)

the game is said to be essential. If, in (5), the equality holds the game is
inessential.

It is easy to prove that a cooperative game is inessential if and only if the
additive property holds:

∀A,B ∈ 2P, (A ∩B) = ∅ ⇒ v(A ∪B) = v(A) + v(B) (7)

and so there are no advantages by any cooperation.
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Definition 3.2. Two cooperative games C = (P, v) and C ′ = (P, v′), with the
same set of n players, are called strategically equivalent, we write (P, v) ≈
(P, v′) if there exist n+ 1 real numbers k > 0 and c1, c2, .., cn such that:

∀A ∈ 2P, v′(A) = kv(A) + ΣPi∈Aci. (8)

Remark 3.2. We obtain the game (P, v′) by the game (P, v) with an initial
payment cr to any player Pr and by multiplying the total gain of any coalition
by the scale factor k. Then we can assume the same strategies to solve (P, v)
or (P, v′).

Remark 3.3. Let C = (P, v) a cooperative game. The system with n + 1
equations and n+ 1 unknowns k > 0 and c1, c2, ..., cn:

v′(P) = kv(P) + ΣPi∈Pci = 1, v′(i) = kv(i) + ci = 0,∀i ∈ P (9)

has determinant v(P) − ΣPi∈Pci. In this case k = 1/(v(P) − ΣPi∈Pci) and
ci = −kv(i).
The relation ≈ is an equivalence relation among the essential cooperative
games with the same set of players P. Then, for any equivalence class K
with respect to ≈, we have a unique cooperative game C = (P, v) ∈ K, called
normal element of K, such that v(i) = 0,∀i ∈ P and v(P) = 1.

4 Relations between cooperative games and geometric
spaces

Let C = (P, v) be an essential cooperative game in normal form. In [38], chap.
X, the authors introduce the simple games.

Definition 4.1. A cooperative game C = (P, v) is a simple game if one can
partition P in two non-empty subsets: W, the winning coalitions, and L, the
losing coalitions such that

• the complement of a winning coalition is a losing coalition and vice versa;

• a superset of a winning coalition is a winning coalition.

In terms of characteristic function, C = (P, v) is a simple game, in normal
form, if v(P) = 1 and, for every coalition A,

v(A) ∈ {0, 1}, v(A) = 0⇔ v(−A) = 1. (10)

An example of simple game is given by the Fano plane, where the winning
coalitions are the lines and their supersets.



FINITE GEOMETRIC SPACES, STEINER SYSTEMS AND COOPERATIVE
GAMES 195

An extension of the simple games is considered in [31], [33]. In these papers
the semi-simple games are considered where the set of coalitions is partitioned
in three subsets: W, the winning coalitions, L, the losing coalitions, and B,
the blocking coalitions. Shapley, in [33], introduces a definition of semi-simple
game.

Definition 4.2. A pair C = (P,W) is a semi-simple cooperative game with P

the set of players and W the set of winning coalitions if the following axioms
hold:

(W1) P ∈W;

(W2) ∀A,B ∈ P, (A ∈W, A ⊆ B)⇒ B ∈W;

(W3) ∀A ∈ P, A ∈W⇒ −A /∈W.

The complement −A of a winning coalition A is said to be a losing coalition.
A coalition B is said to be a blocking coalitions if it is not a winning or a losing
coalition.

In terms of characteristic function in normal form, a semi-simple cooper-
ative game is a game C = (P, v) where v(A) = 1 if A is a winning coalition
and v(A) = 0 otherwise. Then, for every coalition A, we can have three
possibilities. A is said to be:

winning if v(A) = 1, v(−A) = 0;

losing if v(A) = 0, v(−A) = 1;

blocking if v(A) = 0, v(−A) = 0.

Now we examine some general relations between cooperative semi-simple
games and geometries of rank 2. Firstly, let us introduce some definitions.

Definition 4.3. Let P be a non-empty set, whose elements are called points
and let F be a family of non-empty subsets of P. We say that:

IP F has the intersection property if ∀A,B ∈ F, A ∩B 6= ∅;

NI F has the non-inclusion property if ∀A,B ∈ F, (A ⊆ B)∨(B ⊆ A)⇒ A =
B;

CL the closure of F is the family K(F) of the subsets of P containing at least
one element of F. In this case F is said to be a generator of K(F).

We prove the following theorem.
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Theorem 4.1. Let P be a non-empty set, whose elements are called players
and let F be a family of non-empty subsets of P. If F has the intersection
property then its closure W satisfies the axioms of Shapley for the winning
coalitions. Moreover, if F is a minimal generator of W then the non-inclusion
property holds.

Proof Let W be the closure of F. Then the properties (W1) and (W2)
are evident. If A ∈ W then ∃B ∈ F : B ⊆ A. For the intersection property,
∀C ∈ F, C ∩ A ⊇ C ∩ B 6= ∅ and then −A not contains C. It follows that
−A /∈ W. Moreover, if the non-inclusion property is not valid, there exists
A,B ∈ F such that A ⊂ B. In this case F−{B} is a generator of W and then
F is not a minimal generator.���

Let G = (P,B, I) be a projective plane. The set of lines B satisfies the in-
tersection and non-inclusion properties. Then we have the following corollary.

Corollary 4.1. Let G = (P,B, I) a projective plane of order q. The family
W of the sets S ⊆ P containing at least a line (i.e. all the points incident with
a line) satisfies the properties of Shapley for the set of winning coalition.

Theorem 4.2. Let G = (P,B, I) be a geometry of rank 2. The family B has
the non-inclusion property. The family W of the subsets of P containing at
least a block and at least one point of every block satisfies the properties of
Shapley for the set of winning coalition. The pair C = (P,W) is said to be the
semi-simple cooperative game associated to G.
There are two types of possible blocking coalitions:

(T1) a blocking coalition of type (T1) is a subset of P not containing any
block and having at least a point in common with each block;

(T2) a blocking coalition of type (T2) is a subset P containing at least one
block and with empty intersection with at least one other block.

If the intersection property holds then there are not blocking coalitions of type
(T2).

Proof The non-inclusion property is equivalent to the fact that every
maximal flag has two elements. It is evident that the family W of the subsets
of P containing at least a block and at least one point of every block satisfies
the properties (W1) and (W2). Moreover, if A is an element of W, then
contains at least a block B. Then its complement has no points of B and so it
is not in W. If a subset B of P is of type (T1) (resp. (T2)), then also −B is of
the same type and then B is a blocking coalition. If the intersection property
holds then a subset containing a block contains at least a point of every block
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and so is a winning coalition. In this case there are not blocking coalitions of
type (T2).���

Example 4.1 An economic/social interpretation. Let G = (P,B, I) be a
geometry of rank 2. The elements of P are the players and the blocks are
companies. A player incident to a company has a power of veto on the decisions
taken by the company, a coalition containing a block has the total control of
the company represented by such block. If C = (P,W) is the cooperative
game associated to G, then a winning coalition is a subset of P containing a
company and having a power of veto for every company. A blocking coalition
of type (T1) is a coalition not containing any company but having at least a
player in common with each company; a blocking coalition of type (T2) is a
coalition having a total control of at least a company but without power of
veto in at least a company.

Example 4.2 A dual economic/social interpretation. Let G = (P,B, I) be
a geometry of rank 2. The elements of P are the individuals and the blocks,
i.e. the companies, are the players. A coalition K of companies is winning if
contains all the companies incident with an individual and for every individual
P ∈ P there exists a company belonging to K and incident with P . A blocking
coalition of type (T1) is a set H of companies such that for every individual
P there exist a B ∈ H and a C ∈ −H incident to P . A blocking coalition of
type (T2) is a coalition having a total control of at least an individual but not
incident with at least an individual.

From a geometric point of view, if G = (P,B, I) is a geometry of rank
2, then the blocking coalitions of type (T1) are called blocking sets. Many
authors have dealt with the search of blocking sets, especially in projective
planes, (see, e.g., [2], [3], [4], [5], [6], [8], [9], [10], [11], [12], [22], [23], [24], [35],
[37]).

Definition 4.4. Let C = (P,W) be a semi-simple game and let B be the set
of minimal winner coalitions. The geometry, of rank 2, G = (P,B, I), where,
∀x ∈ P, y ∈ B, xIy ⇔ x ∈ y is said to be the geometry associated to C.

Corollary 4.2. Let C = (P,W) be a semi-simple game and let G = (P,B, I)
be the associate geometry. Then B has the intersection and non-inclusion
properties.

5 Winning and blocking coalitions at level α

Let C = (P, v) be an essential cooperative game in normal form. For every
α ∈ [0, 1] such that α > 0.5, let β = 1 − α. From (C2), for every coalition
A ∈ 2P, we have the following possibilities:



198 Antonio Maturo and Fabrizio Maturo

(L1) v(A) ≥ α and v(−A) ≤ β;

(L2) v(A) ≤ β and v(−A) ≥ α;

(L3) v(A) ≤ β and v(−A) ≤ β;

(L4) v(A) ≤ β and β < v(−A) < α;

(L5) β < v(A) < α and v(−A) ≤ β.

.

Let us introduce the following definition:

Definition 5.1. The coalition A is said to be a winning coalition at level α
if (L1) holds and a losing coalition at level α if (L2) holds. The set A is a
blocking coalition al level α in the other cases. A blocking coalition is a strict
blocking coalition if (L3) holds.

By previous definitions, for every α > 0.5 we have:

Theorem 5.1. The set Wα of winning coalitions at level α satisfies the Shap-
ley properties (W1), (W2) and (W3), then Cα = (P,Wα) is a semi-simple
cooperative game. Let us call it α-game generated by C = (P, v).

Proof From (W1) and (L1), the big coalition P is a winning coalition at
level α and the empty coalition ∅ is a losing coalition. Moreover:

• A is a winning coalition at level α if and only if his complement −A is
a losing coalition;

• If A is a winning coalition at level α and B ⊇ A then also B is a winning
coalition at level α.

���

Proposition 5.1. A is a blocking (resp. strict blocking) coalition at level α if
and only if his complement −A is a blocking (resp. strict blocking) coalition
at level α.

Definition 5.2. Let C = (P, v) be an essential cooperative game in normal
form. For every α > 1/2, the α-geometry generated by C is the geometry
Gα = (P,Bα, Iα) associated to the α-game Cα = (P,Wα).



FINITE GEOMETRIC SPACES, STEINER SYSTEMS AND COOPERATIVE
GAMES 199

6 Blocking coalitions in Steiner systems

Definition 6.1. A finite geometry, of rank 2, G = (P,B, I) is said to be a
design of type t− (v, k, λ), 2 ≤ t ≤ k < v, we write also G ∼ S(tλ, k, v), if:

(D1) P has v elements;

(D2) ( equicardinality) every block has k points;

(D3) ( balancing) through t distinct points pass λ blocks.

The following theorem applies (see, e.g. [16]):

Theorem 6.1. Let b the number of blocks and bi the number of blocks through
i, i ≤ t distinct points. We have the following relations:

• v(v − 1)...(v − t+ 1)λ = bk(k − 1)...(k − i+ 1);

• (v − i)...(v − t+ 1)λ = bi(k − i)...(k − t+ 1), for 1 ≤ i < t;

• bt = λ, vb1 = kb, 1 < i < t⇒ (v − i)bi+1 = (k − i)bi.

In particular, for λ = 1 a design G ∼ S(t1, k, v) is said to be Steiner system
G ∼ S(t, k, v). For λ = 1, t = 2 we have a Steiner system of lines, and the
blocks are called lines.

Corollary 6.1. Let G ∼ S(t, k, v), b the number of blocks and bi the number
of blocks through i, i ≤ t, distinct points. We have the following relations:

• v(v − 1)...(v − t+ 1) = bk(k − 1)...(k − i+ 1);

• (v − i)...(v − t+ 1) = bi(k − i)...(k − t+ 1), for 1 ≤ i < t;

• bt = 1, vb1 = kb.

Corollary 6.2. Let G ∼ S(2, k, v) a Steiner system of lines, b the number
of blocks and b1 the number of blocks through a point. We have the following
relations:

• v(v − 1) = bk(k − 1);

• (v − 1) = b1(k − 1);

• b2 = 1.

It is evident that in a Steiner system of lines G ∼ S(2, k, v), k ≤ b1. If
k = b1, then the Steiner system reduces to a projective plane, and if k = b1−1,
G is an affine plane.
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Definition 6.2. A blocking set on a Steiner system of lines G ∼ S(2, k, v) is
a set of points not containing any line, but having at least a point in common
with every line.

Definition 6.3. A winning coalition on a Steiner system of lines
G ∼ S(2, k, v) is a set of points containing at least a line, and having at
least a point in common with every line.

In particular we have the fundamental problems to find:

1. the minimal or maximal blocking sets;

2. the spectrum of the minimal blocking sets, that is the set of all the
possible cardinalities of the minimal blocking sets;

3. the minimal winning coalitions;

4. the winning coalitions containing blocking coalitions.

By definitions it follows that the complement of a blocking set is also a
blocking set, so to find the maximal blocking sets is equivalent to find the
minimal ones.

Now we show some results in the particular case of projective planes.
It is well known that, in a non-degenerate finite projective plane, all the

lines have the same number of points. If q + 1 is such number, the projective
plane is said to be of order q and is noted πq. Moreover, the lines through a
fixed point P are also q + 1 and the points of πq are q2 + q + 1.

It is well known that there exists a Desarguesian projective plane if and
only if q is a prime or a power of a prime and such plane is unique (see, e.g.,
[6], [19]). The first value of q with non-Desarguesian planes is q = 9.

For small values of q we have:

• in π2 there are not blocking sets;

• π3 there are exactly two blocking sets;

• the blocking sets on π4 and π5 are classified, respectively, in papers of
Berardi - Eugeni [2] and Berardi - Innamorati [5];

• the blocking sets on π7 are classified in papers of Innamorati and Maturo
(see [22], [23], [24]). If k is the cardinality of a minimal blocking set on
π7 we have 12 ≤ k ≤ 19. In particular there are, up to isomorphism,
only two minimal blocking sets of order 12 and there is only a minimal
blocking set with 19 points.

In the general case there are the following results ([22], [23], [24]), [29]):
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Theorem 6.2. Let S(q) the spectrum of the minimal blocking sets in πq. If
q ≥ 4, then S(q) ⊇ [2q − 1, 3q − 5] ∪ {3q − 3} and, if πq is Desarguesian,
S(q) ⊇ [2q − 1, 3q − 3].

Theorem 6.3. A sufficient condition for the existence of a minimal blocking
set with 3q − 4 points on a non-Desarguesian plane πq is that πq contains a
proper subplane of order two.

In [28] H. Neumann conjectured that any finite non-Desarguesian plane
contains a proper subplane of order two. By previous proposition, if the con-
jecture is true, we have that also for the non-Desarguesian plane of order q
there exists a blocking set with 3q − 4 points.

7 Conclusions, recommendations and perspective of re-
search

Two possible lines of research to deepen the relationship between geometric
spaces and cooperative games are:

1. for every natural number k ≥ 2 to define and study games associated
with geometries of rank k;

2. to introduce games associated with algebraic hyperstructures.

Below we present some possible definitions and starting points for the
development of these theories.

Let G = (Ω1,Ω2, ...,Ωk, I) be a geometry of rank k. Let us introduce the
following definition.

Definition 7.1. For every i, j ∈ {1, 2, ..., k}, with i 6= j, a subset W of Ωi is
said to be:

1. intersecting the elements of Ωj, if ∀K ∈ Ωj ,∃x ∈ Ωi : xIK;

2. covering an element of Ωj, if ∃H ∈ Ωj : (x ∈ Ωi, xIH)⇒ x ∈W .

A subset W of Ωi is said to be:

1. a winning coalition of type i with respect to Ωj, if it intersects the ele-
ments of Ωj and covers an element of Ωj;

2. a losing coalition of type i with respect to Ωj, if it is the complement of
a winning coalition;

3. a blocking coalition of type (T1) or blocking set, if it intersects the
elements of Ωj, but not covers any element of Ωj;
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4. a blocking coalition of type (T2), if it covers an element of Ωj, but not
intersects the elements of Ωj.

If we consider, ∀i, j, i 6= j the winning coalitions of type i with respect to Ωj ,
we obtain n(n− 1) semi-simple cooperative games. The study of relationships
between such games can be an important line of research.

Generalizing the above definitions we can also define winning, losing and
blocking coalitions of type i with respect to a set {Ωj1 ,Ωj2 , ...,Ωjr} not con-
taining Ωi. If r > 1 we can define two types of winning coalitions.

Definition 7.2. A subset W of Ωi is said to be:

1. a weak winning coalition of type i respect to {Ωj1 ,Ωj2 , ...,Ωjr}, if it is
intersecting the elements of all the Ωjs ∈ {Ωj1 ,Ωj2 , ...,Ωjr} and covering
an element of at least an Ωjs ;

2. a strong winning coalition of type i respect to {Ωj1 ,Ωj2 , ...,Ωjr}, if it is
intersecting the elements of all the Ωjs ∈ {Ωj1 ,Ωj2 , ...,Ωjr} and covering
an element of every Ωjs ;

A second line of research can be obtained by considering geometries associ-
ated to algebraic hyperstructures. For the concepts and fundamental theorems
on algebraic hyperstructures, see e. g. [17], [15], [18], [27].

Let (S, ◦) an algebraic hyperstructure, i.e. a nonvoid set S with a function
◦ that to every pair (x, y) of elements of S associates a nonvoid subset of S,
denoted with x ◦ y. Let us call ”points” the elements of S and ”blocks” the
hyperproducts x ◦ y. If we introduce a suitable incidence relation I we can
have a rank 2 geometry G = (S,B, I), where B is the set of the blocks.

An incidence relations is the ”relation of belonging” defined as follows:
∀x ∈ S, xIx and ∀x ∈ S,H ∈ B, (xIH ⇔ x ∈ H).

A different incidence relation is defined as follows: ∀x ∈ S, xIx and ∀x ∈
S,H ∈ B, (xIH ⇔ (∃y ∈ S : x ◦ y = H)).

We obtain two distinct rank 2 geometries and we can study the associated
cooperative games and the relations between the winnings coalitions of such
games.

Another line of research is obtained by considering fuzzy geometries, in
which the degree of incidence between two elements is a number belonging
to the interval [0, 1], and defining associated cooperative games. Some topics
that we can put in connection with such research are the α-geometries defined
in Sec. 5 and the fuzzy algebraic hyperstructures (S, ◦) in which x ◦ y is a
nonvoid fuzzy subset of S.
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