Euclidean quotient rings of $\mathbb{Z}[\sqrt{-5}]$

Tiberiu Dumitrescu and Alexandru Gica

Abstract

For a prime p, we prove elementarily that the ring $\mathbb{Z}[\sqrt{-5}, 1 / p]$ is Euclidean if and only if it is a PID iff $p=2$ or p is congruent to 3 or 7 modulo 20.

1 Introduction

Recall that an integral domain D is called Euclidean if there exists a map $f: D \rightarrow \mathbb{N}$ such that $f^{-1}(0)=\{0\}$ and for all $a, b \in D-\{0\}$, there is a $q \in D$ such that $f(a-b q)<f(b)$ (see [4]). It is a classical result (see for instance [4]) that there exist only five quadratic imaginary fields which have Euclidean rings of integers, namely $\mathbb{Q}(\sqrt{d})$, where

$$
-d=1,2,3,7,11
$$

It is well-known that an Euclidean domain is a principal ideal domain (PID), but the converse is not true (see for instance [1], [2]).

The ring $\mathbb{Z}[\sqrt{-5}]$ is an easy exemple of a ring of algebraic integers which is not a PID. The purpose of this note is to find by elementary means those natural primes p such that the ring of quotients $\mathbb{Z}[\sqrt{-5}, 1 / p]$ is Euclidean.

Note that this problem can be rather easily solved using strong results of Algebraic Number Theory and supposing that some generalized Riemann hypotheses are true. Let $\mathbb{Q}(\sqrt{d})$ be a quadratic imaginary field and D its ring of integers. By Lenstra's Theorem [5, Theorem 9.1], $D[1 / p]$ is a PID if and

[^0]only if it is Euclidean (supposing that some generalized Riemann hypotheses are true). Therefore $\mathbb{Z}[\sqrt{-5}, 1 / p]$ is a PID if and only if it is Euclidean (under the above suppositions).

By Minkowski bound arguments, it can be shown that the class group of $\mathbb{Z}[\sqrt{-5}]$ is cyclic of order two. So $\mathbb{Z}[\sqrt{-5}, 1 / p]$ is a PID if and only if $p=2$ or p is odd and $p \mathbb{Z}[\sqrt{-5}]$ is a product of two non-principal prime ideals (see for instance [3, Theorem 40.4]). The last condition holds if and only if $p \equiv 3,7$ $(\bmod 20)$.

2 Results

The main result of this note (Theorem 2.8) shows that, for a prime number $p, \mathbb{Z}[\sqrt{-5}, 1 / p]$ is Euclidean if and only if it is a PID if and only if $p=2$ or p is congruent to 3 or 7 modulo 20 . The proof is elementary and there is no reference to any generalized Riemann hypotheses. Throughout this note, the terminology and notations are standard as in [1] or [3].

Proposition 2.1. Let p be a prime number. If $\mathbb{Z}[\sqrt{-5}, 1 / p]$ is a PID, then $p=2$ or p is congruent to 3 or 7 modulo 20 .

Proof. We may suppose that $p>2$. Set $D=\mathbb{Z}[\sqrt{-5}]$ and assume that $D[1 / p]$ is a PID. If -5 is not a quadratic residue modulo p, then p is a prime element of D (because $D /(p) \simeq \mathbb{F}_{p^{2}}$), so Nagata's Theorem (see for instance [6, section 4]) shows that D is a PID, a contradiction. The same argument can be used when $p=5$, because $D[1 / 5]=D[1 / \sqrt{-5}]$ and $\sqrt{-5}$ is a prime element of D (since $\left.D /(\sqrt{-5}) \simeq \mathbb{F}_{5}\right)$. Hence -5 is a quadratic residue modulo p and $p \neq 5$, that is, $p \equiv 1,3,7,9(\bmod 20)$ (a fact easily seen by quadratic reciprocity). Assume that $p \equiv 1,9(\bmod 20)$. Note that 2 is not prime in $D[1 / p]$, because $D[1 / p] /(2) \simeq \mathbb{Z}_{2}[X] /(X+\overline{1})^{2}$. In order to complete the proof, it suffices to show that 2 is irreducible in $D[1 / p]$. Deny. From a proper factorization of 2 , we derive the existence of integers $m, n, t, t \geq 0$, such that $2 p^{t}=m^{2}+5 n^{2}$. As $p \equiv 1,9(\bmod 20)$, we get $2 p^{t} \equiv 2,3(\bmod 5)$ and $m^{2}+5 n^{2} \equiv 0,1,4(\bmod$ 5), a contradiction.

Proposition 2.2. If p is a prime number congruent to 3 or 7 modulo 20, then $3 p=a^{2}+5 b^{2}$ for some integers a, b.

Proof. Since $9=2^{2}+5$, we may suppose that $p>3$. As $p \equiv 3,7(\bmod 20)$, $m^{2} \equiv-5(\bmod p)$ for some integer m. Consider set $\Gamma=\{x+m y \mid x, y \in \mathbb{Z}$, $0 \leq x<\sqrt{2 p}$ and $0 \leq y<\sqrt{p / 2}\}$. Let [] denote the floor function. Note that there are $([\sqrt{2 p}]+1)([\sqrt{p / 2}]+1)>\sqrt{2 p} \sqrt{p / 2}=p$ pairs (x, y) of integers with $0 \leq x<\sqrt{2 p}, 0 \leq y<\sqrt{p / 2}$. By Pigeon-hole Principle, there exists two
distinct pairs (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ with $0 \leq x, x^{\prime}<\sqrt{2 p}$ and $0 \leq y, y^{\prime}<\sqrt{p / 2}$ such that $x+m y \equiv x^{\prime}+m y^{\prime}(\bmod p)$. Set $a=x-x^{\prime}$ and $b=y-y^{\prime}$. Then $a+m b \equiv 0(\bmod p)$. So $0 \equiv a^{2}-m^{2} b^{2} \equiv a^{2}+5 b^{2}(\bmod p)$, because $m^{2} \equiv-5$ $(\bmod p)$. Since $(a, b) \neq 0,|a|<\sqrt{2 p}$ and $|b|<\sqrt{p / 2}$, we have $0<a^{2}+5 b^{2}<$ $2 p+5 p / 2<5 p$, hence $a^{2}+5 b^{2}=k p$ for some integer k between 1 and 4 . If k is 1 or 4 , then $k p \equiv 2,3(\bmod 5)$ and $a^{2}+5 b^{2} \equiv 0,1,4(\bmod 5)$, a contradiction. Assume that $a^{2}+5 b^{2}=2 p$. It follows that a, b are odd. Then $c=(a+5 b) / 2$ and $d=(a-b) / 2$ are integers and $c^{2}+5 d^{2}=(3 / 2)\left(a^{2}+5 b^{2}\right)=3 p$.

Let p be a prime number. It is well-known that the map $\phi: \mathbb{Z}[\sqrt{-5}] \rightarrow \mathbb{N}$ given by $\phi(z)=|z|^{2}$ is multiplicative. Consider also the multiplicative map $\nu_{p}: \mathbb{N} \rightarrow \mathbb{N}$ given by $p^{k} n \mapsto n$, where p does not divide n. Then $N=N_{p}=\nu_{p} \phi$ is a multiplicative map. N can be extended canonically to a multiplicative map $N: \mathbb{Q}(\sqrt{-5}) \rightarrow \mathbb{Q}$. After this extension, N restricts to a map $\mathbb{Z}[\sqrt{-5}, 1 / p] \rightarrow$ \mathbb{N}. Note that if z is a nonzero element of $\mathbb{Z}[\sqrt{-5}, 1 / p], N(z)$ is the cardinality of the factor ring $\mathbb{Z}[\sqrt{-5}, 1 / p] /(z)$.

We say that the domain $\mathbb{Z}[\sqrt{-5}, 1 / p]$ is norm Euclidean if it is Euclidean with respect to N. Also, we say that $x+y \sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$ is a p-critical point, if p divides $x^{2}+5 y^{2}$.

Proposition 2.3. Let p be a prime number. Assume that for every $z \in$ $\mathbb{Q}(\sqrt{-5})$, there exists a p-critical point $t \in \mathbb{Z}[\sqrt{-5}]$ such that $|z-t|<\sqrt{p}$. Then $\mathbb{Z}[\sqrt{-5}, 1 / p]$ is norm Euclidean.

Proof. Set $D=\mathbb{Z}[\sqrt{-5}, 1 / p]$. It suffices to show that for every $z \in \mathbb{Q}(\sqrt{-5})-$ $\{0\}$, there exists $t \in D$ such that $N(z-t)<1$. Indeed, if $\alpha, \beta \in D-\{0\}$ and $\gamma \in D$ is chosen such that $N(\alpha / \beta-\gamma)<1$, then $N(\alpha-\beta \gamma)=N(\beta) N(\alpha / \beta-$ $\gamma)<N(\beta)$. Now let $z \in \mathbb{Q}(\sqrt{-5})-\{0\}$ and let us look for a $t \in D$ such that $N(z-t)<1$. Write $z=(a+b \sqrt{-5}) / c$ with a, b, c integers, $c \neq 0$. Since $N(z-t)=N(z p-t p)$ and $t p \in D$ whenever $t \in D$, we may assume that c is not divisible by p. Moreover, multiplying by some power of c, we may assume that c is congruent to 1 modulo p. By hypothesis, there exists a p-critical point $x+y \sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$ such that $|(a+b \sqrt{-5}-z)-(x+y \sqrt{-5})|<\sqrt{p}$. So $|z-t|<\sqrt{p}$, where $t=(a-x)+(b-y) \sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$. Moreover, $z-t=(1 / c)((a-c a+c x)+(b-c b+c y) \sqrt{-5})$ and $(a-c a+c x)^{2}+5(b-c b+c y)^{2}$ is a multiple of p because $x+y \sqrt{-5}$ is a p-critical point and $c \equiv 1(\bmod p)$. Hence $N(z-t) \leq|z-t|^{2} / p<p / p=1$.

Lemma 2.4. Let p be a prime number and $x_{j}+y_{j} \sqrt{-5} \in \mathbb{Z}[\sqrt{-5}], j=1,2$, two p-critical points. If p divides $x_{1} x_{2}+5 y_{1} y_{2}$, then $k_{1}\left(x_{1}+y_{1} \sqrt{-5}\right)+k_{2}\left(x_{2}+\right.$ $y_{2} \sqrt{-5}$) is a p-critical point for every integers k_{1}, k_{2}.

Proof. Simply note that $\left(k_{1} x_{1}+k_{2} x_{2}\right)^{2}+5\left(k_{1} y_{1}+k_{2} y_{2}\right)^{2}=k_{1}^{2}\left(x_{1}^{2}+5 y_{1}^{2}\right)+$ $k_{2}^{2}\left(x_{2}^{2}+5 y_{2}^{2}\right)+2 k_{1} k_{2}\left(x_{1} x_{2}+5 y_{1} y_{2}\right)$ is divisible by p.

Proposition 2.5. Let p be a prime number. Assume there exist two distinct nonzero p-critical points $z_{j}=x_{j}+y_{j} \sqrt{-5} \in \mathbb{Z}[\sqrt{-5}], j=1,2$, such that
(1) p divides $x_{1} x_{2}+5 y_{1} y_{2}$,
(2) the triangle $O z_{1} z_{2}$ has circumscribed circle radius less than \sqrt{p}. Then $\mathbb{Z}[\sqrt{-5}, 1 / p]$ is norm Euclidean.

Proof. By (1) and Lemma 2.4, we have the lattice of p-critical points $k_{1} z_{1}+$ $k_{2} z_{2}, k_{1}, k_{2} \in \mathbb{Z}$. The open discs of radius \sqrt{p} centered in the vertices of this lattice cover the plane, because the open discs of radius \sqrt{p} centered in O, z_{1}, $z_{2}, z_{1}+z_{2}$ cover the parallelogram $O z_{1} z_{2}\left(z_{1}+z_{2}\right)$, cf. (2). Apply Proposition 2.3.

Lemma 2.6. A triangle whose sides measure $\sqrt{3}, \sqrt{3}$ and $\sqrt{2}$ has circumscribed circle radius equal to $3 / \sqrt{10}$, so less than 1 .

Proof. By Heron's formula, the area is $S=(1 / 4)\left[(2+3+3)^{2}-2\left(2^{2}+3^{2}+\right.\right.$ $\left.\left.3^{2}\right)\right]^{1 / 2}=\sqrt{5} / 2$, so the circumscribed circle radius is $(\sqrt{3} \sqrt{3} \sqrt{2}) /(4 S)=$ $3 / \sqrt{10}$.

Proposition 2.7. If $p=2$ or p is a prime number congruent to 3 or 7 modulo 20, then $\mathbb{Z}[\sqrt{-5}, 1 / p]$ is norm Euclidean.

Proof. We use Proposition 2.5. Assume that $p \equiv 3,7(\bmod 20)$ and $p>3$. By Proposition 2.2, $3 p=a^{2}+5 b^{2}$ for some integers a, b. We consider two cases. Case $(i): a \equiv b(\bmod 3)$. Then $z_{1}=a+b \sqrt{-5}$ and $z_{2}=(2 a-5 b) / 3+((a+$ $2 b) / 3) \sqrt{-5}$ are in $\mathbb{Z}[\sqrt{-5}]$. Note that $z_{1} \neq z_{2}$, otherwise we get $2 a^{2}=p$, a contradiction. We have $\left|z_{1}\right|^{2}=a^{2}+5 b^{2}=3 p,\left|z_{2}\right|^{2}=(1 / 9)\left((2 a-5 b)^{2}+5(a+\right.$ $\left.2 b)^{2}\right)=(1 / 9)\left(9 a^{2}+45 b^{2}\right)=3 p$ and $\left|z_{1}-z_{2}\right|^{2}=(1 / 9)\left((a+5 b)^{2}+5(b-a)^{2}\right)=$ $(1 / 9)\left(6 a^{2}+30 b^{2}\right)=2 p$. Hence z_{1}, z_{2} are p-critical points and the sides of triangle $O z_{1} z_{2}$ are $\sqrt{3 p}, \sqrt{3 p}, \sqrt{2 p}$. By Lemma 2.6, the triangle $O z_{1} z_{2}$ has circumscribed circle radius $<\sqrt{p}$, so condition (2) of Proposition 2.5 holds. Condition (1) of Proposition 2.5 also holds because, using the notations there, $x_{1} x_{2}+5 y_{1} y_{2}=a(2 a-5 b) / 3+5 b(a+2 b) / 3=\left(2 a^{2}+10 b^{2}\right) / 3=2 p$.

Case $(i i): a \not \equiv b(\bmod 3)$, that is, $a+b \equiv 0(\bmod 3)$. Then $z_{1}=a+b \sqrt{-5}$ and $z_{2}=(2 a+5 b) / 3+((2 b-a) / 3) \sqrt{-5}$ are in $\mathbb{Z}[\sqrt{-5}]$. Note that $z_{1} \neq z_{2}$, otherwise we get $2 a^{2}=p$, a contradiction. We have $\left|z_{1}\right|^{2}=a^{2}+5 b^{2}=3 p$, $\left|z_{2}\right|^{2}=(1 / 9)\left((2 a+5 b)^{2}+5(2 b-a)^{2}\right)=(1 / 9)\left(9 a^{2}+45 b^{2}\right)=3 p$ and $\left|z_{1}-z_{2}\right|^{2}=$ $(1 / 9)\left((a-5 b)^{2}+5(a+b)^{2}\right)=(1 / 9)\left(6 a^{2}+30 b^{2}\right)=2 p$. Hence z_{1}, z_{2} are p-critical points and and the sides of triangle $O z_{1} z_{2}$ are $\sqrt{3 p}, \sqrt{3 p}, \sqrt{2 p}$. By Lemma 2.6, the triangle $O z_{1} z_{2}$ has circumscribed circle radius $<\sqrt{p}$, so condition (2)
of Proposition 2.5 holds. Condition (1) of Proposition 2.5 also holds because, using the notations there, $x_{1} x_{2}+5 y_{1} y_{2}=a(2 a+5 b) / 3+5 b(2 b-a) / 3=$ $\left(2 a^{2}+10 b^{2}\right) / 3=2 p$.

Similar arguments can be used if p is 2 or 3 . When $p=2$, we set $z_{1}=$ $1+\sqrt{-5}, z_{2}=2$ and we have $\left|z_{1}\right|^{2}=6=3 p,\left|z_{2}\right|^{2}=4=2 p$ and $\left|z_{1}-z_{2}\right|^{2}=$ $6=3 p$. When $p=3$, we set $z_{1}=1+\sqrt{-5}, z_{2}=3$ and we have $\left|z_{1}\right|^{2}=6=2 p$, $\left|z_{2}\right|^{2}=9=3 p$ and $\left|z_{1}-z_{2}\right|^{2}=9=3 p$.

Putting Propositions 2.1 and 2.7 together, we have
Theorem 2.8. For a prime number p, the following assertions are equivalent:
(a) $\mathbb{Z}[\sqrt{-5}, 1 / p]$ is norm Euclidean.
(b) $\mathbb{Z}[\sqrt{-5}, 1 / p]$ is a PID.
(c) $p=2$ or p is congruent to 3 or 7 modulo 20 .

Acknowledgement. The publication of this paper is supported by the grant PN-II-ID-WE-2012-4-161.

References

[1] S. Alaca and K. Williams, Algebraic Number Theory, Cambridge University Press, 2004.
[2] O.A. Campoli, A principal ideal domain that is not a Euclidean domain, Amer. Math. Monthly 95 (1988), 868-871
[3] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
[4] F. Lemmermeyer, The Euclidean algorithm in algebraic number fields, Expositiones Mathematicae 13 (1995), 385-416.
[5] H. W. Lenstra, On Artin's conjecture and Euclids algorithm in global fields, Invent. Math. 42 (1977), 201-224.
[6] P. Samuel, Unique factorization, Amer. Math. Monthly 75 (1968), 945952.

Tiberiu DUMITRESCU,
Faculty of Mathematics and Informatics, University of Bucharest, 14 Academiei Str.,
Bucharest, RO 010014, Romania,
Email: tiberiu@fmi.unibuc.ro
Alexandru Gica,
Faculty of Mathematics and Informatics, University of Bucharest,
14 Academiei Str.,
Bucharest, RO 010014, Romania,
Email: alexgica@yahoo.com

[^0]: Key Words: Euclidean domain, PID.
 2010 Mathematics Subject Classification: 13F07, 13F10.
 Received: August, 2013.
 Revised: September, 2013.
 Accepted: September, 2013.

