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Euclidean quotient rings of Z[
√
−5]

Tiberiu Dumitrescu and Alexandru Gica

Abstract

For a prime p, we prove elementarily that the ring Z[
√
−5, 1/p] is Eu-

clidean if and only if it is a PID iff p = 2 or p is congruent to 3 or 7
modulo 20.

1 Introduction

Recall that an integral domain D is called Euclidean if there exists a map
f : D → N such that f−1(0) = {0} and for all a, b ∈ D−{0}, there is a q ∈ D
such that f(a − bq) < f(b) (see [4]). It is a classical result (see for instance
[4]) that there exist only five quadratic imaginary fields which have Euclidean
rings of integers, namely Q(

√
d), where

−d = 1, 2, 3, 7, 11.

It is well-known that an Euclidean domain is a principal ideal domain
(PID), but the converse is not true (see for instance [1], [2]).

The ring Z[
√
−5] is an easy exemple of a ring of algebraic integers which

is not a PID. The purpose of this note is to find by elementary means those
natural primes p such that the ring of quotients Z[

√
−5, 1/p] is Euclidean.

Note that this problem can be rather easily solved using strong results
of Algebraic Number Theory and supposing that some generalized Riemann
hypotheses are true. Let Q(

√
d) be a quadratic imaginary field and D its ring

of integers. By Lenstra’s Theorem [5, Theorem 9.1], D[1/p] is a PID if and
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only if it is Euclidean (supposing that some generalized Riemann hypotheses
are true). Therefore Z[

√
−5, 1/p] is a PID if and only if it is Euclidean (under

the above suppositions).
By Minkowski bound arguments, it can be shown that the class group of

Z[
√
−5] is cyclic of order two. So Z[

√
−5, 1/p] is a PID if and only if p = 2 or

p is odd and pZ[
√
−5] is a product of two non-principal prime ideals (see for

instance [3, Theorem 40.4]). The last condition holds if and only if p ≡ 3, 7
(mod 20).

2 Results

The main result of this note (Theorem 2.8) shows that, for a prime number
p, Z[

√
−5, 1/p] is Euclidean if and only if it is a PID if and only if p = 2 or

p is congruent to 3 or 7 modulo 20. The proof is elementary and there is no
reference to any generalized Riemann hypotheses. Throughout this note, the
terminology and notations are standard as in [1] or [3].

Proposition 2.1. Let p be a prime number. If Z[
√
−5, 1/p] is a PID, then

p = 2 or p is congruent to 3 or 7 modulo 20.

Proof. We may suppose that p > 2. Set D = Z[
√
−5] and assume that D[1/p]

is a PID. If −5 is not a quadratic residue modulo p, then p is a prime element
of D (because D/(p) ' Fp2), so Nagata’s Theorem (see for instance [6, section
4]) shows that D is a PID, a contradiction. The same argument can be used
when p = 5, because D[1/5] = D[1/

√
−5] and

√
−5 is a prime element of D

(since D/(
√
−5) ' F5). Hence −5 is a quadratic residue modulo p and p 6= 5,

that is, p ≡ 1, 3, 7, 9 (mod 20) (a fact easily seen by quadratic reciprocity).
Assume that p ≡ 1, 9 (mod 20). Note that 2 is not prime in D[1/p], because
D[1/p]/(2) ' Z2[X]/(X + 1)2. In order to complete the proof, it suffices to
show that 2 is irreducible in D[1/p]. Deny. From a proper factorization of 2,
we derive the existence of integers m,n, t, t ≥ 0, such that 2pt = m2 + 5n2.
As p ≡ 1, 9 (mod 20), we get 2pt ≡ 2, 3 (mod 5) and m2 + 5n2 ≡ 0, 1, 4 (mod
5), a contradiction.

Proposition 2.2. If p is a prime number congruent to 3 or 7 modulo 20, then
3p = a2 + 5b2 for some integers a, b.

Proof. Since 9 = 22 + 5, we may suppose that p > 3. As p ≡ 3, 7 (mod 20),
m2 ≡ −5 (mod p) for some integer m. Consider set Γ = {x + my | x, y ∈ Z,
0 ≤ x <

√
2p and 0 ≤ y <

√
p/2}. Let [ ] denote the floor function. Note

that there are ([
√

2p] + 1)([
√
p/2] + 1) >

√
2p

√
p/2 = p pairs (x, y) of integers

with 0 ≤ x <
√

2p, 0 ≤ y <
√
p/2. By Pigeon-hole Principle, there exists two



Euclidean quotient rings of Z[
√
−5] 123

distinct pairs (x, y) and (x′, y′) with 0 ≤ x, x′ <
√

2p and 0 ≤ y, y′ <
√
p/2

such that x + my ≡ x′ + my′ (mod p). Set a = x − x′ and b = y − y′. Then
a+mb ≡ 0 (mod p). So 0 ≡ a2 −m2b2 ≡ a2 + 5b2 (mod p), because m2 ≡ −5
(mod p). Since (a, b) 6= 0, |a| <

√
2p and |b| <

√
p/2, we have 0 < a2 + 5b2 <

2p+5p/2 < 5p, hence a2 +5b2 = kp for some integer k between 1 and 4. If k is
1 or 4, then kp ≡ 2, 3 (mod 5) and a2 + 5b2 ≡ 0, 1, 4 (mod 5), a contradiction.
Assume that a2 + 5b2 = 2p. It follows that a, b are odd. Then c = (a+ 5b)/2
and d = (a− b)/2 are integers and c2 + 5d2 = (3/2)(a2 + 5b2) = 3p.

Let p be a prime number. It is well-known that the map φ : Z[
√
−5]→ N

given by φ(z) = |z|2 is multiplicative. Consider also the multiplicative map
νp : N→ N given by pkn 7→ n, where p does not divide n. Then N = Np = νpφ
is a multiplicative map. N can be extended canonically to a multiplicative map
N : Q(

√
−5)→ Q. After this extension, N restricts to a map Z[

√
−5, 1/p]→

N. Note that if z is a nonzero element of Z[
√
−5, 1/p], N(z) is the cardinality

of the factor ring Z[
√
−5, 1/p]/(z).

We say that the domain Z[
√
−5, 1/p] is norm Euclidean if it is Euclidean

with respect to N . Also, we say that x+ y
√
−5 ∈ Z[

√
−5] is a p-critical point,

if p divides x2 + 5y2.

Proposition 2.3. Let p be a prime number. Assume that for every z ∈
Q(
√
−5), there exists a p-critical point t ∈ Z[

√
−5] such that |z − t| < √p.

Then Z[
√
−5, 1/p] is norm Euclidean.

Proof. Set D = Z[
√
−5, 1/p]. It suffices to show that for every z ∈ Q(

√
−5)−

{0}, there exists t ∈ D such that N(z − t) < 1. Indeed, if α, β ∈ D − {0} and
γ ∈ D is chosen such that N(α/β − γ) < 1, then N(α− βγ) = N(β)N(α/β −
γ) < N(β). Now let z ∈ Q(

√
−5) − {0} and let us look for a t ∈ D such

that N(z − t) < 1. Write z = (a+ b
√
−5)/c with a, b, c integers, c 6= 0. Since

N(z − t) = N(zp− tp) and tp ∈ D whenever t ∈ D, we may assume that c is
not divisible by p. Moreover, multiplying by some power of c, we may assume
that c is congruent to 1 modulo p. By hypothesis, there exists a p-critical
point x + y

√
−5 ∈ Z[

√
−5] such that |(a + b

√
−5 − z) − (x + y

√
−5)| < √p.

So |z − t| < √p, where t = (a − x) + (b − y)
√
−5 ∈ Z[

√
−5]. Moreover,

z−t = (1/c)((a−ca+cx)+(b−cb+cy)
√
−5) and (a−ca+cx)2+5(b−cb+cy)2

is a multiple of p because x + y
√
−5 is a p-critical point and c ≡ 1 (mod p).

Hence N(z − t) ≤ |z − t|2/p < p/p = 1.

Lemma 2.4. Let p be a prime number and xj + yj
√
−5 ∈ Z[

√
−5], j = 1, 2,

two p-critical points. If p divides x1x2 +5y1y2, then k1(x1 +y1
√
−5)+k2(x2 +

y2
√
−5) is a p-critical point for every integers k1, k2.
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Proof. Simply note that (k1x1 + k2x2)2 + 5(k1y1 + k2y2)2 = k21(x21 + 5y21) +
k22(x22 + 5y22) + 2k1k2(x1x2 + 5y1y2) is divisible by p.

Proposition 2.5. Let p be a prime number. Assume there exist two distinct
nonzero p-critical points zj = xj + yj

√
−5 ∈ Z[

√
−5], j = 1, 2, such that

(1) p divides x1x2 + 5y1y2,
(2) the triangle Oz1z2 has circumscribed circle radius less than

√
p.

Then Z[
√
−5, 1/p] is norm Euclidean.

Proof. By (1) and Lemma 2.4, we have the lattice of p-critical points k1z1 +
k2z2, k1, k2 ∈ Z. The open discs of radius

√
p centered in the vertices of this

lattice cover the plane, because the open discs of radius
√
p centered in O, z1,

z2, z1 + z2 cover the parallelogram Oz1z2(z1 + z2), cf. (2). Apply Proposition
2.3.

Lemma 2.6. A triangle whose sides measure
√

3,
√

3 and
√

2 has circum-
scribed circle radius equal to 3/

√
10, so less than 1.

Proof. By Heron’s formula, the area is S = (1/4)[(2 + 3 + 3)2 − 2(22 + 32 +
32)]1/2 =

√
5/2, so the circumscribed circle radius is (

√
3
√

3
√

2)/(4S) =
3/
√

10.

Proposition 2.7. If p = 2 or p is a prime number congruent to 3 or 7 modulo
20, then Z[

√
−5, 1/p] is norm Euclidean.

Proof. We use Proposition 2.5. Assume that p ≡ 3, 7 (mod 20) and p > 3. By
Proposition 2.2, 3p = a2 + 5b2 for some integers a, b. We consider two cases.
Case (i): a ≡ b (mod 3). Then z1 = a + b

√
−5 and z2 = (2a − 5b)/3 + ((a +

2b)/3)
√
−5 are in Z[

√
−5]. Note that z1 6= z2, otherwise we get 2a2 = p, a

contradiction. We have |z1|2 = a2 + 5b2 = 3p, |z2|2 = (1/9)((2a− 5b)2 + 5(a+
2b)2) = (1/9)(9a2 + 45b2) = 3p and |z1− z2|2 = (1/9)((a+ 5b)2 + 5(b− a)2) =
(1/9)(6a2 + 30b2) = 2p. Hence z1, z2 are p-critical points and the sides of
triangle Oz1z2 are

√
3p,
√

3p,
√

2p. By Lemma 2.6, the triangle Oz1z2 has
circumscribed circle radius <

√
p, so condition (2) of Proposition 2.5 holds.

Condition (1) of Proposition 2.5 also holds because, using the notations there,
x1x2 + 5y1y2 = a(2a− 5b)/3 + 5b(a+ 2b)/3 = (2a2 + 10b2)/3 = 2p.

Case (ii): a 6≡ b (mod 3), that is, a+ b ≡ 0 (mod 3). Then z1 = a+ b
√
−5

and z2 = (2a + 5b)/3 + ((2b − a)/3)
√
−5 are in Z[

√
−5]. Note that z1 6= z2,

otherwise we get 2a2 = p, a contradiction. We have |z1|2 = a2 + 5b2 = 3p,
|z2|2 = (1/9)((2a+5b)2 +5(2b−a)2) = (1/9)(9a2 +45b2) = 3p and |z1−z2|2 =
(1/9)((a−5b)2+5(a+b)2) = (1/9)(6a2+30b2) = 2p. Hence z1, z2 are p-critical
points and and the sides of triangle Oz1z2 are

√
3p,
√

3p,
√

2p. By Lemma
2.6, the triangle Oz1z2 has circumscribed circle radius <

√
p, so condition (2)
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of Proposition 2.5 holds. Condition (1) of Proposition 2.5 also holds because,
using the notations there, x1x2 + 5y1y2 = a(2a + 5b)/3 + 5b(2b − a)/3 =
(2a2 + 10b2)/3 = 2p.

Similar arguments can be used if p is 2 or 3. When p = 2, we set z1 =
1 +
√
−5, z2 = 2 and we have |z1|2 = 6 = 3p, |z2|2 = 4 = 2p and |z1 − z2|2 =

6 = 3p. When p = 3, we set z1 = 1 +
√
−5, z2 = 3 and we have |z1|2 = 6 = 2p,

|z2|2 = 9 = 3p and |z1 − z2|2 = 9 = 3p.

Putting Propositions 2.1 and 2.7 together, we have

Theorem 2.8. For a prime number p, the following assertions are equivalent:
(a) Z[

√
−5, 1/p] is norm Euclidean.

(b) Z[
√
−5, 1/p] is a PID.

(c) p = 2 or p is congruent to 3 or 7 modulo 20.
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