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A viscosity projection method for class T

mappings

Qiao-Li Dong and Songnian He

Abstract

In this paper, we firstly introduce a viscosity projection method for
the class T mappings

xn+1 = αnPH(xn,Snxn)f(xn) + (1− αn)Snxn,

where Sn = (1 − w)I + wTn, w ∈ (0, 1), Tn ∈ T and prove strong
convergence theorems of the proposed method. It is verified that the
viscosity projection method converges locally faster than the viscosity
method. Furthermore, we present a viscosity projection method for a
quasi-nonexpansive and nonexpansive mappings in Hilbert spaces. A
numerical test provided in the paper shows that the viscosity projection
method converges faster than the viscosity method.

1 Introduction and preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Recall
that a mapping T : H → H is said to be nonexpansive if ‖Tx−Ty‖ ≤ ‖x−y‖
for all x, y ∈ H. The set of fixed points of T is Fix(T ) := {x ∈ H : Tx = x}.
A mapping T : H → H is said to be quasi-nonexpansive if Fix(T ) is nonempty
and ‖Tx− p‖ ≤ ‖x− p‖ for all x ∈ H and p ∈Fix(T ). A mapping f : H → H
is said to be a contraction with constant ρ ∈ [0, 1) if

‖f(x)− f(y)‖ ≤ ρ‖x− y‖ ∀x, y ∈ H.

Key Words: Class T mappings, Nonexpansive mapping, Quasi-nonexpansive mapping,
Viscosity method, Viscosity projection method, Demiclosed map.

2010 Mathematics Subject Classification: Primary 47H05, 47H07; Secondary 47H10.
Received: November 2012
Revised: April 2013
Accepted: May 2013

95



96 Qiao-Li Dong and Songnian He

Given x, y ∈ H, let

H(x, y) := {z ∈ H : 〈z − y, x− y〉 ≤ 0},

be the half-space generated by (x, y). The boundary ∂H of H is

∂H(x, y) = {z ∈ H : 〈z − y, x− y〉 = 0}.

It is clear that ∂H(x, y) is a closed and convex subset of H. A mapping
T : H → H is said to be the class T (or a cutter) if T ∈ T = {T : H →
H| dom(T ) = H andFix(T ) ⊂ H(x, Tx), for all x ∈ H}

Remark 1.1. The class T is fundamental because it contains several types
of operators commonly found in various areas of applied mathematics and in
particular in approximation and optimization theory (see [1, 2] for details).

Let C be a nonempty closed convex subset of a Hilbert space H. For a
mapping T : C → C, Moudafi [10] and many other researchers (eg.[7, 8, 11,
12, 13, 14]) studied the viscosity approximation method as follow: for given
x0 ∈ C, the sequence {xn} is generated by

xn+1 = αnf(xn) + (1− αn)Txn, (1)

where {αn} ⊂ (0, 1) and f : C → C is a contraction. It was proved in [10] (also
see Xu [13]) that the sequence {xn} generated by (1) converges strongly to
the unique solution of the variational inequality problem V I(I − f, F ix(T )) :
find x∗ in Fix(T ) such that

∀v ∈ Fix(T ), 〈(I − f)x∗, v − x∗〉 ≥ 0.

A special case of (1) was considered by Halpern [5] who introduced following
iterative process:

xn+1 = αnu+ (1− αn)Txn,

where u, x0 ∈ C are arbitrary (but fixed) and {αn} ⊂ (0, 1).
Recently, Maingé [9] studied following algorithm for a quasi-nonexpansive

mapping T :
xn+1 = αnf(xn) + (1− αn)Twxn, (2)

where {αn} ⊂ (0, 1), Tw = (1 − w)I + wT, w ∈ (0, 1). He proposed a new
analysis of the viscosity approximation method to prove the convergence of
the algorithm (2).

Inspired by Maingé [9] and others (e.g. [1, 2, 3, 6]), in this paper we firstly
discuss the following viscosity projection method for a sequence of class T
mappings Tn : H → H as follow:

xn+1 = αnPH(xn,Snxn)f(xn) + (1− αn)Snxn, (3)
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where {αn} ⊂ (0, 1), Sn = (1 − w)I + wTn, w ∈ (0, 1), I is the identity
mapping on H and PK denotes the metric projection from H onto a closed
convex subset K of H (see below Lemma 1.3 for the definition). We prove that
the sequence {xn} generated by (3) converges strongly to the unique solution
of the variational inequality problem V I(I − f,

⋂∞
n=1 Fix(Tn)) : find x∗ in⋂∞

n=1 Fix(Tn) such that

∀v ∈
∞⋂
n=1

Fix(Tn), 〈(I − f)x∗, v − x∗〉 ≥ 0. (4)

We will use the following notations:

1. ⇀ for weak convergence and → for strong convergence.
2. ωw(xn) = {x : ∃xnj ⇀ x} denotes the weak ω-limit of {xn}.

We need some facts and tools in a real Hilbert space H which are listed
below.

Definition 1.1. Suppose that {xn}∞n=1 and {yn}∞n=1 are two iterations which
converge to a point p. Then {xn}∞n=1 is said to converge locally faster than
{yn}∞n=1 if xn = yn implies

‖xn+1 − p‖ ≤ ‖yn+1 − p‖

for any n ∈ N.

Lemma 1.1. Let H be a Hilbert space and I be the identity operator of H.

(i) If dom T = H, then 2T − I is quasi-nonexpansive if and only if T ∈ T,

(ii) If T ∈ T, then λI + (1− λ)T ∈ T, ∀λ ∈ [0, 1].

(iii) If T ∈ T, then T is quasi-nonexpansive.

(iv) If T ∈ T, then ‖x−Tx‖2 ≤ 〈x−Tx, x−u〉 for all x ∈ H and u ∈ Fix(T ).

(v) If T ∈ T and S = wI + (1−w)T , w ∈ (0, 1), then H(x, Tx) ⊂ H(x, Sx),
∀x ∈ H.

Proof. The proof of (i)-(iv) can be found in [1]. Here we just prove (v).
For any y ∈ H(x, Tx), we have

〈y − Tx, x− Tx〉 ≤ 0.

So, we get

〈y − Sx, x− Sx〉 = (1− w)〈y − Tx, x− Tx〉 − (1− w)w‖x− Tx‖2 ≤ 0,

which implies y ∈ H(x, Sx).
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Remark 1.2. Let T ∈ T with Fix(T ) 6= ∅ and set Tw := (1 − w)I + wT for
w ∈ (0, 1). Then the following statements are reached:

(a1) Fix(T ) = Fix(Tw) if w 6= 0;

(a2) Fix(T ) is a closed convex subset of H.

(a3) 〈x− Twx, x− q〉 ≥ w‖x− Tx‖2 for all x ∈ H, q ∈ Fix(T ).

From Lemma 1.1 (i) and (ii), it is an easy matter to show (a1)-(a3) by
using Remarks 1.2 and 2.1 in [9].

Definition 1.2. A sequence of mappings {Tn} having common fixed points is
said to satisfy the condition (Z) if every bounded sequence {xn} with ‖xn −
Tnxn‖ → 0 satisfies ωw(xn) ⊂

⋂∞
n=1 Fix(Tn).

Definition 1.3. A mapping T is called demiclosed at y ∈ H if Tx = y
whenever {xn} ⊂ H, xn ⇀ x and Txn → y.

Next Lemma shows that nonexpansive mappings are demeiclosed at 0.

Lemma 1.2. [4] Let C be a closed convex subset of a real Hilbert space H
and let T : C → C be a nonexpansive mapping such that Fix(T ) 6= ∅. If a
sequence {xn} in C is such that xn ⇀ z and xn − Txn → 0, then z = Tz.

Lemma 1.3. [4] Let K be a closed convex subset of real Hilbert space H and let
PK be the (metric or nearest point) projection from H onto K (i.e., for x ∈ H,
PKx is the only point in K such that ‖x − PKx‖ = inf{‖x − z‖ : z ∈ K}).
Given x ∈ H and z ∈ K. Then z = PKx if and only if there holds the relation:

〈x− z, y − z〉 ≤ 0, for all y ∈ K.

Lemma 1.4. [6] Let C = {z ∈ H : 〈x − u, z − u〉 ≤ 0}. Assume x 6= u and
x0 /∈ C. Then

PCx0 = x0 −
〈x− u, x0 − u〉
‖x− u‖2

(x− u). (5)

Lemma 1.5. Let F := I − PH(x,Tx)f , where x ∈ H and f is the contraction
with constant ρ. Then the operator F is (1− ρ)-strongly monotone, i.e.,

〈Fy − Fz, y − z〉 ≥ (1− ρ)‖y − z‖2 for all x, y ∈ H.

Proof. Note that PH(x,Tx) is a metric projection, so it is firmly nonexpan-
sive and thus is nonexpansive. It is easy to see that, for all y, z ∈ H,

‖PH(x,Tx)f(y)− PH(x,Tx)f(z)‖ ≤ ‖f(y)− f(z)‖ ≤ ρ‖y − z‖. (6)
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From (6), we have

〈Fy − Fz, y − z〉 = ‖y − z‖2 − 〈PH(x,Tx)f(y)− PH(x,Tx)f(z), y − z〉
≥ ‖y − z‖2 − ‖PH(x,Tx)f(y)− PH(x,Tx)f(z)‖‖y − z‖
≥ (1− ρ)‖y − z‖2.

Lemma 1.6. ([9] (Lemma 2.1)). Let {Γn} be a sequence of real numbers
that does not decrease at infinity, in the sense that there exists a subsequence
{Γnj}j≥0 of {Γn} which satisfies Γnj < Γnj+1 for all j ≥ 0. Also consider the
sequence of integers {τ(n)}n≥n0

defined by

τ(n) = max{k ≤ n|Γk < Γk+1}.

Then {τ(n)}n≥n0 is a nondecreasing sequence verifying limn→∞τ(n) = ∞
and, for all n ≥ n0, it holds that Γτ(n) ≤ Γτ(n)+1 and we have

Γn ≤ Γτ(n)+1.

2 Main results

Lemma 2.1. Let Tn ∈ T with F :=
⋂∞
n=1 Fix(Tn) 6= ∅, {αn} ⊂ (0, 1) and

w ∈ (0, 1). Let f be a contraction with constant ρ. The sequence {xn} generated
by (3) is bounded.

Proof. By Tn ∈ T and Lemma 1.1 (v), Fix(Tn) ⊂ H(x, Snx), for all x ∈ H,
therefore, we have PH(x,Snx)p = p, for all p ∈ F. So, using Lemma 1.1 (ii)-(iii)
and (6), we have

‖xn+1 − p‖ = ‖αnPH(xn,Snxn)f(xn) + (1− αn)Snxn − p‖
≤ αn‖PH(xn,Snxn)f(xn)− p‖+ (1− αn)‖Snxn − p‖
≤ αn‖PH(xn,Snxn)f(xn)− PH(xn,Snxn)f(p)‖

+ αn‖PH(xn,Snxn)f(p)− PH(xn,Snxn)p‖+ (1− αn)‖xn − p‖
≤ αn‖f(p)− p‖+ [1− αn(1− ρ)]‖xn − p‖

= αn(1− ρ)
‖f(p)− p‖

1− ρ
+ [1− αn(1− ρ)]‖xn − p‖.

Thus, by induction on n,

‖xn − p‖ ≤ max

{
‖f(p)− p‖

1− ρ
, ‖x0 − p‖

}
,

for every n ∈ N. This shows that {xn} is bounded, and hence,
{PH(xn,Snxn)f(xn)} is also bounded.
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Lemma 2.2. Assume a sequence of mappings Tn ∈ T : H → H satisfies the
condition (Z). If x∗ is the solution of (4) and {xn} is a bounded sequence such
that ‖Tnxn − xn‖ → 0, then

lim inf
n→∞

〈(I − PH(xn,Tnxn)f)x∗, xn − x∗〉 ≥ 0. (7)

Proof. Since the sequence {Tn} satisfies the condition (Z) and {xn} is a
bounded sequence, ωw(xn) ⊂ F. It is also a simple matter to see that there
exists x̄ and a subsequence {xnk} of {xn} such that xnk ⇀ x̄ as k →∞ (hence
x̄ ∈ F) and such that

lim inf
n→∞

〈(I − f)x∗, xn − x∗〉 = lim
k→∞

〈(I − f)x∗, xnk − x∗〉,

which by (4) obviously leads to

lim inf
n→∞

〈(I − f)x∗, xn − x∗〉 = 〈(I − f)x∗, x̄− x∗〉 ≥ 0.

So,
lim inf
n→∞

〈(I − f)x∗, xn − x∗〉 ≥ 0. (8)

If f(x∗) ∈ H(xn, Tnxn), then PH(xn,Tnxn)f(x∗) = f(x∗) and (8) implies (7).
Otherwise, assume f(x∗) /∈ H(xn, Tnxn). Then, by definition of H(xn, Tnxn),
we have

〈xn − Tnxn, f(x∗)− Tnxn〉 > 0. (9)

By x∗ ∈ F ⊂ H(xn, Tnxn), we get

〈xn − Tnxn, xn − x∗〉 = ‖xn − Tnxn‖2 + 〈xn − Tnxn, Tnxn − x∗〉 > 0. (10)

From (5), it follows

PH(xn,Tnxn)f(x∗) = f(x∗)− 〈xn − Tnxn, f(x∗)− Tnxn〉
‖xn − Tnxn‖2

(xn − Tnxn). (11)

Combining (9), (10) and (11), we obtain

〈(I − PH(xn,Tnxn)f)x∗,xn − x∗〉 = 〈(I − f)x∗, xn − x∗〉

+
〈xn − Tnxn, f(x∗)− Tnxn〉

‖xn − Tnxn‖2
〈xn − Tnxn, xn − x∗〉

> 〈(I − f)x∗, xn − x∗〉,
(12)

which together with (8) implies

lim inf
n→∞

〈(I − PH(xn,Tnxn)f)x∗, xn − x∗〉 ≥ lim inf
n→∞

〈(I − f)x∗, xn − x∗〉 ≥ 0.

Therefore, we obtain the desired result.
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Theorem 2.1. Suppose that a sequence {Tn} ⊂ T satisfies
F :=

⋂∞
n=1 Fix(Tn) 6= ∅ and the condition (Z). Let f be a contraction with con-

stant ρ ∈ [0, 1). Assume w ∈ (0, 1), and {αn} ⊂ (0, 1) such that limn→∞ αn =
0,
∑∞
n=1 αn = ∞. Then, {xn} generated by (3) converges strongly to x∗ ∈ F

verifying
x∗ = (PF ◦ f)x∗,

which equivalently solves the following variational inequality problem:

x∗ ∈ F, and (∀v ∈ F), 〈(I − f)x∗, v − x∗〉 ≥ 0. (13)

Proof. Let x∗ be the solution of (13). From (3) we obviously have

xn+1 − xn + αn(xn − PH(xn,Snxn)f(xn)) = (1− αn)(Snxn − xn), (14)

hence

〈xn+1−xn+αn(xn−PH(xn,Snxn)f(xn)), xn−x∗〉 = −(1−αn)〈xn−Snxn, xn−x∗〉.
(15)

Moreover, by x∗ ∈ F, and using Remark 1.2 (a3), we have

〈xn − Snxn, xn − x∗〉 ≥ w‖xn − Tnxn‖2,

which together with (15) entails

〈xn+1−xn+αn(xn−PH(xn,Snxn)f(xn)), xn−x∗〉 ≤ −w(1−αn)‖xn−Tnxn‖2,

or equivalently

−〈xn − xn+1, xn − x∗〉 ≤ −αn〈xn − PH(xn,Snxn)f(xn), xn − x∗〉
− w(1− αn)‖xn − Tnxn‖2.

(16)

Setting Γn := 1
2‖xn − x

∗‖2, we have

〈xn − xn+1, xn − x∗〉 = −Γn+1 + Γn +
1

2
‖xn − xn+1‖2.

So that (16) can be equivalently rewritten as

Γn+1 − Γn −
1

2
‖xn − xn+1‖2 ≤ −αn〈xn − PH(xn,Snxn)f(xn), xn − x∗〉

− w(1− αn)‖xn − Tnxn‖2.
(17)

Now using (14) again, we have

‖xn+1 − xn‖2 = ‖αn(PH(xn,Snxn)f(xn)− xn) + (1− αn)(Snxn − xn)‖2.
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Hence it is a classical matter to see that

‖xn+1 − xn‖2 ≤ 2α2
n‖PH(xn,Snxn)f(xn)− xn‖2 + 2(1− αn)2‖Snxn − xn‖2,

which by ‖Snxn − xn‖ = w‖Tnxn − xn‖ and (1− αn)2 ≤ (1− αn) yields

1

2
‖xn+1−xn‖2 ≤ α2

n‖PH(xn,Snxn)f(xn)−xn‖2+w2(1−αn)‖Tnxn−xn‖2. (18)

Then from (17) and (18) we obtain

Γn+1 − Γn + (1− w)w(1− αn)‖xn − Tnxn‖2

≤ αn(αn‖PH(xn,Snxn)f(xn)− xn‖2 − 〈xn − PH(xn,Snxn)f(xn)), xn − x∗〉).
(19)

The rest of the proof will be divided into two parts:
Case 1. Suppose that there exists n0 such that {Γn}n≥n0

is nonincreasing.
In this situation, {Γn} is then convergent because it is also nonnegative (hence
it is bounded from below), so that limn→∞(Γn+1 − Γn) = 0, hence, in light
of (19) together with αn → 0, and the boundedness of {xn} (hence, thanks
Lemma 2.1, {PH(xn,Snxn)f(xn)} is also bounded), we obtain

lim
n→∞

‖xn − Tnxn‖ = 0,

which together with Sn = (1− w)I + wTn, w ∈ (0, 1), implies

lim
n→∞

‖xn − Snxn‖ = 0. (20)

From (19) again, we have

αn(−αn‖(PH(xn,Snxn)f(xn))−xn‖2+〈xn−PH(xn,Snxn)f(xn)), xn−x∗〉) ≤ Γn−Γn+1.

Then, by
∑
n αn =∞, we obviously deduce that

lim inf
n→∞

(−αn‖PH(xn,Snxn)f(xn)−xn‖2+〈xn−PH(xn,Snxn)f(xn), xn−x∗〉) ≤ 0,

or equivalently (as αn‖PH(xn,Snxn)f(xn))xn‖2 → 0)

lim inf
n→∞

〈xn − PH(xn,Snxn)f(xn)), xn − x∗〉 ≤ 0. (21)

Moreover, by Lemma 1.5, we have

2(1−ρ)Γn+〈x∗−PH(xn,Snxn)f(x∗), xn−x∗〉 ≤ 〈xn−PH(xn,Snxn)f(xn), xn−x∗〉,
(22)
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which by (21) entails

lim inf
n→∞

(2(1− ρ)Γn + 〈x∗ − PH(xn,Snxn)f(x∗)), xn − x∗〉) ≤ 0.

Hence, recalling that limn→∞ Γn exists, we equivalently obtain

2(1− ρ) lim
n→∞

Γn + lim inf
n→∞

〈x∗ − PH(xn,Snxn)f(x∗), xn − x∗〉 ≤ 0,

namely,

2(1− ρ) lim
n→∞

Γn ≤ − lim inf
n→∞

〈x∗ − PH(xn,Snxn)f(x∗), xn − x∗〉. (23)

From (20) and invoking Lemma 2.2, we have

lim inf
n→∞

〈x∗ − PH(xn,Snxn)f(x∗), xn − x∗〉 ≥ 0,

which by (23) yields limn→∞ Γn = 0, so that {xn} converges strongly to x∗.
Case 2. Suppose there exists a subsequence {Γnk}k≥0 of {Γn}n≥0 such

that Γnk < Γnk+1 for all k ≥ 0. In this situation, we consider the sequence of
indices {τ(n)} as defined in Lemma 1.6. It follows that Γτ(n)+1 − Γτ(n) > 0,
which by (19) amounts to

(1− w)w(1− ατ(n))‖xτ(n) − Tτ(n)xτ(n)‖2

< ατ(n)(ατ(n)‖PH(xτ(n),Sτ(n)xτ(n))f(xτ(n))− xτ(n)‖2

− 〈xτ(n) − PH(xτ(n),Sτ(n)xτ(n))f(xτ(n)), xτ(n) − x∗〉).
(24)

Hence, by the boundedness of {xn} and {PH(xn,Snxn)f(xn)}, and αn → 0, we
immediately obtain

lim
n→∞

‖xτ(n) − Tτ(n)xτ(n)‖ = 0, (25)

which together with Sτ(n) = (1− w)I + wTτ(n), w ∈ (0, 1), implies

lim
n→∞

‖xτ(n) − Sτ(n)xτ(n)‖ = 0. (26)

Using (3), we have

‖xτ(n)+1 − xτ(n)‖ ≤ ατ(n)‖PH(xτ(n),Sτ(n)xτ(n))f(xτ(n))− xτ(n)‖
+ (1− ατ(n))‖xτ(n) − Sτ(n)xτ(n)‖,

which together with (26) and αn → 0 yields

lim
n→∞

‖xτ(n)+1 − xτ(n)‖ = 0. (27)
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Now by (24), we clearly have

〈xτ(n)−PH(xτ(n),Sτ(n)xτ(n))f(xτ(n)), xτ(n) − x∗〉
≤ ατ(n)‖PH(xτ(n),Sτ(n)xτ(n))f(xτ(n))− xτ(n)‖2,

which in the light of (22) yields

2(1− ρ)Γτ(n)+〈x∗ − PH(xτ(n),Sτ(n)xτ(n))f(x∗), xτ(n) − x∗〉
≤ ατ(n)‖PH(xτ(n),Sτ(n)xτ(n))f(xτ(n))− xτ(n)‖2.

Hence (as ατ(n)‖PH(xτ(n),Sτ(n)xτ(n))f(xτ(n))− xτ(n)‖2 → 0) it follows that

2(1− ρ) lim sup
n→∞

Γτ(n) ≤ − lim inf
n→∞

〈x∗ − PH(xτ(n),Sτ(n)xτ(n))f(x∗), xτ(n) − x∗〉.

(28)
From (26) and invoking Lemma 2.2, we have

lim inf
n→∞

〈x∗ − PH(xτ(n),Sτ(n)xτ(n))f(x∗), xτ(n) − x∗〉 ≥ 0,

which by (28) yields lim supn→∞ Γτ(n) = 0, so that limn→∞ Γτ(n) = 0. Ap-
plying (27), we have limn→∞ Γτ(n)+1 = 0. Then, recalling that Γn ≤ Γτ(n)+1

(by Lemma 1.6), we get limn→∞ Γn = 0, so that xn → x∗ strongly.

Remark 2.1. Assume that f(xn) /∈ H(xn, Snxn). From Lemma 1.4, we have

PH(xn,Snxn)f(xn) = f(xn)− 〈xn − Snxn, f(xn)− Snxn〉
‖xn − Snxn‖2

(xn − Snxn). (29)

So, the algorithm (3) can be rewritten as the form:

xn+1 =

{
αnf(xn) + (1− αn)Snxn, if f(xn) ∈ H(xn, Snxn)
αnPH(xn,Snxn)f(xn) + (1− αn)Snxn, if f(xn) /∈ H(xn, Snxn)

(30)
where PH(xn,Snxn)f(xn) is given by (29). From (30), we know the algorithm
(3) can be easily realized although there is a metric projection.

From (2), the classical viscosity method for class T mappings {Tn} is

yn+1 = αnf(yn) + (1− αn)Snyn, (31)

where Sn = (1− w)I + wTn.
Next, we will compare the convergence rate of the viscosity projection

method with the viscosity method.
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Theorem 2.2. Suppose that a sequence {Tn} ⊂ T satisfies
F :=

⋂∞
n=1 Fix(Tn) 6= ∅. Take the same parameters {αn} and w in (3) and

(31). Let yn = xn and p ∈ F. Then it holds

‖xn+1 − p‖ ≤ ‖yn+1 − p‖. (32)

Proof. From Tn ∈ T and Lemma 1.1 (v), it follows F ∈ H(xn, Snxn). If
f(xn) ∈ H(xn, Snxn) and then PH(xn,Snxn)f(xn) = f(xn), then, it is obvious
that yn+1 = xn+1 and (32) follows.

Next, assume f(xn) /∈ H(xn, Snxn), then it is easy to verify
PH(xn,Snxn)f(xn) ∈ ∂H(xn, Snxn) . Actually, from (29), it follows

〈PH(xn,Snxn)f(xn)− Snxn, xn − Snxn〉

= 〈f(xn)− Snxn −
〈xn − Snxn, f(xn)− Snxn〉

‖xn − Snxn‖2
(xn − Snxn), xn − Snxn〉

= 〈f(xn)− Snxn, xn − Snxn〉−
〈xn − Snxn, f(xn)− Snxn〉

‖xn − Snxn‖2
〈xn − Snxn, xn − Snxn〉

= 0,

which yields

〈PH(xn,Snxn)f(xn)− f(xn), Snxn − PH(xn,Snxn)f(xn)〉

=
〈xn − Snxn, f(xn)− Snxn〉

‖xn − Snxn‖2
〈xn − Snxn, PH(xn,Snxn)f(xn)− Snxn〉

= 0.

(33)

On the other hand, since p ∈ F ⊂ H(xn, Snxn), using Lemma 1.3, we get

〈PH(xn,Snxn)f(xn)− f(xn), PH(xn,Snxn)f(xn)− p〉 ≤ 0. (34)

Applying (33), (34) and xn = yn, we obtain

‖xn+1 − p‖2 = ‖αnPH(xn,Snxn)f(xn) + (1− αn)Snxn − p‖2

= ‖αn(PH(xn,Snxn)f(xn)− f(yn)) + (yn+1 − p)‖2

≤ ‖yn+1 − p‖2 + 2αn〈PH(xn,Snxn)f(xn)− f(xn), xn+1 − p〉
= ‖yn+1 − p‖2 + 2αn〈PH(xn,Snxn)f(xn)− f(xn), PH(xn,Snxn)f(xn)− p〉

+ 2αn(1− αn)〈PH(xn,Snxn)f(xn)− f(xn), Snxn − PH(xn,Snxn)f(xn)〉
≤ ‖yn+1 − p‖2,

which implies ‖xn+1 − p‖ ≤ ‖yn+1 − p‖.
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Remark 2.2. From the Definition 1.1 and Theorem 2.2, it follows that the
viscosity projection method converges locally faster than viscosity method.

Remark 2.3. In [3], Dong et al proved the strong convergence theorem of the
shrinking projection methods under the assumption that a sequence of class T
mappings {Tn} is coherent (see definition 1.1 in [3]). In Theorem 2.1, the
condition (Z) is needed for a sequence of class T mappings {Tn}. Compar-
ing the definition of coherent and condition (Z), it is obvious that a sequence
{Tn} satisfies condition (Z) if it is coherent. So, in order to obtain strong
convergence results, in this paper we just need a weaker condition than that in
[3].

3 Deduced results

In this section, using Theorem 2.1, we obtain some strong convergence results
for a class T mapping, a quasi-nonexpansive mapping and a nonexpansive
mapping in a Hilbert space.

Theorem 3.1. Assume T ∈ T with Fix(T ) 6= ∅ satisfies that I − T is demi-
closed at 0. Let f be a contraction with constant ρ ∈ [0, 1). Define a sequence
{xn} as follow:

xn+1 = αnPH(xn,Sxn)f(xn) + (1− αn)Sxn, (35)

where S = (1−w)I+wT, w ∈ (0, 1), and {αn} ⊂ (0, 1) satisfies limn→∞ αn =
0,
∑∞
n=1 αn =∞. Then, {xn} converges strongly to x∗ ∈ Fix(T ) verifying

x∗ = (PFix(T ) ◦ f)x∗,

which equivalently solves the following variational inequality problem:

x∗ ∈ Fix(T ), and (∀v ∈ Fix(T )), 〈(I − f)x∗, v − x∗〉 ≥ 0.

Proof. Let Tn = T in (3) for all n ∈ N. From Lemma 2.1, it follows that
{xn} is bounded. Using the definition of demiclosed, we get that T satisfies
condition (Z). From Theorem 2.1, the desired result follows.

Theorem 3.2. Assume U : H → H is a quasi-nonexpansive mapping with
Fix(U) 6= ∅ and satisfies that I −U is demiclosed at 0. Let f be a contraction
with constant ρ ∈ [0, 1). Define a sequence {xn} as follow:

xn+1 = αnPH(xn,V xn)f(xn) + (1− αn)V xn,
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where V = (1−γ)I+γU , γ ∈ (0, 12 ), and {αn} ⊂ (0, 1) satisfies limn→∞ αn =
0,
∑∞
n=1 αn =∞. Then, {xn} converges strongly to x∗ ∈ Fix(U) verifying

x∗ = (PFix(U) ◦ f)x∗,

which equivalently solves the following variational inequality problem:

x∗ ∈ Fix(U), and (∀v ∈ Fix(U)), 〈(I − f)x∗, v − x∗〉 ≥ 0.

Proof. By Lemma 1.1 (i), U+I
2 ∈ T. Substitute T in (35) by U+I

2 . Then,

S = (1− w)I + wT = (1− w)I + w
U + I

2

= (1− w

2
)I +

w

2
U.

Set γ = w
2 ∈ (0, 12 ) and V = S = (1 − γ)I + γU . Since I − U is demiclosed

at 0, I − U+I
2 = I−U

2 is demiclosed at 0. So we can obtain the result by using
Theorem 3.1.

Since a nonexpansive mapping is quasi-nonexpansive and demiclosed (see
Lemma 1.2), using Theorem 3.2, we have following theorem.

Theorem 3.3. Let U : H → H be a nonexpansive mapping with Fix(U) 6= ∅
and f be a contraction with constant ρ ∈ [0, 1). Define a sequence {xn} as
follow:

xn+1 = αnPH(xn,V xn)f(xn) + (1− αn)V xn,

where V = (1−γ)I+γU , γ ∈ (0, 12 ), and {αn} ⊂ (0, 1) satisfies limn→∞ αn =
0,
∑∞
n=1 αn =∞. Then, {xn} converges strongly to x∗ ∈ Fix(U) verifying

x∗ = (PFix(U) ◦ f)x∗,

which equivalently solves the following variational inequality problem:

x∗ ∈ Fix(U), and (∀v ∈ Fix(U)), 〈(I − f)x∗, v − x∗〉 ≥ 0.

4 Numerical tests

For comparing the convergent rate of viscosity projection with viscosity
method, we compute two simple examples. Let w = 1

3 , αn = 1
n , and x0 =

y0 = −0.3. Consider two cases:
Case 1. T1(x) = sin(x) and f1(x) = cos(x2 ) with constant 1

2 ;
Case 2. T2(x) = cos(x) and f2(x) = sin(x2 ) with constant 1

2 .
It is obvious T1 and T2 are two nonexpansive mappings on R. From Fig-

ure 1, It illustrates that viscosity projection methods converges faster than
viscosity methods for the given examples.
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Figure 1: (a) Case 1 ‖xn − Txn‖; (b) Case 2 ‖xn − Txn‖.

Remark 4.1. We just prove that viscosity projection method converges locally
faster than viscosity in Theorem 2.2, and don’t know if viscosity projection
method converges faster than viscosity. It is an open problem.
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for helpful correspondences and the referees for their pertinent comments and
suggestions. This work is supported by National Natural Science Foundation
of China (No. 11201476) and Fundamental Research Funds for the Central
Universities (No. ZXH2012K001), in part by the Foundation of Tianjin Key
Lab for Advanced Signal Processing.

References

[1] H.H. Bauschke, P.L. Combettes, A weak-to-strong convergence princi-
ple for Fejér-monotone methods in Hilbert spaces, Math. Oper. Res., 26
(2001) 248-264.
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