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A viscosity projection method for class ¥
mappings

Qiao-Li Dong and Songnian He

Abstract

In this paper, we firstly introduce a viscosity projection method for
the class ¥ mappings

Tn+1 = anPH(fEn,SnfEn)f(xn) + (1 - O‘")Snxnv

where S, = (1 — w)I + wT,, w € (0,1),T, € ¥ and prove strong
convergence theorems of the proposed method. It is verified that the
viscosity projection method converges locally faster than the viscosity
method. Furthermore, we present a viscosity projection method for a
quasi-nonexpansive and nonexpansive mappings in Hilbert spaces. A
numerical test provided in the paper shows that the viscosity projection
method converges faster than the viscosity method.

1 Introduction and preliminaries

Let H be a real Hilbert space with inner product (-,-) and norm || - ||. Recall
that a mapping T : H — H is said to be nonexpansive if ||[Tz — Ty|| < ||z —y||
for all ,y € H. The set of fixed points of T is Fiz(T) := {z € H : Tx = x}.
A mapping T : H — H is said to be quasi-nonexpansive if Fiiz(T') is nonempty
and ||Tx —p|| < ||z —pl| for all z € H and p €Fix(T). A mapping f: H - H
is said to be a contraction with constant p € [0, 1) if

1f(z) = FWll < pllz =yl Va,y € H.
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Given z,y € H, let
Hiz,y) = {z € H: (z — g,z — ) <0},
be the half-space generated by (x,y). The boundary 0H of H is
OH(z,y) ={z€ H:(z—y,z —y) =0}.

It is clear that OH (z,y) is a closed and convex subset of H. A mapping
T : H — H is said to be the class T (or a cutter) if T € T = {T : H —
H|dom(T) = H and Fiz(T) C H(z,Tz), forallz € H}

Remark 1.1. The class ¥ is fundamental because it contains several types
of operators commonly found in various areas of applied mathematics and in
particular in approzimation and optimization theory (see [1, 2] for details).

Let C' be a nonempty closed convex subset of a Hilbert space H. For a
mapping T : C — C, Moudafi [10] and many other researchers (eg.[7, 8, 11,
12, 13, 14]) studied the viscosity approximation method as follow: for given
xo € C, the sequence {z,} is generated by

Tn+1 = O‘nf(a:n) + (1 - an)Tx'm (1)

where {a,,} C (0,1) and f : C — C is a contraction. It was proved in [10] (also
see Xu [13]) that the sequence {x,} generated by (1) converges strongly to
the unique solution of the variational inequality problem VI(I — f, Fixz(T)) :
find z* in Fiz(T) such that

Yo € Fix(T), ((I—f)z",v—212")>0.

A special case of (1) was considered by Halpern [5] who introduced following
iterative process:
Tpy1 = apu+ (1 — )Ty,

where u,zg € C are arbitrary (but fixed) and {o,} C (0,1).
Recently, Maingé [9] studied following algorithm for a quasi-nonexpansive
mapping 7"
Tn+1 = anf(xn) + (1 - an)wana (2)

where {a,,} C (0,1), Ty = (1 — w)I + wT, w € (0,1). He proposed a new
analysis of the viscosity approximation method to prove the convergence of
the algorithm (2).

Inspired by Maingé [9] and others (e.g. [1, 2, 3, 6]), in this paper we firstly
discuss the following viscosity projection method for a sequence of class ¥
mappings T;, : H — H as follow:

Tnt1 = O‘nPH(mn,Snzn)f(xn) + (1 - O‘n)sn-r'ru (3)
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where {a,} C (0,1), S, = (1 —w)I + wT,, w € (0,1), I is the identity
mapping on H and Pk denotes the metric projection from H onto a closed
convex subset K of H (see below Lemma 1.3 for the definition). We prove that
the sequence {z,} generated by (3) converges strongly to the unique solution
of the variational inequality problem VI(I — f,(\ _, Fiz(T,)) : find z* in
N,—, Fiz(T,) such that

Yo e () Fiz(T,), ((I-f)z*v—a*)>0. (4)

n=1
We will use the following notations:

1. — for weak convergence and — for strong convergence.
2. wy(2n) = {2 : Iz, — v} denotes the weak w-limit of {z,}.

We need some facts and tools in a real Hilbert space H which are listed
below.

Definition 1.1. Suppose that {x,}52, and {yn}2>, are two iterations which
converge to a point p. Then {x,}52, is said to converge locally faster than
{yn 32, if ©n = yn implies

[#ni1 = pll < [lynt1 — 2l
for any n € N.
Lemma 1.1. Let H be a Hilbert space and I be the identity operator of H.
(i) If dom T = H, then 2T — I is quasi-nonexpansive if and only if T € T,
(i) If T € T, then A\ + (1 = \)T € T, YA € [0,1].
(i) If T € X, then T is quasi-nonexpansive.
(iv) If T € T, then ||[z—Tz||* < (x—Tx,x—u) for allx € H and u € Fiz(T).

(v) IfT €T and S =wl+(1—w)T, we (0,1), then H(z,Tx) C H(x, Sx),
Ve € H.

Proof. The proof of (i)-(iv) can be found in [1]. Here we just prove (v).
For any y € H(x,Tx), we have

(y—Tz,x—Tx) <0.
So, we get
(y — Sz, — Sz) = (1 —w)ly — Tz, — Tz) — (1 —w)w|z - Tz||* <0,

which implies y € H(x, Sz).
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Remark 1.2. Let T € ¥ with Fiz(T) # 0 and set Ty, := (1 — w)I + wT for
w € (0,1). Then the following statements are reached:

(a1) Fix(T) = Fix(Ty) if w # 0;
(a2) Fix(T) is a closed conver subset of H.
(a3) (x — Typx,x — q) > w|x —Tz||*> for all z € H, q € Fiz(T).

From Lemma 1.1 (i) and (ii), it is an easy matter to show (al)-(a3) by
using Remarks 1.2 and 2.1 in [9].

Definition 1.2. A sequence of mappings {T,,} having common fized points is
said to satisfy the condition (Z) if every bounded sequence {x,} with ||z, —
Thxn| = 0 satisfies wy (xn) C oy Fiz(Ty).

Definition 1.3. A mapping T is called demiclosed at y € H if Tx = y
whenever {z,} C H, x, =z and Tz, — y.

Next Lemma shows that nonexpansive mappings are demeiclosed at 0.

Lemma 1.2. [4] Let C be a closed convex subset of a real Hilbert space H
and let T : C — C be a nonexpansive mapping such that Fix(T) # 0. If a
sequence {x,} in C is such that x, — z and x, — Tz, — 0, then z = Tz.

Lemma 1.3. [4] Let K be a closed convex subset of real Hilbert space H and let
Pk be the (metric or nearest point) projection from H onto K (i.e., forx € H,
Py is the only point in K such that |z — Pxz| = inf{||lz — 2| : 2 € K}).
Givenx € H and z € K. Then z = Pk if and only if there holds the relation:

(x —z,y—2) <0, foral yeK.

Lemma 1.4. [6]/ Let C ={z € H : (x —u,z —u) < 0}. Assume x # u and
zo ¢ C. Then
(x —u,xg — u)

(x —u). (5)

I PR

Lemma 1.5. Let F':= 1 — Py, 1y f, where x € H and f is the contraction
with constant p. Then the operator F is (1 — p)-strongly monotone, i.c.,

(Fy—Fzy—2)>(1=p)ly—2[? forall,ye H.

Proof. Note that P, . is a metric projection, so it is firmly nonexpan-
sive and thus is nonexpansive. It is easy to see that, for all y,z € H,

| Pt (e, 72) f(Y) = Prera) ()| < 1f(y) = F(2)I < plly — 2| (6)
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From (6), we have

<Fy —Fz,y— Z> = ||y - Z||2 - <PH(w,Tw)f(y) - PH(a:,T:v)f(Z)a y—2)
> [ly — Z||2 —1Pr(zr2) f(Y) — Pr(ara f(2)|l[ly — 2|l
> (1= p)lly = 2I*.
Lemma 1.6. (/9] (Lemma 2.1)). Let {T',} be a sequence of real numbers
that does not decrease at infinity, in the sense that there exists a subsequence

{Ty, }j>0 of {T'n} which satisfies T'y; < Ty, 41 for all § > 0. Also consider the
sequence of integers {T(n)}n>n, defined by

7(n) = max{k < n|Ty < Tki1}.

Then {T(n)}n>n, s a nondecreasing sequence verifying limp_oo7(n) = 00
and, for all n > ng, it holds that T'r(,) < I';()41 and we have

Fn < 1_"r(n)+1 .

2 Main results

Lemma 2.1. Let T, € T with F := (., Fiz(T,) # 0, {a,} C (0,1) and
€ (0,1). Let f be a contraction with constant p. The sequence {x,} generated

by (3) is bounded.

Proof. By T, € ¥ and Lemma 1.1 (v), Fix(T,) C H(x,Syx), for allz € H,
therefore, we have Py, 5, = p, for all p € F. So, using Lemma 1.1 (ii)-(iii)
and (6), we have

[Zn+1 =PIl = llan Prz, 8,0, f (@n) + (1 = an) Span — p|
< anl| P (@, Spwn) f (2n) — pH + (1 = an)||Snzn — pll
< O‘VLHPH(M,Snwn)f(xn) wn,Snmn)f( )|
+ anHPH(mn,Snmn)f( ) PH(mn,Snxn)pH + (1 - an)Hxn - p”
< anllf(p) —pll + [1 = an(1 = p)]flzn — pll

f P
—ant= =2 a1 g -
Thus, by induction on n,

I — ] <max{”f W=l ), p||}7

for every m € N.  This shows that {z,} is bounded, and hence,
{Pr (2,802, f(xn)} is also bounded.
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Lemma 2.2. Assume a sequence of mappings T,, € T : H — H satisfies the
condition (Z). If x* is the solution of (4) and {x,} is a bounded sequence such
that || Tnxn — Tn|| — 0, then

liminf((I — Py (a, 1,2, f)2" 0 — 2*) > 0. (7)
n—oo

Proof. Since the sequence {T,} satisfies the condition (Z) and {x,} is a
bounded sequence, wy,(z,) C F. It is also a simple matter to see that there
exists T and a subsequence {x,, } of {z,} such that z,, — Z as k — oo (hence
Z € F) and such that

lminf((I — f)z*,x,, — 2*) = lim (I — f)a*, z,, — "),
n—o00 k—o0 )

which by (4) obviously leads to
liminf((I — fla*, z, —2*) = (I — f)z*,z — ") > 0.
n—oo

So,
liminf((I — f)z*, z, — z*) > 0. (8)

n—oo
If f(z*) € H(xp, Tnwy), then Py(y, 1,0, f(x*) = f(2*) and (8) implies (7).
Otherwise, assume f(z*) ¢ H(zy, Thzy). Then, by definition of H(zy,, Tzy),
we have

(X — Tpy, f(*) = Thxy,) > 0. (9)

By z* € F C H(xyp, Thx,), we get
(T — Tpp, xp — %) = || — Tnan||* + (€0 — T, Tz, —2%) > 0. (10)

From (5), it follows

(X — Thp, f(2*) — Thay)

||xn - T’nxn”2
Combining (9), (10) and (11), we obtain
<(I - PH(wn,ann)f)i*vxn - x*> = <(I - f)x*axn - x*>

<xn - Tnmna f(iC*) - Tnxn>
|Zn — Tnn|?

> ((I = fla™,an —27),

Prz, 1o f(2%) = f(2¥) — (xp — Tpxy). (11)

+ <xn _Tnxna‘rn _$*>

which together with (8) implies

liminf((! — Py(z, 1,2.) )% Tn — ") > liminf((I — f)z*, 2, —2*) > 0.

n—roo n—roo

Therefore, we obtain the desired result.
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Theorem 2.1. Suppose that a sequence {T,} C ¥ satisfies
F =N, Fiz(T,) # 0 and the condition (Z). Let f be a contraction with con-
stant p € [0,1). Assume w € (0,1), and {an} C (0,1) such that lim, o oy =
0, >0°  an = oo. Then, {z,} generated by (3) converges strongly to z* € F
verifying

x* = (Pgo f)z*,

which equivalently solves the following variational inequality problem:
¥ e, and (WweF), ((I-fz*,v—z*)>0. (13)

Proof. Let x* be the solution of (13). From (3) we obviously have

Tpt1 — Tn + (T — Pr(e,,Sa,) f(@n)) = (1 — an)(Snzn — 2,),  (14)
hence
(1= Zntn(En—Pr(e, 5yem f(@0)s Tn—t") = —(1—n){Zn—Snn, Tn—3").
Moreover, by z* € &, and using Remark 1.2 (a3), we have "

(T — SpZp, Ty — %) > w2y — Twn |,

which together with (15) entails
(@1 —Tn+on (@0~ Pr(e, 5,00 f (@), 20 —2%) < —w(l—an)|lzn — Tz,
or equivalently

—(@n = Tpy1, 20 — ) < = (@n — Pr(a, spen) f(@n), 2n — %)

—w(l — ap)||zn — Tzl (16)
Setting 'y, := %z, — 2*||?, we have
(n = ns1 7 = 5°) = ~Tg + T+ g7 = 2sa
So that (16) can be equivalently rewritten as
uss =T = glhn = Tt € ~anen = P e f@) on =)

—w(l — an)||en — Towa|)?.
Now using (14) again, we have

Hanrl - anQ = ||O‘n(PH(rn,Snzn)f(xn) - $n) + (1 - an)(snxn - xn)HQ
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Hence it is a classical matter to see that
lTni1 — xn”Q < 20[’ELHPH(I717Snxn)f(xn) - xn”z +2(1 - O‘n)ZHSnIn - anzv

which by ||S,zy — zn|| = w||Thzy — 20| and (1 — a,)? < (1 — ay,) yields
1
§||xn+1_xn||2 < ai”PH(zn,Snmn)f(xn)_xn||2+w2(1_an)||Tn$n_$n||2~ (18)

Then from (17) and (18) we obtain

Tpir —Tn + (1 —w)w(l — ap)||zn — Tl

< anlon || Prz, 5, f(@n) — o = (2 — Pz, 80w f(@n)); Tn — 27)).
(19)
The rest of the proof will be divided into two parts:
Case 1. Suppose that there exists ng such that {I'y },,>n, is nonincreasing.
In this situation, {T',,} is then convergent because it is also nonnegative (hence
it is bounded from below), so that lim, o (I'nt1 — ') = 0, hence, in light
of (19) together with a,, — 0, and the boundedness of {z,,} (hence, thanks
Lemma 2.1, { Py (z,,,8,2,)f(¥n)} is also bounded), we obtain

lim @, — Tha,| =0,
n—oo
which together with S,, = (1 — w)I + wT,,, w € (0,1), implies

nhﬁrr;o |z, — Spzn| = 0. (20)
From (19) again, we have

O‘n(_anH(PH(xn,Snwn)f(xn))_-T'nH2+<xn_PH(menmn)f(xn))7xn_m*» < Fn_rn—i-l-

Then, by >, a, = oo, we obviously deduce that

hminf(*anHPH(xn,Snxn)f(xn) 7xn||2+<$n*PH(gcn,Snxn)f(xn)afn*x*» <0,

n—oo

or equivalently (as an||Pr(a,..s,2,).f (Tn))znl* = 0)

lim inf(z,, — Py (a5, 2.)f (Tn)), Tn — 2*) < 0. (21)

n—0oo

Moreover, by Lemma 1.5, we have

2(1_p)rn+<m*_PH(acn,Snxn)f(x*)a xn_x*> < <xn_PH(acn,Snxn)f(xn)vxn_m*>v
(22)
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which by (21) entails

liminf(2(1 — p)Ty + (2™ — Pr(a,,5,2.)f (7)), 2, — 27)) < 0.

n—oo

Hence, recalling that lim,, , I';, exists, we equivalently obtain
2(1-p) nh—{go Ln+ hnrggf@* = Pz, S f(@), 2 —27) <0,
namely,

2(1—p) nh_}n;o Iy < =liminf(z* — Py(q, s,0,)f (), 2n — 7). (23)

n—oo

From (20) and invoking Lemma 2.2, we have

liminf(z* — Py (s, .5, 2.)f(2%), Tn — ") >0,

n—oo

which by (23) yields lim,, o, I, = 0, so that {x,} converges strongly to x*.

Case 2. Suppose there exists a subsequence {I'y, }x>0 of {I'n}n>0 such
that I'y,, < TI',, 41 for all K > 0. In this situation, we consider the sequence of
indices {7(n)} as defined in Lemma 1.6. It follows that I';(,y11 — I'r() > 0,
which by (19) amounts to

(1 - w)w(l - ar(n))HxT(n) - Tr(n)xr(n) ”2
2
< a'r(n) (aT(n)HPH(:L’T(n),ST(mxT(n))f(xT(n)) - x’r(n) H

= (@r(n) = PH(a, 0 Srmyar o) f (Er(n))s Tr(n) — 27))-
(24)
Hence, by the boundedness of {x,,} and { Py (s, s, 2.)f (%)}, and o, — 0, we
immediately obtain

lim ”mr(n) - Tr(n)xr(n) ” =0, (25)

n— o0
which together with S,y = (1 — w)I 4+ wT;(,), w € (0,1), implies

lim er(n) — S.,.(n)x.,-(n)H =0. (26)

n—oo
Using (3), we have
||x7'(n)+1 - x'r(n)” < a'r(n)||PH(:L’T(”),S,.(n):vr(n))f(xr(n)) - mT(n) ||
+ (1 - O‘T(n))”z'r(n) - ST(n)xT(n) ||7
which together with (26) and a,, — 0 yields

lim ”'T‘r(n)+1 - x*r(n)” = 0. (27)

n—roo
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Now by (24), we clearly have
<x‘r(n)_PH(zT(m,S,.(n)zT(n))f(x‘r(n))a Tr(n) — x*>
< Qr(n) ||PH(1.,.(TL),ST(n)w.,.(n))f(z‘r(n)) — Lr(n) H27
which in the light of (22) yields
2(1 - p)FT(n)+<x* - PH(.’ET(”),ST(.,L)QTT(”))f(‘r*)? 'TT(TL) - "E*>
2
< )1 PH (@, (1),8 5 (ny 2 ) F (Tr(m)) — Try [

Hence (as o (n) |1 Pr (. ().5, (my2r o) f (Br(n)) — Tr(my||? = 0) it follows that

n—00 n—0o0
(28)

From (26) and invoking Lemma 2.2, we have

hnH—l>IOI<1>f<x* — PH(ar ()8 e ) (27): o) — 27) 2 0,

which by (28) yields limsup,, ., I'zn) = 0, so that lim, o I';(ny = 0. Ap-
plying (27), we have lim,, oo I'v(n)4+1 = 0. Then, recalling that I';, < T'r()41
(by Lemma 1.6), we get lim,, o, I';, = 0, so that x,, — x* strongly.

Remark 2.1. Assume that f(x,) ¢ H(zpn, Snyn). From Lemma 1.4, we have

<xn - Snxnv f(xn) - Snxn>

[Zn — Snznl?

PH(a:n,Sn,xn)f(xn) = f(xn) -

(zn, — Snxn). (29)

So, the algorithm (3) can be rewritten as the form:

iy = { anf(xn)+ (1 — an)Snxn, if flan) € H(xp, Spzy)
n+ nPr (e, e f(@n) + (1 = an)Spxn, if f(on) & H(xn, Sprn)
(30)
where Py (g, s,a,)f(2n) is given by (29). From (30), we know the algorithm
(8) can be easily realized although there is a metric projection.

From (2), the classical viscosity method for class T mappings {T},} is

Ynt1 = U f(Yn) + (1 — n)Sn¥n, (31)

where S, = (1 — w)I + wT,.
Next, we will compare the convergence rate of the viscosity projection
method with the viscosity method.
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Theorem 2.2. Suppose that a sequence {T,} C ¥ satisfies
F =N, Fiz(T,) # 0. Take the same parameters {a,} and w in (3) and
(31). Let y, = xp, and p € F. Then it holds

[Zn+1 =PIl < [[Yn+1 —pl- (32)

Proof. From T,, € T and Lemma 1.1 (v), it follows F € H(xy, Spx,). If
f(wy) € H(2pn, Snxy) and then Py(y, s, 2,)f(Tn) = f(2y), then, it is obvious
that yp+1 = zp41 and (32) follows.

Next, assume f(z,) ¢ H(xn,Snxn), then it is easy to verify
Pz, $nan) f(@n) € OH (2y, Spxy) . Actually, from (29), it follows

<PH(zn,Snxn)f($n) - Snxna Tp — Snxn>

_ <xn — SnTn, f(xn) - Snxn>

= <f(x’ﬂ) - S’ﬂxﬂmxn - Snxn>_

<'Tn — SnTn, f(xn) - Snxn>
|20 — Spanl?

(xn - Snxn)a Tp — Snxn>

<xn - Snxnv Tp — Snxn>
= 07
which yields

<PH(wn,Snxn)f(zn) - f(d?n), Sndfn - PH(w,,“Snasn)f(zn»

_ (&0 = Sun, f(Zn) = Snn) (Tn = Snn, Pr (e, S,2,)f (n) = Snn) (33)

|Zn — Snzn|?

=0.
On the other hand, since p € F C H(zy, Spxy), using Lemma 1.3, we get

<PH(zn,Snmn)f(xn) - f(xn)7 PH(mn,Snmn)f(xn) _p> <0. (34)
Applying (33), (34) and z,, = y,,, we obtain

1 Znt1 —p||2 = HanPH(zn,Snwn)f(xn) + (1 = an)Snzn — pH2
= llan(Prie, Spa) f(@n) = F(Yn) + (Yni1 —p)I°
<|Yn+1—p \2 + 2@n<PH(a:n,snmn)f($n) — f(zn), Tnt1 — p)
= [ynt1 = DI + 200 (Pri(a,, Span) [ (@) = F (@), Pr (a2, f (€0) — P)
+ 20, (1 — O‘n)<PH(:cn,Snmn)f(xn) — f(zn), Snan — PH(rn,Snmn)f(xn»
< Nyn+1 —pl%,

which implies ||zp+1 — || < |ynt1 — 2|l
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Remark 2.2. From the Definition 1.1 and Theorem 2.2, it follows that the
viscosity projection method converges locally faster than viscosity method.

Remark 2.3. In [3], Dong et al proved the strong convergence theorem of the
shrinking projection methods under the assumption that a sequence of class T
mappings {T,} is coherent (see definition 1.1 in [3]). In Theorem 2.1, the
condition (Z) is needed for a sequence of class T mappings {T,}. Compar-
ing the definition of coherent and condition (Z), it is obvious that a sequence
{T,.} satisfies condition (Z) if it is coherent. So, in order to obtain strong
convergence results, in this paper we just need a weaker condition than that in

[3].

3 Deduced results

In this section, using Theorem 2.1, we obtain some strong convergence results
for a class ¥ mapping, a quasi-nonexpansive mapping and a nonexpansive
mapping in a Hilbert space.

Theorem 3.1. Assume T € T with Fix(T) # 0 satisfies that I — T is demi-
closed at 0. Let f be a contraction with constant p € [0,1). Define a sequence
{zn} as follow:

Tp41 = anPH(zn,S'zn)f(xn) + (1 — an)Swn, (35)

where S = (1—w)I+wT, w € (0,1), and {ay,} C (0,1) satisfies lim,— oo @y, =
0, >0% , an = 00. Then, {x,} converges strongly to x* € Fix(T) verifying

rt = (PFLQL(T) © f)x*a
which equivalently solves the following variational inequality problem:

z* € Fiz(T), and (Vve Fiz(T)), ((I-flz",v—2")>0

Proof. Let T,, = T in (3) for all n € N. From Lemma 2.1, it follows that
{zn} is bounded. Using the definition of demiclosed, we get that T satisfies
condition (Z). From Theorem 2.1, the desired result follows.

Theorem 3.2. Assume U : H — H is a quasi-nonezpansive mapping with
Fiz(U) # 0 and satisfies that I — U is demiclosed at 0. Let f be a contraction
with constant p € [0,1). Define a sequence {x,} as follow:

Tp+1 = anPH(mn,Vxn)f(xn) + (1 - an)V‘T”’
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where V.= (1—y)I+~U, v € (0,3), and {os,} C (0,1) satisfies limy, o0 ct, =
0, >0% o = 00. Then, {x,} converges strongly to x* € Fiz(U) verifying

" = (Ppig) o f)z",
which equivalently solves the following variational inequality problem:
x* € Fiz(U), and (Yve Fiz(U)), ((I- f)z",v—12")>0.
Proof. By Lemma 1.1 (i), Y € T. Substitute 7" in (35) by Y. Then,

U+1
Sz(l—w)]—l—wT:(l—w)[—i—wT—’—
w w
=1--)I1+ U
A=+

Set v =% € (0,3) and V =5 = (1 — )] +«U. Since I — U is demiclosed
at 0, I — % = % is demiclosed at 0. So we can obtain the result by using
Theorem 3.1.

Since a nonexpansive mapping is quasi-nonexpansive and demiclosed (see
Lemma 1.2), using Theorem 3.2, we have following theorem.

Theorem 3.3. Let U : H — H be a nonexpansive mapping with Fixz(U) # 0
and f be a contraction with constant p € [0,1). Define a sequence {z,} as
follow:

Tn+1 = anPH(mn,Vxn)f(xn) + (1 - Oén)VJJn,

where V= (1=y)I+~U, v € (0,3), and {on,} C (0,1) satisfies limy_,o0 atn, =
0, >0° | an = oc. Then, {x,} converges strongly to x* € Fixz(U) verifying

"t = (PF'I’I'(U) © f)fl'*,
which equivalently solves the following variational inequality problem:

z* € Fiz(U), and (Vve Fiz(U)), ((I-f)z",v—12")>0.

4 Numerical tests

For comparing the convergent rate of viscosity projection with viscosity
method, we compute two simple examples. Let w = %7 ay = %, and zg =
yo = —0.3. Consider two cases:
Case 1. T1(x) = sin(x) and fi(x) = cos(5) with constant %;
Case 2. Ty(x) = cos(x) and fy(x) = sin(5) with constant 3.

It is obvious T} and T3 are two nonexpansive mappings on R. From Fig-
ure 1, It illustrates that viscosity projection methods converges faster than

viscosity methods for the given examples.
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Figure 1: (a) Case 1 ||zy, — T2y |]; (b) Case 2 ||z, — Tzy||.

Remark 4.1. We just prove that viscosity projection method converges locally
faster than viscosity in Theorem 2.2, and don’t know if viscosity projection
method converges faster than viscosity. It is an open problem.
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