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On the Growth of Solutions of Some Second
Order Linear Differential Equations With

Entire Coefficients

Benharrat BELAÏDI and Habib HABIB

Abstract

In this paper, we investigate the order and the hyper-order of growth
of solutions of the linear differential equation

f ′′ +Q
(
e−z) f ′ + (A1e

a1z +A2e
a2z)n f = 0,

where n > 2 is an integer, Aj (z) ( 6≡ 0) (j = 1, 2) are entire functions
with max {σ (Aj) : j = 1, 2} < 1, Q (z) = qmz

m + · · · + q1z + q0 is a
nonconstant polynomial and a1, a2 are complex numbers. Under some
conditions, we prove that every solution f (z) 6≡ 0 of the above equation
is of infinite order and hyper-order 1.

1 Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the funda-
mental results and the standard notations of the Nevanlinna’s value distribu-
tion theory (see [8], [13]). Let σ (f) denote the order of growth of an entire
function f and the hyper-order σ2 (f) of f is defined by (see [9], [13])

σ2 (f) = lim sup
r→+∞

log log T (r, f)

log r
= lim sup

r→+∞

log log logM (r, f)

log r
,
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where T (r, f) is the Nevanlinna characteristic function of f and M (r, f) =
max|z|=r |f (z)|.

In order to give some estimates of fixed points, we recall the following defini-
tion.

Definition 1.1 ([3], [10]) Let f be a meromorphic function. Then the expo-
nent of convergence of the sequence of distinct fixed points of f (z) is defined
by

τ (f) = λ (f − z) = lim sup
r→+∞

logN
(
r, 1
f−z

)
log r

,

where N
(
r, 1
f

)
is the counting function of distinct zeros of f (z) in

{z : |z| < r}. We also define

λ (f − ϕ) = lim sup
r→+∞

logN(r, 1
f−ϕ )

log r

for any meromorphic function ϕ (z).

In [11], Peng and Chen have investigated the order and hyper-order of solutions
of some second order linear differential equations and have proved the following
result.

Theorem A ([11]) Let Aj (z) (6≡ 0) (j = 1, 2) be entire functions with
σ (Aj) < 1, a1, a2 be complex numbers such that a1a2 6= 0, a1 6= a2 (sup-
pose that |a1| 6 |a2|). If arg a1 6= π or a1 < −1, then every solution f 6≡ 0 of
the equation

f ′′ + e−zf ′ + (A1e
a1z +A2e

a2z) f = 0

has infinite order and σ2 (f) = 1.

The main purpose of this paper is to extend and improve the results of
Theorem A to some second order linear differential equations. In fact we will
prove the following results.

Theorem 1.1 Let n > 2 be an integer, Aj (z) ( 6≡ 0) (j = 1, 2) be entire func-
tions with max {σ (Aj) : j = 1, 2} < 1, Q (z) = qmz

m+· · ·+q1z+q0 be noncon-
stant polynomial and a1, a2 be complex numbers such that a1a2 6= 0, a1 6= a2.
If (1) arg a1 6= π and arg a1 6= arg a2 or (2) arg a1 6= π, arg a1 = arg a2 and
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|a2| > n |a1| or (3) a1 < 0 and arg a1 6= arg a2 or (4) − 1
n (|a2| −m) < a1 < 0,

|a2| > m and arg a1 = arg a2, then every solution f 6≡ 0 of the equation

f ′′ +Q
(
e−z
)
f ′ + (A1e

a1z +A2e
a2z)

n
f = 0 (1.1)

satisfies σ (f) = +∞ and σ2 (f) = 1.

Theorem 1.2 Let Aj (z) (j = 1, 2), Q (z), a1, a2, n satisfy the additional
hypotheses of Theorem 1.1. If ϕ 6≡ 0 is an entire function of order σ (ϕ) <
+∞, then every solution f 6≡ 0 of equation (1.1) satisfies

λ (f − ϕ) = λ (f − ϕ) = σ (f) = +∞,

λ2 (f − ϕ) = λ2 (f − ϕ) = σ2 (f) = 1.

Theorem 1.3 Let Aj (z) (j = 1, 2), Q (z), a1, a2, n satisfy the additional
hypotheses of Theorem 1.1. If ϕ 6≡ 0 is an entire function of order σ (ϕ) < 1,
then every solution f 6≡ 0 of equation (1.1) satisfies

λ (f − ϕ) = λ (f ′ − ϕ) = +∞.

Furthermore, if (i) (2n+ 2) a1 6= (2− p) a1 + pa2 − k ( p = 0, 1, 2; k =
0, 1, · · ·, 2m), (n+ 2− p) a1 + pa2 − k ( p = 0, 1, · · ·, n + 2; k = 0, 1, · · ·,m)
or (ii) (2n+ 2) a2 6= (2− p) a1 + pa2 − k ( p = 0, 1, 2; k = 0, 1, · · ·, 2m),
(n+ 2− p) a1 + pa2 − k ( p = 0, 1, · · ·, n+ 2; k = 0, 1, · · ·,m), then

λ (f ′′ − ϕ) = +∞.

Corollary 1.1 Let Aj (z) (j = 1, 2), Q (z), a1, a2, n satisfy the additional
hypotheses of Theorem 1.1. If f 6≡ 0 is any solution of equation (1.1), then
f , f ′ all have infinitely many fixed points and satisfy

τ (f) = τ (f ′) =∞.

Furthermore, if (i) (2n+ 2) a1 6= (2− p) a1 + pa2 − k ( p = 0, 1, 2; k =
0, 1, · · ·, 2m), (n+ 2− p) a1 + pa2 − k ( p = 0, 1, · · ·, n + 2; k = 0, 1, · · ·,m)
or (ii) (2n+ 2) a2 6= (2− p) a1 + pa2 − k ( p = 0, 1, 2; k = 0, 1, · · ·, 2m),
(n+ 2− p) a1 + pa2 − k ( p = 0, 1, · · ·, n + 2; k = 0, 1, · · ·,m), then f ′′ has
infinitely many fixed points and satisfies

τ (f ′′) =∞.
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2 Preliminary lemmas

To prove our theorems, we need the following lemmas.

Lemma 2.1 ([7]) Let f be a transcendental meromorphic function with
σ (f) = σ < +∞, H = {(k1, j1) , (k2, j2) , · · ·, (kq, jq)} be a finite set of distinct
pairs of integers satisfying ki > ji > 0 (i = 1, · · ·, q) and let ε > 0 be a given
constant. Then,
(i) there exists a set E1 ⊂

[
−π2 ,

3π
2

)
with linear measure zero, such that, if

ψ ∈
[
−π2 ,

3π
2

)
\ E1, then there is a constant R0 = R0 (ψ) > 1, such that for

all z satisfying arg z = ψ and |z| > R0 and for all (k, j) ∈ H, we have∣∣∣∣f (k) (z)

f (j) (z)

∣∣∣∣ 6 |z|(k−j)(σ−1+ε)
, (2.1)

(ii) there exists a set E2 ⊂ (1,+∞) with finite logarithmic measure, such that
for all z satisfying |z| /∈ E2 ∪ [0, 1] and for all (k, j) ∈ H, we have∣∣∣∣f (k) (z)

f (j) (z)

∣∣∣∣ 6 |z|(k−j)(σ−1+ε)
, (2.2)

(iii) there exists a set E3 ⊂ (0,+∞) with finite linear measure, such that for
all z satisfying |z| /∈ E3 and for all (k, j) ∈ H, we have∣∣∣∣f (k) (z)

f (j) (z)

∣∣∣∣ 6 |z|(k−j)(σ+ε)
. (2.3)

Lemma 2.2 ([4]) Suppose that P (z) = (α+ iβ) zn + · · · (α, β are real num-
bers, |α|+ |β| 6= 0) is a polynomial with degree n > 1, that A (z) ( 6≡ 0) is an
entire function with σ (A) < n. Set g (z) = A (z) eP (z), z = reiθ, δ (P, θ) =
α cosnθ − β sinnθ. Then for any given ε > 0, there is a set E4 ⊂ [0, 2π) that
has linear measure zero, such that for any θ ∈ [0, 2π)� (E4 ∪ E5), there is
R > 0, such that for |z| = r > R, we have
(i) if δ (P, θ) > 0, then

exp {(1− ε) δ (P, θ) rn} 6
∣∣g (reiθ)∣∣ 6 exp {(1 + ε) δ (P, θ) rn} ; (2.4)

(ii) if δ (P, θ) < 0, then

exp {(1 + ε) δ (P, θ) rn} 6
∣∣g (reiθ)∣∣ 6 exp {(1− ε) δ (P, θ) rn} , (2.5)

where E5 = {θ ∈ [0, 2π) : δ (P, θ) = 0} is a finite set.
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Lemma 2.3 ([11]) Suppose that n > 1 is a positive entire number. Let
Pj (z) = ajnz

n + · · · (j = 1, 2) be nonconstant polynomials, where ajq (q =
1, · · ·, n) are complex numbers and a1na2n 6= 0. Set z = reiθ, ajn = |ajn| eiθj ,
θj ∈

[
−π2 ,

3π
2

)
, δ (Pj , θ) = |ajn| cos (θj + nθ), then there is a set

E6 ⊂
[
− π

2n ,
3π
2n

)
that has linear measure zero. If θ1 6= θ2, then there exists a

ray arg z = θ, θ ∈
(
− π

2n ,
π
2n

)
\ (E6 ∪ E7), such that

δ (P1, θ) > 0, δ (P2, θ) < 0 (2.6)

or
δ (P1, θ) < 0, δ (P2, θ) > 0, (2.7)

where E7 =
{
θ ∈

[
− π

2n ,
3π
2n

)
: δ (Pj , θ) = 0

}
is a finite set, which has linear

measure zero.

Remark 2.1 ([11]) In Lemma 2.3, if θ ∈
(
− π

2n ,
π
2n

)
\ (E6 ∪ E7) is replaced by

θ ∈
(
π
2n ,

3π
2n

)
\ (E6 ∪ E7), then we obtain the same result.

Lemma 2.4([5]) Suppose that k > 2 and B0, B1, · · ·, Bk−1 are entire functions
of finite order and let σ = max {σ (Bj) : j = 0, · · ·, k − 1}. Then every solution
f of the equation

f (k) +Bk−1f
(k−1) + · · ·+B1f

′ +B0f = 0 (2.8)

satisfies σ2 (f) 6 σ.

Lemma 2.5 ([7]) Let f(z) be a transcendental meromorphic function, and let
α > 1 be a given constant. Then there exist a set E8 ⊂ (1,∞) with finite
logarithmic measure and a constant B > 0 that depends only on α and i, j
(0 6 i < j 6 k), such that for all z satisfying |z| = r /∈ [0, 1] ∪ E8, we have∣∣∣∣f (j)(z)

f (i)(z)

∣∣∣∣ 6 B

{
T (αr, f)

r
(logα r) log T (αr, f)

}j−i
. (2.9)

Lemma 2.6([2]) Let A0, A1, · · ·, Ak−1, F 6≡ 0 be finite order meromorphic
functions. If f is a meromorphic solution with σ (f) = +∞ of the equation

f (k) +Ak−1f
(k−1) + · · ·+A1f

′ +A0f = F, (2.10)

then f satisfies
λ (f) = λ (f) = σ(f) = +∞.

Lemma 2.7 ([1]) Let A0, A1, · · ·, Ak−1, F 6≡ 0 be finite order meromorphic
functions. If f is a meromorphic solution of equation (2.10) with σ (f) = +∞
and σ2 (f) = σ, then f satisfies

λ2 (f) = λ2 (f) = σ2(f) = σ. (2.11)
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Lemma 2.8([6], [13]) Suppose that f1 (z) , f2 (z) , · · ·, fn (z) (n > 2) are mero-
morphic functions and g1 (z) , g2 (z) , · · ·, gn (z) are entire functions satisfying
the following conditions:

(i)
n∑
j=1

fj (z) egj(z) ≡ 0;

(ii) gj (z)− gk (z) are not constants for 1 6 j < k 6 n;
(iii) For 1 6 j 6 n, 1 6 h < k 6 n, T (r, fj) = o

{
T
(
r, egh(z)−gk(z)

)}
(r →∞,

r /∈ E9), where E9 is a set with finite linear measure.
Then fj (z) ≡ 0 (j = 1, · · ·, n).

Lemma 2.9 ([12]) Suppose that f1 (z) , f2 (z) , · · ·, fn (z) (n > 2) are meromor-
phic functions and g1 (z) , g2 (z) , · · ·, gn (z) are entire functions satisfying the
following conditions:

(i)
n∑
j=1

fj (z) egj(z) ≡ fn+1;

(ii) If 1 6 j 6 n + 1, 1 6 k 6 n, the order of fj is less than the order of
egk(z). If n > 2, 1 6 j 6 n + 1, 1 6 h < k 6 n, and the order of fj is less
than the order of egh−gk . Then fj (z) ≡ 0 (j = 1, 2, · · ·, n+ 1).

3 Proof of Theorem 1.1

Assume that f (6≡ 0) is a solution of equation (1.1).
First step: We prove that σ (f) = +∞. Suppose that σ (f) = σ < +∞. We
rewrite (1.1) as

f ′′

f
+Q

(
e−z
) f ′
f

+An1 e
na1z +An2 e

na2z +

n−1∑
p=1

CpnA
n−p
1 e(n−p)a1zAp2e

pa2z = 0.

(3.1)
By Lemma 2.1, for any given ε,

0 < ε < min

{
|a2| − n |a1|

2 [(2n− 1) |a2|+ n |a1|]
,

1

2 (2n− 1)

}
,

there exists a set E1 ⊂
[
−π2 ,

3π
2

)
of linear measure zero, such that if θ ∈[

−π2 ,
3π
2

)
\ E1, then there is a constant R0 = R0 (θ) > 1, such that for all z

satisfying arg z = θ and |z| = r > R0, we have∣∣∣∣f (j) (z)

f (z)

∣∣∣∣ 6 rj(σ−1+ε) (j = 1, 2) . (3.2)

Let z = reiθ, a1 = |a1| eiθ1 , a2 = |a2| eiθ2 , θ1, θ2 ∈
[
−π2 ,

3π
2

)
. We know that

δ (pa1z, θ) = pδ (a1z, θ) and δ (pa2z, θ) = pδ (a2z, θ), where p > 0.
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Case 1: Assume that arg a1 6= π and arg a1 6= arg a2, which is θ1 6= π and
θ1 6= θ2.

By Lemma 2.2 and Lemma 2.3, for the above ε, there is a ray arg z = θ such
that θ ∈

(
−π2 ,

π
2

)
\ (E1 ∪ E6 ∪ E7) (where E6 and E7 are defined as in Lemma

2.3, E1 ∪ E6 ∪ E7 is of the linear measure zero), and satisfying

δ (a1z, θ) > 0, δ (a2z, θ) < 0

or
δ (a1z, θ) < 0, δ (a2z, θ) > 0.

a) When δ (a1z, θ) > 0, δ (a2z, θ) < 0, for sufficiently large r, we get by Lemma
2.2

|An1 ena1z| > exp {(1− ε)nδ (a1z, θ) r} , (3.3)

|An2 ena2z| 6 exp {(1− ε)nδ (a2z, θ) r} < 1, (3.4)∣∣∣An−p1 e(n−p)a1z
∣∣∣ 6 exp {(1 + ε) (n− p) δ (a1z, θ) r}

6 exp {(1 + ε) (n− 1) δ (a1z, θ) r} , p = 1, · · ·, n− 1, (3.5)

|Ap2epa2z| 6 exp {(1− ε) pδ (a2z, θ) r} < 1, p = 1, · · ·, n− 1. (3.6)

For θ ∈
(
−π2 ,

π
2

)
we have∣∣Q (e−z)∣∣ =

∣∣qme−mz + · · ·+ q1e
−z + q0

∣∣
6 |qm|

∣∣e−mz∣∣+ · · ·+ |q1|
∣∣e−z∣∣+ |q0|

6 |qm| e−mr cos θ + · · ·+ |q1| e−r cos θ + |q0| 6M, (3.7)

where M > 0 is a some constant. By (3.1)− (3.7), we get

exp {(1− ε)nδ (a1z, θ) r} 6 |An1 ena1z|

6

∣∣∣∣f ′′f
∣∣∣∣+
∣∣Q (e−z)∣∣ ∣∣∣∣f ′f

∣∣∣∣+ |An2 ena2z|+
n−1∑
p=1

Cpn

∣∣∣An−p1 e(n−p)a1z
∣∣∣ |Ap2epa2z|

6 r2(σ−1+ε) +Mrσ−1+ε + 2n exp {(1 + ε) (n− 1) δ (a1z, θ) r}

6M1r
M2 exp {(1 + ε) (n− 1) δ (a1z, θ) r} , (3.8)

where M1 > 0 and M2 > 0 are some constants. By 0 < ε < 1
2(2n−1) and (3.8),

we have

exp

{
1

2
δ (a1z, θ) r

}
6M1r

M2 . (3.9)
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By δ (a1z, θ) > 0 we know that (3.9) is a contradiction.

b) When δ (a1z, θ) < 0, δ (a2z, θ) > 0, using a proof similar to the above, we
can also get a contradiction.

Case 2: Assume that arg a1 6= π, arg a1 = arg a2 and |a2| > n |a1|, which is
θ1 6= π and θ1 = θ2 and |a2| > n |a1|.

By Lemma 2.3, for the above ε, there is a ray arg z = θ such that θ ∈
(
−π2 ,

π
2

)
\

(E1 ∪ E6 ∪ E7) and δ (a1z, θ) > 0. Since |a2| > n |a1| and n > 2, then |a2| >
|a1|, thus δ (a2z, θ) > δ (a1z, θ) > 0. For sufficiently large r, we have by using
Lemma 2.2

|An2 ena2z| > exp {(1− ε)nδ (a2z, θ) r} , (3.10)

|An1 ena1z| 6 exp {(1 + ε)nδ (a1z, θ) r} , (3.11)∣∣∣An−p1 e(n−p)a1z
∣∣∣ 6 exp {(1 + ε) (n− 1) δ (a1z, θ) r} , p = 1, · · ·, n− 1, (3.12)

|Ap2epa2z| 6 exp {(1 + ε) (n− 1) δ (a2z, θ) r} , p = 1, · · ·, n− 1. (3.13)

By (3.1) , (3.2) , (3.7) and (3.10)− (3.13) we get

exp {(1− ε)nδ (a2z, θ) r} 6 |An2 ena2z|

6

∣∣∣∣f ′′f
∣∣∣∣+
∣∣Q (e−z)∣∣ ∣∣∣∣f ′f

∣∣∣∣+ |An1 ena1z|+
n−1∑
p=1

Cpn

∣∣∣An−p1 e(n−p)a1z
∣∣∣ |Ap2epa2z|

6 r2(σ−1+ε) +Mrσ−1+ε + exp {(1 + ε)nδ (a1z, θ) r}

+2n exp {(1 + ε) (n− 1) δ (a1z, θ) r} exp {(1 + ε) (n− 1) δ (a2z, θ) r}

6M1r
M2 exp {(1 + ε)nδ (a1z, θ) r} exp {(1 + ε) (n− 1) δ (a2z, θ) r} . (3.14)

Therefore, by (3.14), we obtain

exp {αr} 6M1r
M2 , (3.15)

where
α = [1− ε (2n− 1)] δ (a2z, θ)− (1 + ε)nδ (a1z, θ) .

Since 0 < ε < |a2|−n|a1|
2[(2n−1)|a2|+n|a1|] , θ1 = θ2 and cos (θ1 + θ) > 0, then

α = [1− ε (2n− 1)] |a2| cos (θ2 + θ)− (1 + ε)n |a1| cos (θ1 + θ)

= {|a2| − n |a1| − ε [(2n− 1) |a2|+ n |a1|]} cos (θ1 + θ)
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>
|a2| − n |a1|

2
cos (θ1 + θ) > 0.

Hence (3.15) is a contradiction.

Case 3: Assume that a1 < 0 and arg a1 6= arg a2, which is θ1 = π and θ2 6= π.

By Lemma 2.3, for the above ε, there is a ray arg z = θ such that θ ∈
(
−π2 ,

π
2

)
\

(E1 ∪ E6 ∪ E7) and δ (a2z, θ) > 0. Because cos θ > 0, we have δ (a1z, θ) =
|a1| cos (θ1 + θ) = − |a1| cos θ < 0. For sufficiently large r, we obtain by
Lemma 2.2

|An2 ena2z| > exp {(1− ε)nδ (a2z, θ) r} , (3.16)

|An1 ena1z| 6 exp {(1− ε)nδ (a1z, θ) r} < 1, (3.17)∣∣∣An−p1 e(n−p)a1z
∣∣∣ 6 exp {(1− ε) (n− p) δ (a1z, θ) r} < 1, p = 1, · · ·, n− 1,

(3.18)

|Ap2epa2z| 6 exp {(1 + ε) (n− 1) δ (a2z, θ) r} , p = 1, · · ·, n− 1. (3.19)

Using the same reasoning as in Case 1(a), we can get a contradiction.

Case 4. Assume that − 1
n (|a2| −m) < a1 < 0, |a2| > m and arg a1 = arg a2,

which is θ1 = θ2 = π and |a1| < 1
n (|a2| −m), then |a2| > n |a1| + m, hence

|a2| > n |a1|.

By Lemma 2.3, for the above ε, there is a ray arg z = θ such that θ ∈
(
π
2 ,

3π
2

)
\

(E1 ∪ E6 ∪ E7), then cos θ < 0, δ (a1z, θ) = |a1| cos (θ1 + θ) = − |a1| cos θ > 0,
δ (a2z, θ) = |a2| cos (θ2 + θ) = − |a2| cos θ > 0. Since |a2| > n |a1| and n > 2,
then |a2| > |a1|, thus δ (a2z, θ) > δ (a1z, θ) > 0, for sufficiently large r, we get
(3.10)− (3.13) hold. For θ ∈

(
π
2 ,

3π
2

)
we have∣∣Q (e−z)∣∣ 6Me−mr cos θ. (3.20)

By (3.1) , (3.2) , (3.10)− (3.13) and (3.20), we get

exp {(1− ε)nδ (a2z, θ) r} 6 |An2 ena2z|

6

∣∣∣∣f ′′f
∣∣∣∣+
∣∣Q (e−z)∣∣ ∣∣∣∣f ′f

∣∣∣∣+ |An1 ena1z|+
n−1∑
p=1

Cpn

∣∣∣An−p1 e(n−p)a1z
∣∣∣ |Ap2epa2z|

6 r2(σ−1+ε) +Mrσ−1+εe−mr cos θ + exp {(1 + ε)nδ (a1z, θ) r}

+2n exp {(1 + ε) (n− 1) δ (a1z, θ) r} exp {(1 + ε) (n− 1) δ (a2z, θ) r}
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6M1r
M2e−mr cos θ exp {(1 + ε)nδ (a1z, θ) r} exp {(1 + ε) (n− 1) δ (a2z, θ) r} .

(3.21)
Therefore, by (3.21), we obtain

exp {βr} 6M1r
M2 , (3.22)

where

β = [1− ε (2n− 1)] δ (a2z, θ)− (1 + ε)nδ (a1z, θ) +m cos θ.

Since |a2| − n |a1| −m > 0, then

2 [(2n− 1) |a2|+ n |a1|] > |a2| − n |a1| −m > 0.

Therefore,
|a2| − n |a1| −m

2 [(2n− 1) |a2|+ n |a1|]
< 1.

Then, we can take 0 < ε < |a2|−n|a1|−m
2[(2n−1)|a2|+n|a1|] . Since 0 < ε < |a2|−n|a1|−m

2[(2n−1)|a2|+n|a1|] ,

θ1 = θ2 = π and cos θ < 0, then

β = − cos θ {|a2| − n |a1| −m− ε [(2n− 1) |a2|+ n |a1|]}

> −1

2
(|a2| − n |a1| −m) cos θ > 0.

Hence, (3.22) is a contradiction. Concluding the above proof, we obtain
σ (f) = +∞.

Second step: We prove that σ2 (f) = 1. By

max{σ(Q
(
e−z
)
), σ((A1e

a1z +A2e
a2z)

n
)} = 1

and the Lemma 2.4, we get σ2 (f) 6 1. By Lemma 2.5, we know that there
exists a set E8 ⊂ (1,+∞) with finite logarithmic measure and a constant
B > 0, such that for all z satisfying |z| = r /∈ [0, 1] ∪ E8, we get∣∣∣∣f (j)(z)

f(z)

∣∣∣∣ 6 B [T (2r, f)]
j+1

(j = 1, 2) . (3.23)

Case 1: θ1 6= π and θ1 6= θ2. In first step, we have proved that there is a ray
arg z = θ where θ ∈

(
−π2 ,

π
2

)
\ (E1 ∪ E6 ∪ E7), satisfying

δ (a1z, θ) > 0, δ (a2z, θ) < 0 or δ (a1z, θ) < 0, δ (a2z, θ) > 0.



ON THE GROWTH OF SOLUTIONS OF SECOND ORDER LINEAR
DIFFERENTIAL EQUATIONS WITH ENTIRE COEFFICIENTS 45

a) When δ (a1z, θ) > 0, δ (a2z, θ) < 0, for sufficiently large r, we get (3.3) −
(3.7) holds. By (3.1) , (3.3)− (3.7) and (3.23), we obtain

exp {(1− ε)nδ (a1z, θ) r} 6 |An1 ena1z|

6

∣∣∣∣f ′′f
∣∣∣∣+
∣∣Q (e−z)∣∣ ∣∣∣∣f ′f

∣∣∣∣+ |An2 ena2z|+
n−1∑
p=1

Cpn

∣∣∣An−p1 e(n−p)a1z
∣∣∣ |Ap2epa2z|

6 B [T (2r, f)]
3

+MB [T (2r, f)]
2

+ 2n exp {(1 + ε) (n− 1) δ (a1z, θ) r}

6M1 exp {(1 + ε) (n− 1) δ (a1z, θ) r} [T (2r, f)]
3
. (3.24)

By 0 < ε < 1
2(2n−1) and (3.24), we have

exp

{
1

2
δ (a1z, θ) r

}
6M1 [T (2r, f)]

3
. (3.25)

By δ (a1z, θ) > 0 and (3.25), we have σ2 (f) > 1, then σ2 (f) = 1.

b) When δ (a1z, θ) < 0, δ (a2z, θ) > 0, using a proof similar to the above, we
can also get σ2 (f) = 1.

Case 2: θ1 6= π, θ1 = θ2 and |a2| > n |a1|. In first step, we have proved that
there is a ray arg z = θ where θ ∈

(
−π2 ,

π
2

)
\ (E1 ∪ E6 ∪ E7), satisfying

δ (a2z, θ) > δ (a1z, θ) > 0

and for sufficiently large r, we get (3.7) and (3.10) − (3.13) hold. By (3.1) ,
(3.7) , (3.10)− (3.13) and (3.23) , we get

exp {αr} 6M1 [T (2r, f)]
3
, (3.26)

where
α = [1− ε (2n− 1)] δ (a2z, θ)− (1 + ε)nδ (a1z, θ) > 0.

By α > 0 and (3.26), we have σ2 (f) > 1, then σ2 (f) = 1.

Case 3: a1 < 0 and θ1 6= θ2. In first step, we have proved that there is a ray
arg z = θ where θ ∈

(
−π2 ,

π
2

)
\ (E1 ∪ E6 ∪ E7), satisfying

δ (a2z, θ) > 0 and δ (a1z, θ) < 0

and for sufficiently large r, we get (3.16) − (3.19) hold. Using the same rea-
soning as in second step ( Case 1 (a)), we can get σ2 (f) = 1.
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Case 4: − 1
n (|a2| −m) < a1 < 0, |a2| > m and θ1 = θ2. In first step, we

have proved that there is a ray arg z = θ where θ ∈
(
π
2 ,

3π
2

)
\ (E1 ∪ E6 ∪ E7),

satisfying
δ (a2z, θ) > δ (a1z, θ) > 0

and for sufficiently large r, we get (3.10)−(3.13) hold. By (3.1) , (3.10)−(3.13) ,
(3.20) and (3.23) we obtain

exp {βr} 6M1 [T (2r, f)]
3
, (3.27)

where

β = [1− ε (2n− 1)] δ (a2z, θ)− (1 + ε)nδ (a1z, θ) +m cos θ > 0.

By β > 0 and (3.27), we have σ2 (f) > 1, then σ2 (f) = 1. Concluding the
above proof, we obtain σ2 (f) = 1. The proof of Theorem 1.1 is complete.

Example 1.1 Consider the differential equation

f ′′ +
(
−4e−3z − 4ie−z − 1

)
f ′ +

(
iez + 2e−z

)2
f = 0, (3.28)

where Q (z) = −4z3 − 4iz − 1, a1 = 1, a2 = −1, A1 (z) = i and A2 (z) = 2.
Obviously, the conditions of Theorem 1.1 (1) are satisfied. The entire function
f (z) = ee

z

, with σ (f) = +∞ and σ2 (f) = 1, is a solution of (3.28).

Example 1.2 Consider the differential equation

f ′′+
(
−8e−2z − 12ei

π
3 e−z − 1− 6ei

2π
3

)
f ′+

(
ei
π
3 e

2
3 z + 2e−

1
3 z
)3

f = 0, (3.29)

where Q (z) = −8z2 − 12ei
π
3 z− 1− 6ei

2π
3 , a1 = 2

3 , a2 = − 1
3 , A1 (z) = ei

π
3 and

A2 (z) = 2. Obviously, the conditions of Theorem 1.1 (1) are satisfied. The
entire function f (z) = ee

z

, with σ (f) = +∞ and σ2 (f) = 1, is a solution of
(3.29).

Example 1.3 Consider the differential equation

f ′′ +
(
−e−3z − 4ei

π
4 e−2z − 6ie−z − 1− 4ei

3π
4

)
f ′ +

(
e−

1
2 z + ei

π
4 e

1
2 z
)4

f = 0,

(3.30)

where Q (z) = −z3 − 4ei
π
4 z2 − 6iz − 1 − 4ei

3π
4 , a1 = − 1

2 , a2 = 1
2 , A1 (z) = 1

and A2 (z) = ei
π
4 . Obviously, the conditions of Theorem 1.1 (3) are satisfied.

The entire function f (z) = ee
z

, with σ (f) = +∞ and σ2 (f) = 1, is a solution
of (3.30).
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4 Proof of Theorem 1.2

We prove that λ (f − ϕ) = λ (f − ϕ) = σ (f) = +∞ and λ2 (f − ϕ) =
λ2 (f − ϕ) = σ2 (f) = 1. First, setting ω = f − ϕ. Since σ (ϕ) < ∞, then we
have σ (ω) = σ (f) = +∞. From (1.1), we have

ω′′ +Q
(
e−z
)
ω′ + (A1e

a1z +A2e
a2z)

n
ω = H, (4.1)

where H = − [ϕ′′ +Q (e−z)ϕ′ + (A1e
a1z +A2e

a2z)
n
ϕ] . Now we prove that

H 6≡ 0. In fact if H ≡ 0, then

ϕ′′ +Q
(
e−z
)
ϕ′ + (A1e

a1z +A2e
a2z)

n
ϕ = 0. (4.2)

Hence ϕ is a solution of equation (1.1) with σ (ϕ) = ∞ and by Theorem 1.1,
it is a contradiction. Since σ (f) = ∞, σ (ϕ) < ∞ and σ2 (f) = 1, we get
σ2 (ω) = σ2 (f − ϕ) = σ2 (f) = 1. By the Lemma 2.6 and Lemma 2.7, we have
λ (ω) = λ (ω) = σ(ω) = σ (f) = +∞ and λ2 (ω) = λ2 (ω) = σ2(ω) = σ2 (f) =
1, i.e., λ (f − ϕ) = λ (f − ϕ) = σ (f) = +∞ and λ2 (f − ϕ) = λ2 (f − ϕ) =
σ2 (f) = 1.

5 Proof of Theorem 1.3

Suppose that f 6≡ 0 is a solution of equation (1.1), then σ (f) = +∞ by
Theorem 1.1. Since σ (ϕ) < 1, then by Theorem 1.2, we have λ (f − ϕ) = +∞.
Now we prove that λ (f ′ − ϕ) = ∞. Set g1 (z) = f ′ (z)− ϕ (z), then σ (g1) =
σ (f ′) = σ (f) = ∞. Set B (z) = Q (e−z) and R (z) = A1e

a1z + A2e
a2z,

then B′ (z) = −e−zQ′ (e−z) and R′ = (A′1 + a1A1) ea1z + (A′2 + a2A2) ea2z.
Differentiating both sides of equation (1.1), we have

f ′′′ +Bf ′′ + (B′ +Rn) f ′ + nR′Rn−1f = 0. (5.1)

By (1.1), we have

f = − 1

Rn
(f ′′ +Bf ′) . (5.2)

Substituting (5.2) into (5.1), we have

f ′′′ +

(
B − nR

′

R

)
f ′′ +

(
B′ +Rn − nBR

′

R

)
f ′ = 0. (5.3)

Substituting f ′ = g1 + ϕ, f ′′ = g′1 + ϕ′, f ′′′ = g′′1 + ϕ′′ into (5.3), we get

g′′1 + E1g
′
1 + E0g1 = E, (5.4)
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where

E1 = B − nR
′

R
, E0 = B′ +Rn − nBR

′

R
,

E = −
{
ϕ′′ +

(
B − nR

′

R

)
ϕ′ +

(
B′ +Rn − nBR

′

R

)
ϕ

}
.

Now we prove that E 6≡ 0. In fact, if E ≡ 0, then we get

ϕ′′

ϕ
R+

ϕ′

ϕ
(BR− nR′) +B′R− nBR′ +Rn+1 = 0. (5.5)

Obviously ϕ′′

ϕ , ϕ′

ϕ are meromorphic functions with σ
(
ϕ′′

ϕ

)
< 1, σ

(
ϕ′

ϕ

)
< 1.

We can rewrite (5.5) in the form

m∑
k=0

fke
(a1−k)z +

m∑
l=0

hle
(a2−l)z +

n∑
p=1

Cpn+1A
n+1−p
1 Ap2e

[(n+1−p)a1+pa2]z

+An+1
1 e(n+1)a1z +An+1

2 e(n+1)a2z = 0, (5.6)

where fk (k = 0, 1, · · ·,m) and hl (l = 0, 1, · · ·,m) are meromorphic functions
with σ (fk) < 1 and σ (fl) < 1. Set I ={a1 − k (k = 0, 1, · · ·,m), a2 − l (l =
0, 1, · · ·,m), (n+ 1− p) a1 + pa2 (p = 1, 2, · · ·, n), (n+ 1) a1, (n+ 1) a2}. By
the conditions of the Theorem 1.1, it is clear that (n+ 1) a1 6= a1, (n+ 1) a2,
(n+ 1− p) a1 + pa2 (p = 1, 2, · · ·, n).
(i) If (n+ 1) a1 6= a1 − k (k = 1, · · ·,m), a2 − l (l = 0, 1, · · ·,m), then we write
(5.6) in the form

An+1
1 e(n+1)a1z +

∑
β∈Γ1

αβe
βz = 0,

where Γ1 ⊆ I \ {(n+ 1) a1}. By Lemma 2.8 and Lemma 2.9, we get A1 ≡ 0,
it is a contradiction.

(ii) If (n+ 1) a1 = γ such that γ ∈{a1 − k (k = 1, · · ·,m), a2 − l (l =
0, 1, · · ·,m)}, then (n+ 1) a2 6= β for all β ∈ I \ {(n+ 1) a2}. Hence, we
write (5.6) in the form

An+1
2 e(n+1)a2z +

∑
β∈Γ2

αβe
βz = 0,

where Γ2 ⊆ I \ {(n+ 1) a2}. By Lemma 2.8 and Lemma 2.9, we get A2 ≡ 0,
it is a contradiction. Hence, E 6≡ 0 is proved. We know that the functions
E1, E0 and E are of finite order. By Lemma 2.6 and (5.4), we have λ (g1) =
λ (f ′ − ϕ) =∞.
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Now we prove that λ (f ′′ − ϕ) =∞. Set g2 (z) = f ′′ (z)− ϕ (z), then σ (g2) =
σ (f ′′) = σ (f) =∞. Differentiating both sides of equation (1.1), we have

f (4) +Bf ′′′ + (2B′ +Rn) f ′′ +
(
B′′ + 2nR′Rn−1

)
f ′

+n
[
R′′Rn−1 + (n− 1)R′2Rn−2

]
f = 0. (5.7)

Combining (5.2) with (5.7), we get

f (4) +Bf ′′′ +

(
2B′ +Rn − nR

′′

R
− n (n− 1)

R′2

R2

)
f ′′

+

(
B′′ + 2nR′Rn−1 − nBR

′′

R
− n (n− 1)B

R′2

R2

)
f ′ = 0. (5.8)

Now we prove that B′ +Rn − nBR′

R 6≡ 0. Suppose that B′ +Rn − nBR′

R ≡ 0,
then we have

B′R+Rn+1 − nBR′ = 0. (5.9)

We can write (5.9) in the form (5.6), then by the same reasoning as in the

proof of λ (f ′ − ϕ) = ∞ we get a contradiction. Hence B′ + Rn − nBR′

R 6≡ 0
is proved. Set

ψ (z) = B′R+Rn+1 − nBR′, (5.10)

S1 = 2B′R2 +Rn+2 − nR′′R− n (n− 1)R′2, (5.11)

S2 = B′′R2 + 2nR′Rn+1 − nBR′′R− n (n− 1)BR′2, (5.12)

S3 = BR− nR′. (5.13)

By (5.3) , (5.10) and (5.13), we get

f ′ = − R

ψ (z)

(
f ′′′ +

S3

R
f ′′
)
. (5.14)

By (5.14) , (5.11) , (5.12) and (5.8), we obtain

f (4) +

(
B − S2

Rψ (z)

)
f ′′′ +

(
S1

R2
− S2S3

R2ψ (z)

)
f ′′ = 0. (5.15)

Substituting f ′′ = g2 + ϕ, f ′′′ = g′2 + ϕ′, f (4) = g′′2 + ϕ′′ into (5.15) we get

g′′2 +H1g
′
2 +H0g2 = H, (5.16)

where

H1 = B − S2

Rψ (z)
, H0 =

S1

R2
− S2S3

R2ψ (z)
,
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−H = ϕ′′ + ϕ′H1 + ϕH0.

We can get

H1 =
L1 (z)

Rψ (z)
, H0 =

L0 (z)

Rψ (z)
, (5.17)

where

L1 (z) = B′BR2 +BRn+2 − nB2R′R−B′′R2 − 2nR′Rn+1

+nBR′′R+ n (n− 1)BR′2, (5.18)

L0 (z) = 2B′2R2 + 3B′Rn+2 − 2nB′BR′R+R2n+2 − 3nBR′Rn+1

−nB′R′′R− nR′′Rn+1 − n (n− 1)B′R′2 +
(
n2 + n

)
R′2Rn −B′′BR2

+nB2R′′R+ n (n− 1)B2R′2 + nB′′R′R. (5.19)

Therefore

−H
ϕ

=
1

Rψ (z)

(
ϕ′′

ϕ
Rψ (z) +

ϕ′

ϕ
L1 (z) + L0 (z)

)
, (5.20)

Rψ (z) = B′R2 +Rn+2 − nBR′R. (5.21)

Now we prove that −H 6≡ 0. In fact, if −H ≡ 0, then by (5.20) we have

ϕ′′

ϕ
Rψ (z) +

ϕ′

ϕ
L1 (z) + L0 (z) = 0. (5.22)

Obviously, ϕ
′′

ϕ and ϕ′

ϕ are meromorphic functions with σ
(
ϕ′′

ϕ

)
< 1, σ

(
ϕ′

ϕ

)
<

1. By (5.18) , (5.19) and (5.21), we can rewrite (5.22) in the form

A2n+2
1 e(2n+2)a1z +A2n+2

2 e(2n+2)a2z +

2n+1∑
p=1

Cp2n+2A
2n+2−p
1 Ap2e

[(2n+2−p)a1+pa2]z

+
∑

06p62
06k62m

fp,ke
[(2−p)a1+pa2−k]z +

∑
06p6n+2

06k6m

hp,ke
[(n+2−p)a1+pa2−k]z = 0, (5.23)

where fp,k (0 6 p 6 2, 0 6 k 6 2m) and hp,k (0 6 p 6 n+ 2, 0 6 k 6 m) are
meromorphic functions with σ (fp,k) < 1 and σ (hp,k) < 1. Set
J ={(2n+ 2) a1, (2n+ 2) a2, (2n+ 2− p) a1 + pa2 (p = 1, 2, · · ·, 2n + 1),
(2− p) a1 + pa2 − k (p = 0, 1, 2; k = 0, · · ·, 2m), (n+ 2− p) a1 + pa2 − k
(p = 0, 1, · · ·, n+ 2; k = 0, 1, · · ·,m)}. By the conditions of Theorem 1.3, it is
clear that (2n+ 2) a1 6= (2n+ 2) a2, (2n+ 2− p) a1+pa2 (p = 1, 2, · · ·, 2n+1),
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2a1, (n+ 2) a1 and (2n+ 2) a2 6= (2n+ 2) a1, (2n+ 2− p) a1 + pa2 (p =
1, 2, · · ·, 2n+ 1), 2a2, (n+ 2) a2.

(1) By the conditions of Theorem 1.3 (i), we have (2n+ 2) a1 6= β for all
β ∈ J \ {(2n+ 2) a1}, hence we write (5.23) in the form

A2n+2
1 e(2n+2)a1z +

∑
β∈Γ1

αβe
βz = 0,

where Γ1 ⊆ J \ {(2n+ 2) a1}. By Lemma 2.8 and Lemma 2.9, we get A1 ≡ 0,
it is a contradiction.

(2) By the conditions of Theorem 1.3 (ii), we have (2n+ 2) a2 6= β for all
β ∈ J \ {(2n+ 2) a2}, hence we write (5.23) in the form

A2n+2
2 e(2n+2)a2z +

∑
β∈Γ2

αβe
βz = 0,

where Γ2 ⊆ J \ {(2n+ 2) a2}. By Lemma 2.8 and Lemma 2.9, we get A2 ≡ 0,
it is a contradiction. Hence, H 6≡ 0 is proved. We know that the functions
H1, H0 and H are of finite order. By Lemma 2.6 and (5.16), we have λ (g2) =
λ (f ′′ − ϕ) =∞. The proof of Theorem 1.3 is complete.
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