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Abstract

In this paper, we investigate the order and the hyper-order of growth
of solutions of the linear differential equation

f// + Q (e—z) fl + (Alealz +A26a22)7lf — O,

where n > 2 is an integer, A; (z) (#0) (j =1,2) are entire functions
with max{c(4;):7=1,2} < 1, Q(2) = gmz™ + -+ qrz+ q is a
nonconstant polynomial and a1, a2 are complex numbers. Under some
conditions, we prove that every solution f (z) Z 0 of the above equation
is of infinite order and hyper-order 1.

1 Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the funda-
mental results and the standard notations of the Nevanlinna’s value distribu-
tion theory (see [8], [13]). Let o (f) denote the order of growth of an entire
function f and the hyper-order oq (f) of f is defined by (see [9], [13])

loglogT log log log M
o2 (f) = limsup 18T (o f) _ o logloglog M (r, f)
r—+o0 log T r—+4o00 10g T

)
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where T (r, f) is the Nevanlinna characteristic function of f and M (r, f) =
max|.|— | f (2)].

In order to give some estimates of fixed points, we recall the following defini-
tion.

Definition 1.1 ([3], [10]) Let f be a meromorphic function. Then the expo-
nent of convergence of the sequence of distinct fixed points of f (2) is defined
by

_ logﬁ(r,ﬁ)
7(f) = A(f — 2) = limsup—————+~
r—+00 logr

where N(r,%) is the counting function of distinct zeros of f(z) in
{z :|z| < r}. We also define

_ log N(r, +—
AMf—p)= 1imsupM
r—+00 logr

for any meromorphic function ¢ (z).

In [11], Peng and Chen have investigated the order and hyper-order of solutions
of some second order linear differential equations and have proved the following
result.

Theorem A ([11]) Let A;(z) (£0) (j =1,2) be entire functions with
o(A;) < 1, a1, az be complex numbers such that aras # 0, a1 # ag (sup-
pose that |a1] < |az|). If arga; # 7 or a1 < —1, then every solution f #£ 0 of
the equation

fl/+e—zf/+(Alealz+A2eazz)f:0

has infinite order and oo (f) = 1.

The main purpose of this paper is to extend and improve the results of
Theorem A to some second order linear differential equations. In fact we will
prove the following results.

Theorem 1.1 Let n > 2 be an integer, A; (z) (#0) (j = 1,2) be entire func-
tions with max {o (4;) : j =1,2} <1, Q (2) = ¢mz™+- - -+q12+qo be noncon-
stant polynomial and a1, as be complex numbers such that ayas # 0, a1 # as.
If (1) argay # 7 and argay # argasg or (2) argay # 7, arga; = argas and
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lag| > nlai| or (3) a1 < 0 and argay # argas or (4) —L (lao| —m) < a1 <0,
laz| > m and argay = argas, then every solution f # 0 of the equation

"+ Q(e77) f/ + (Are™ + Axe™*)" f =0 (1.1)
satisfies o (f) = 400 and o2 (f) = 1.

Theorem 1.2 Let A;(z) (j=1,2), Q(2), a1, a2, n satisfy the additional
hypotheses of Theorem 1.1. If ¢ #£ 0 is an entire function of order o (p) <
+00, then every solution f Z 0 of equation (1.1) satisfies

Af=@)=A(f—¢)=0(f) =+,

X(f—p)=X(f-¢) =0 (f) =1

Theorem 1.3 Let A;(z) (j=1,2), Q(2), a1, as, n satisfy the additional
hypotheses of Theorem 1.1. If ¢ # 0 is an entire function of order o () < 1,
then every solution f #£ 0 of equation (1.1) satisfies

A=) =X(f'—¢) = +oo.

Furthermore, if (i) 2n+2)a; # (2—p)ay + pas — k (p = 0,1,2; k =
0,17'“,2771), (n+27p)a1 JFPGQ*I@ (p = 0317"'5n+2; k = 0317"'3m)
or (ii) 2n+2)az # 2—p)ar +paz — k (p = 0,1,2; k = 0,1,---,2m),
(n+2—p)ay +paz—k (p=0,1,--,n+2; k=0,1,---,m), then

A(f" =) = +oo0.

Corollary 1.1 Let A;(z) (j =1,2), Q(2), a1, as, n satisfy the additional
hypotheses of Theorem 1.1. If f # 0 is any solution of equation (1.1), then
f, [ all have infinitely many fized points and satisfy

() =7 () = oo

Furthermore, if (1) 2n+2)a1 # (2—p)ay + pas — k (p = 0,1,2; k =
0,1,--,2m), (n+2—p)ay +pas — k (p=0,1,--n+2; k=0,1,---,m)
or (i) 2n+2)ay # (2—p)ay +pas — k (p = 0,1,2; k = 0,1,---,2m),
(n+2—play +pas —k (p=0,1,--n+2; k=0,1,---,m), then [’ has
infinitely many fized points and satisfies

7(f") = oo.
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2 Preliminary lemmas

To prove our theorems, we need the following lemmas.

Lemma 2.1 ([7]) Let f be a transcendental meromorphic function with
o(f) =0 <+oo, H={(k1,71),(k2,j2), - (kg,Jq)} be a finite set of distinct
pairs of integers satisfying k; > j; 2 0 (i=1,---,q) and let € > 0 be a given
constant. Then,

(i) there exists a set Ey C [—%, 377’) with linear measure zero, such that, if
(NS [—g, 37") \ E1, then there is a constant Ry = Ro (¢) > 1, such that for
all z satisfying argz =1 and |z| = Ro and for all (k,j) € H, we have

f* (2)

)
(ii) there exists a set Ey C (1,400) with finite logarithmic measure, such that
for all z satisfying |z| ¢ E2U|0,1] and for all (k,j) € H, we have

M ()

e

(iil) there exists a set E3 C (0,400) with finite linear measure, such that for
all z satisfying |z| ¢ Es and for all (k,j) € H, we have

f¥ (2)
’ fO)(2)

< ‘Z|(k7j)(071+5) 7 (21)

< ‘Z|(k7j)(071+5) 7 (22)

< || Fidee) (2.3)

Lemma 2.2 ([4]) Suppose that P (z) = (a+1i8) 2" + --- («, B are real num-
bers, |al+ 8] # 0) is a polynomial with degree n > 1, that A(z) (£ 0) is an
entire function with o (A) < n. Set g(z) = A(z)eP®), z = re'?, §(P,0) =
acosnd — Bsinnf. Then for any given € > 0, there is a set Ey C [0,27) that
has linear measure zero, such that for any 6 € [0,27)\ (E4U E5), there is
R > 0, such that for |z| =r > R, we have

(i) if 6 (P,0) > 0, then

exp{(1—¢)d(P,0)r"} <|g (reie)’ <exp{(l1+¢)d(PO)r"}; (2.4)
(i) if 0 (P,0) <0, then
exp{(1+¢e)d(P,0)r"} < |g (rei9)| <exp{(1—¢)d(P,0)r"}, (2.5)

where E5 = {0 € [0,27) : § (P,0) = 0} is a finite set.
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Lemma 2.3 ([11]) Suppose that n > 1 is a positive entire number. Let

P;(2) = ajnz™ + -+ (j =1,2) be nonconstant polynomials, where ajq (¢ =
1,---,n) are compler numbers and ainas, # 0. Set z =re', aj, = |a;n| e,
0, € [-3, 3), 6(P;,0) = l|ajn|cos(0;+nb), then there is a set
Es C [f%, %) that has linear measure zero. If 01 # O, then there exists a
ray argz =0, 0 € (—5=, =) \ (Eg U Ey), such that
or

(5(P1,(9)<0, (5(P2,(9)>0, (27)

where E; = {9 S [—%, 2—2) 10 (P, 0) = O} is a finite set, which has linear

measure zero.

Remark 2.1 ([11]) In Lemma 2.3, if € (=%, &~ ) \ (Eg U E7) is replaced by

2n’ 2n

0 € (£,3Z)\ (Es U Er), then we obtain the same result.

2n’ 2n

Lemma 2.4([5]) Suppose that k > 2 and By, B, - -, Bi_1 are entire functions
of finite order and let 0 = max{o (B;) : j =0,---,k —1}. Then every solution
f of the equation

f(k’) + Bk,lf(k_l) 4+ B f +Bof =0 (2.8)

satisfies o9 (f) < 0.

Lemma 2.5 ([7]) Let f(z) be a transcendental meromorphic function, and let
a > 1 be a given constant. Then there exist a set Fs C (1,00) with finite
logarithmic measure and a constant B > 0 that depends only on « and t,j
(0 <i<j<k), such that for all z satisfying |z| = r ¢ [0,1] U Es, we have

)

@) _ p [Tlarf)
fO(z) r

Lemma 2.6([2]) Let Ay, A1, -+, Ax—1, F Z 0 be finite order meromorphic

functions. If f is a meromorphic solution with o (f) = +oo of the equation

FO 4 Ay f5 D 4 Ay f + Aof = F, (2.10)

(log®™ r)logT(ar,f)} ) . (2.9)

then f satisfies 7
A(f) = A(f) = o(f) = +oc.
Lemma 2.7 ([1]) Let Ag, Ay, -+, Ax_1, F % 0 be finite order meromorphic

functions. If f is a meromorphic solution of equation (2.10) with o (f) = +oo
and o3 (f) = o, then f satisfies

A2 (f) = X2 (f) = 02(f) = 0. (2.11)
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Lemma 2.8([6], [13]) Suppose that f1(2), f2(2), -+, fn (2) (n = 2) are mero-
morphic functions and ¢1 (z),92(2),- -+, gn (2) are entire functions satisfying
the following conditions:

(i) X fi(2)en® =0;
i=1
(ii) g (2) — gk () are not constants for 1 < j < k <
(iii) For 1 < j <n, 1 <h <k <n, T(r,f;) fo{T(r egﬂz) 9N (r — oo,

r & Ey), where Eq is a set with ﬁmte linear measure.
Then fj(2)=0(j=1,---,n).

Lemma 2.9 ([12]) Suppose that fi (z), fa (2), -, fn (2) (n = 2) are meromor-
phic functions and g1 (2),92(2), -, gn (2) are entire functions satisfying the
following conditions:

(1) i f]( )697 fvz+la
j=1

(i) If 1 < j <n —|—1 1 < k < n, the order of f; is less than the order of
e9x(2), If n=221<j<n+1, 1<h<k<n, and the order of f; is less
than the order of e9r~ 9’°. Then f;(2) =0 (j =1,2,---,n+1).

3 Proof of Theorem 1.1
Assume that f (# 0) is a solution of equation (1.1).

First step: We prove that o (f) = +00. Suppose that o (f) = 0 < +00. We
rewrite (1.1) as

7 n—1
L+Q( 7z)7+An na1z+An nangrZCpAn Pe (n— p)aleP eP%2% — ().

7 7 2
(3.1)
By Lemma 2.1, for any given e,
. lag| —n a;]| 1 }
0 < e < min
{2 [(2n —1)]az| +nla1]]’ 2(2n — 1)
there exists a set By C [—%,3F) of linear measure zero, such that if § €

[—%,3%) \ E1, then there is a constant Ry = Ro () > 1, such that for all 2

satisfying arg z = 6 and |z| = r > Ry, we have

f(j) (2) i(c—1 .

L g pilom1te) (5 =1,2). 3.2

1o g 2
Let z = re?) a1 = |a1| €, ay = |as| €2, 01,0, € [—g 7”) We know that

0 (pa1z,0) = pé (a12,0) and ¢ (pagz,0) = pd (azz,0), where p > 0.
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Case 1: Assume that arga; # 7 and arga; # argas, which is 61 # 7 and
01 # 0.

By Lemma 2.2 and Lemma 2.3, for the above ¢, there is a ray arg z = 0 such
that 0 € ( 5 2) \ (Ey U Eg U E;) (where Eg and E7; are defined as in Lemma
2.3, E1 U Eg U E7 is of the linear measure zero), and satisfying

1) (alz,ﬂ) > 0, 6(@22,9) <0

or

d(a12,0) <0, § (azz,0) > 0.

a) When § (a1 2,0) > 0, 0 (azz,0) < 0, for sufficiently large r, we get by Lemma
2.2
|ATe™ %] > exp {(1 — &) nd (a12,0) r}, (3.3)

|ASem 2% < exp{(1 — &) nd (azz,0)r} <1, (3.4)

‘A?ipe("_p)‘“z <exp{(1+¢)(n—p)d(arz,0)r}

<exp{(l+e)(n—1)d(a1z,0)r},p=1,---,n—1, (3.5)
|ABeP®2?| < exp{(1 —¢)pd (agz,0)r} <1,p=1,---,n—1. (3.6)
For 6 € (—g, g) we have

|Q (e7%)| = |gme ™ + -+ q1e”" + qo
<lam| |67 4+ + |aa| |e7%] + [qol

<lam| €™ 0 oo Jqa 777 [go] < M, (3.7)
where M > 0 is a some constant. By (3.1) — (3.7), we get

exp{(1 —¢&)nd (a1z,0)r} <|ATe™*?

+|Q (e7%)

[Agera

‘ f//

f n—1
%]+ 1agereset+ E e
p=1
< r2=14e) L Mo L 9 exp {(1+ ) (n— 1) 6 (ar2,0) r}
<M exp{(1+¢) (n—1)6 (a12,0) 7}, (3:8)

where M; > 0 and My > 0 are some constants. By 0 < e < and (3.8),
we have

1
2(2n—1)

exp{;é(alz,ﬂ)r} < MyrMz, (3.9)
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By 6 (a12,0) > 0 we know that (3.9) is a contradiction.

b) When 0 (a12,0) < 0, § (azz,0) > 0, using a proof similar to the above, we
can also get a contradiction.

Case 2: Assume that arga; # 7, arga; = argas and |az| > n|a1|, which is
01 # 7 and 01 = 05 and |az| > nlaq.

By Lemma 2.3, for the above ¢, there is a ray arg z = 6 such that 6 € (=5, %)\
(E1UEgU E7) and 6 (a12,6) > 0. Since |az| > nlai| and n > 2, then |az| >
|a1|, thus 6 (agz,0) > 6 (a12,6) > 0. For sufficiently large r, we have by using
Lemma 2.2

|AZe"22| > exp {(1 — £) nd (azz, 0) 1}, (3.10)

|[ATe™*| < exp{(1+¢)nd (a12,0)r}, (3.11)

AVPemPazl Coxp {(1+e)(n—1)6(ar12,0)r}, p=1,--,n—1, (3.12)
|ABeP2%| < exp{(1+¢€) (n—1)6 (azz,0)r}, p=1,--n—1.  (3.13)

By (3.1), (3.2), (3.7) and (3.10) — (3.13) we get
exp{(1 — &) nd (azz,0) r} < |A5e"*?|

LH
f

< ‘

, n—1
n ’Q (e_z)’ ‘ff’ +|ATemar®| 4+ Z cr ‘A?—Pe(n—p)alz ‘Agepazz|
p=1

< 21O L VoI Lexp (14 €) nd (ar2,0) 7}
+2%exp{(1+¢€)(n—1)6(a12,0)r}exp{(1+¢) (n—1)6 (azz,0)r}
< MirM2exp {(1 + &) nd (a12,0) r}exp {(1 +¢) (n — 1) (agz,0)r}. (3.14)
Therefore, by (3.14), we obtain

exp {ar} < MyrMz, (3.15)
where
a=[1-e2n—-1)]0(azz,0) — (1 +e)nd (a12,0).
Since 0 < € < %‘“l”’ 61 = 05 and cos (6, + 6) > 0, then

2[(2n—1)|az|+n|ai
a=[1-¢(2n—1)]|az|cos (02 +0) — (1 +€) n|a1| cos (61 + )

= {las| = nfai| —[(2n = 1) az| + na1[]} cos (61 + 0)



ON THE GROWTH OF SOLUTIONS OF SECOND ORDER LINEAR
DIFFERENTIAL EQUATIONS WITH ENTIRE COEFFICIENTS 43

M cos (61 + 0) > 0.

Hence (3.15) is a contradiction.

Case 3: Assume that a; < 0 and arga; # argas, which is #; = 7 and 6, # 7.

By Lemma 2.3, for the above ¢, there is a ray arg z = 6 such that 6 € (fg, g)\
(E1UEg U E7) and 6 (az2z,60) > 0. Because cosf > 0, we have d (a12,0) =
lai]cos (81 +0) = —laz|cosf < 0. For sufficiently large r, we obtain by
Lemma 2.2

|AZe™2%| > exp {(1 — &) nd (azz,0) r}, (3.16)
|ATe™?| < exp{(1 —e)nd (a12,0)r} <1, (3.17)
AP < e (1 - 2) (- p) S (arz )} <1, p =1 n— 1,

(3.18)
|ABeP®2?| < exp{(1+¢)(n—1)d(azz,0)r}, p=1,---,n— 1. (3.19)

Using the same reasoning as in Case 1(a), we can get a contradiction.
Case 4. Assume that —% (laz] —m) < a1 <0, |az| > m and arga; = argaq,

which is 6, = 02 = 7 and |a1| < = (Jaz| — m), then |az| > n|ai| + m, hence
laz| > nlay].

1
n

By Lemma 2.3, for the above ¢, there is a ray arg z = 6 such that 6 € (g, 37”) \
(E1UEgU Er), then cos@ < 0, 0 (a12,0) = |a1| cos (61 + 6) = —|az| cosd > 0,
d (azz,0) = |ag| cos (02 + 0) = — |az|cosd > 0. Since |az| > nla1| and n > 2,
then |az| > |a1], thus ¢ (azz,0) > 6 (a12,0) > 0, for sufficiently large r, we get
(3.10) — (3.13) hold. For § € (3, 3F) we have

1Q ()| < Memmmeoss, (3.20)
By (3.1), (3.2), (3.10) — (3.13) and (3.20), we get

exp {(1 —¢)nd (azz,0)r} < |Ae™*??|

|
f

/ n—1
+ |Q (e_z)| ‘J; + |Aem®| 4 Z cr ‘A?—Pe(n—P)mz |Agepazz|
p=1

L p2lo=tte) | pppo—ltegmmrcost 4 ovp {(1+¢e)nd (a1z,0)r}

+2"exp{(1+¢&)(n—1)d(a12,0)r}exp{(1+¢) (n—1)6 (azz,0)r}
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< MyrMze=mreosfexp {(1 4+ €)nd (a12,0) r}exp {(1+¢) (n — 1) 6 (agz,0) r} .
(3.21)

Therefore, by (3.21), we obtain

exp {Br} < Myr™2, (3.22)
where

B=[1—-e(2n—1)]6(azz,0) — (1 +¢)nd(arz,0) +mcosb.
Since |az| — n]ai| — m > 0, then
2[(2n — 1) |az| + nla1]] > |az| —nla1| — m > 0.

Therefore,

|az| = nlar| —m

< 1.
2[(2n — 1) |ag| + nla1]]

|laz|—nlai]—m

Since 0 < e < BT [ Frla]]’

laz|—nlai|—m
Then, we can take 0 < € < S[@n—T)[az[Fnlai]]"

f#1 = 05 = w and cosf < 0, then

B =—cosb{laz] —nlai| —m —e[(2n — 1) Jaz| +nla1|]}

1
> *§(|a2| —nlai| —m)cosf > 0.

Hence, (3.22) is a contradiction. Concluding the above proof, we obtain
o (f) = +oo.

Second step: We prove that o3 (f) = 1. By
max{c(Q (%)), o((A1e™* + Aze®*)")} =1

and the Lemma 2.4, we get o2 (f) < 1. By Lemma 2.5, we know that there
exists a set Eg C (1,400) with finite logarithmic measure and a constant
B > 0, such that for all z satisfying |z| = r ¢ [0, 1] U Eg, we get

‘f(j)(z)
f(z)

Case 1: 61 # 7w and 0 # 65. In first step, we have proved that there is a ray
argz =0 where 6 € (—%, %)\ (E1 U Eg U E7), satisfying

<B[TEr, P (G=1,2). (3.23)

d(a12,0) > 0,8 (azz,0) <0 or d(arz,0) <0,6 (azz,0) > 0.
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a) When 6 (a12,0) > 0, § (az2z,0) < 0, for sufficiently large r, we get (3.3) —
(3.7) holds. By (3.1), (3.3) — (3.7) and (3.23), we obtain

exp{(1 —¢)nd (arz,0)r} < |ATe™**?|

A;l—pe(nfp)alz |A]23€pagz|

|
f

/ n—1
1@ ()£ +lageresr + e
p=1

< BT (2r, /)] + MB[T (2r, f)]> + 2" exp{(1 +¢) (n — 1) 6 (a12,0) r}
< Myexp{(1+¢)(n—1)d(arz0)r} [T (2r, f)]°. (3.24)
ByO0<e< m and (3.24), we have

exp {;6 (a12,0) r} < My [T (2r, )2 (3.25)
By 6 (a1z,0) > 0 and (3.25), we have o2 (f) > 1, then o2 (f) = 1.

b) When 6 (a12,6) < 0, 6 (azz,6) > 0, using a proof similar to the above, we
can also get o9 (f) = 1.

Case 2: 6 # m, 6 = 05 and |az| > nlai|. In first step, we have proved that
there is a ray arg z =  where § € (—%,%) \ (E1 U Eg U E7), satisfying

d(azz,0) > 6 (a12,0) >0

and for sufficiently large r, we get (3.7) and (3.10) — (3.13) hold. By (3.1),
(3.7), (3.10) — (3.13) and (3.23), we get

exp {ar} < My [T (2, /), (3.26)

where
a=[1-—¢e(2n—-1)]6(azz,0) — (1 +&)nd(arz,0) > 0.
By a > 0 and (3.26), we have o9 (f) > 1, then oo (f) = 1.
Case 3: a1 < 0 and 01 # 0. In first step, we have proved that there is a ray
arg z = 0 where 0 € (—g, g) \ (E1 U Eg U Er), satisfying
d (agz,0) > 0 and 6 (a12,0) <0

and for sufficiently large r, we get (3.16) — (3.19) hold. Using the same rea-
soning as in second step ( Case 1 (a)), we can get o (f) = 1.
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Case 4: —1 (laz| —m) < a1 <0, |az| > m and 6; = 6. In first step, we
have proved that there is a ray argz = 6 where 6 € (3, 37”) \ (E1UEs U Ey),
satisfying

d (a2z,0) > 6 (a12,0) >0
and for sufficiently large r, we get (3.10)—(3.13) hold. By (3.1), (3.10)—(3.13),
(3.20) and (3.23) we obtain

exp{Br} < My [T (2r, f)]?, (3.27)

where
B=[1—-e(2n—1)]d(azz,0)— (1 +¢)nd(a1z,0) +mcosd > 0.

By 8 > 0 and (3.27), we have o2 (f) > 1, then o3 (f) = 1. Concluding the
above proof, we obtain o9 (f) = 1. The proof of Theorem 1.1 is complete.

Example 1.1 Consider the differential equation
F" 4 (—4e73 —die™® — 1) ' + (ie* +2¢77) f =0, (3.28)

where Q (z) = —42% —4iz — 1, a1 = 1, ap = —1, A (2) = i and A, (2) = 2.
Obviously, the conditions of Theorem 1.1 (1) are satisfied. The entire function
f(z) =€, with o (f) = +o00 and o5 (f) = 1, is a solution of (3.28).

Example 1.2 Consider the differential equation
s 27 s 3
2 (—8e—2z —12¢Fe — 1 - 661%) it (e’@e%Z + 26—%2) F=0, (3.29)

where Q (2) = —82%2 — 12¢i52 — 1 — 6¢'3 | ay = 2 ag=—%, A1 (2) = €' and
Az (2) = 2. Obviously, the conditions of Theorem 1.1 (1) are satisfied. The
entire function f (z) = e, with o (f) = 400 and o3 (f) = 1, is a solution of
(3.29).

Example 1.3 Consider the differential equation

o - 1 o1 \4
'+ (—e_?’z —4e'ie™? —Gie T —1— 461%) i+ (e_fz + el?efz) f=0,
(3.30)
where Q (2) = —23 — 4e'52% — 6iz — 1 — 46'F | ay = —%, as = %, A1 (2) =1
and Az (2) = €'%. Obviously, the conditions of Theorem 1.1 (3) are satisfied.
The entire function f (z) = e, with o (f) = 400 and o3 (f) = 1, is a solution
of (3.30).
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4 Proof of Theorem 1.2

We prove that A(f —¢) = A(f—¢) = o(f) = +o0 and A (f — ) =
Xo (f —¢) = o2 (f) = 1. First, setting w = f — . Since o (¢) < oo, then we
have o (w) = o (f) = +o0. From (1.1), we have

UJN + Q (e—z) w/ + (Alealz + A26azz)nw — H, (41)

where H = —[p" + Q (e77) ¢’ + (A1€%7 + Aze2%)" ] . Now we prove that
H #0. In fact if H =0, then

"+ Q (e7%) ¢’ + (A1e™* + Aye™*)" o = 0. (4.2)

Hence ¢ is a solution of equation (1.1) with o (¢) = oo and by Theorem 1.1,
it is a contradiction. Since o (f) = o0, 0 () < oo and o3 (f) = 1, we get
o2 (W) = 02 (f — ¢) = 02 (f) = 1. By the Lemma 2.6 and Lemma 2.7, we have
Aw) = A(w) =0o(w) =0 (f) = +oo and A3 (w) = A2 (w) = 02(w) = 02 (f) =
Lie, AMf=¢) =A(f—¢) =0a(f) = +ocand X (f =) = X (f =) =
g9 (f) =1.

5 Proof of Theorem 1.3

Suppose that f # 0 is a solution of equation (1.1), then o (f) = 400 by
Theorem 1.1. Since o (¢) < 1, then by Theorem 1.2, we have A (f — ¢) = +oc.
Now we prove that A (f' —¢) = co. Set g1 (2) = f' (2) — ¢ (2), then o (g1) =
o(f'y = o(f) = 0. Set B(z) = Q(e ) and R(z) = Aje™?* + Aye®2*
then B’ (z) = —e *Q’ (e7?) and R = (A} + a141) e™? + (AL + agAz) €27,
Differentiating both sides of equation (1.1), we have

f///+Bf//+ (B/ +Rn) f/_’_nR/Rnflf =0. (5.1)
By (1.1), we have
f= g (14 BF). 2)

Substituting (5.2) into (5.1), we have
/ /
"+ (B - n];) I+ (B’ +R" — nBii) f'=o. (5.3)

Substituting f' = g1 + ¢, f" =g1 + ¢, " = g{ + ¢ into (5.3), we get

91 + Ergi + Eog1 = E, (54)
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where
/ /

R R
Ey=B-n—, E=DB+R'—nBp,

R R’
_ 1 _ e / / n o -
E= {gp +<B n )@+(B+R nB )(p}

Now we prove that E # 0. In fact, if £ =0, then we get
/

"
Y R+ 2 (BR—nR)+ B'R—nBR + R =0. 5.5
@ o

Obviously %/, % are meromorphic functions with o (%’) <1l,0 (%) < 1.

We can rewrite (5.5) in the form

Z fke(al_k)z + Z hle(a2—l)z + ZC’ZJFIA;LJrl*PAIz?e[(n-‘rl—p)al+pa2]z

+A§L+1e(n+1)a1z + A727,+16(n+1)agz =0, (56)
where fi (k= --m) and by (I1=0,1,---,m) ar eromorphic functions
with o (fi) <1 ndo(fl)<1. Set I ={a; —k (k= 01 m), az —1 (I =

0,1,---,;m), (n+1—p)lax +paz (p =1,2,---,n), (n+1)a; (n+1)a2} By
the conditions of the Theorem 1.1, it is clear that (n+ 1) a1 # a1, (n + 1) ag,
(n+1-—p)as +paz (p=1,2,---,n).
DI mn+la#ar—k((k=1,--,m),ae—1(1=0,1,---,m), then we write
(5.6) in the form
A{L+16(n+1)a1z+ Z aﬁeﬁz =0,
BEr:

where I'y C T\ {(n+1)a1}. By Lemma 2.8 and Lemma 2.9, we get 4; = 0,
it is a contradiction.

(ii) If (n+1)a; = ~ such that v €{a1 —k (k = 1,---,;m), ag — 1 (I =
0,1,---,m)}, then (n+1)ag # B for all § € I\ {(n+1)az}. Hence, we
write (5.6) in the form

Ag+16(n+l)agz + Z aﬁeﬁz — 0,
BET

where I's C T\ {(n+1)az}. By Lemma 2.8 and Lemma 2.9, we get As = 0,
it is a contradiction. Hence, E # 0 is proved. We know that the functions
Ey, Ey and E are of finite order. By Lemma 2.6 and (5.4), we have A(g1) =

X —¢)=
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Now we prove that A (f" — ¢) = 0o. Set g2 (2) = " (2) — ¢ (2), then o (g2) =
o (f") = o (f) = co. Differentiating both sides of equation (1.1), we have

SO+ Bf"+ 2B + R [+ (B" + mRR") [
+n [R'R" '+ (n—1)R?*R" %] f=0. (5.7)
Combining (5.2) with (5.7), we get

(4) " l n R R” "
f4+Bf"+ 2B+ R —nﬁ—n(n—l)ﬁ b

1 R// R/Q
" / pPN— [
Now we prove that B’ + R™ — nB% # 0. Suppose that B’ + R™ — nB% =0,
then we have

B'R+R"™ —nBR' =0. (5.9)
We can write (5.9) in the form (5.6), then by the same reasoning as in the
proof of A(f’ —¢) = oo we get a contradiction. Hence B’ + R" —nBL% #£0
is proved. Set

¢ (z) = BR+ R"™ —nBR/, (5.10)
S =2B'R*+ R"™ —nR'R—n(n—1)R?, (5.11)
Sy = B"R* 4+ 2nR'R"™ —nBR'R —n(n—1) BR?, (5.12)
S3 = BR—nR'. (5.13)
By (5.3), (5.10) and (5.13), we get
f=- wl(%@ <f”’ + % f”) . (5.14)

By (5.14), (5.11), (5.12) and (5.8), we obtain

(4) _ So ) " <Sl_ S253 ) "o
f4+<B e "+ () " =o. (5.15)

Substituting f” = go + ¢, f" = gh+ ¢, {4 = g§ + ¢ into (5.15) we get

95 + Higy + Hoge = H, (5.16)

where
So S 5253

TR TR ey
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—H=¢" +¢H + pH,.
We can get

H, = Hy = , (5.17)
where
Ly (2) = B'BR? + BR""? —nB’R'R — B"R* — 2nR'R"!

+nBR'R+n(n—1) BR?, (5.18)
Lo (z) =2B”R? + 3B'R""? — 2nB'BR'R + R*"™? — 3nBR'R" !
—nB'R'R—nR'R"*" —n(n—1)B'R” + (n* + n) R”R" — B"BR®

+nB?*R'R+n(n—1)B*R? +nB"R'R. (5.19)
Therefore
—-H 1 SOH SOI >
— = —RY(z2)+ =L (2)+ Lo (2) ), 5.20
2 g (ER e+ Lne e (5.20)
R (2) = B'R* + R"** —nBR'R. (5.21)
Now we prove that —H # 0. In fact, if —H = 0, then by (5.20) we have
(p// (pl

Obviously, 9‘; and % are meromorphic functions with o (%) <10 (%) <

1. By (5.18), (5.19) and (5.21), we can rewrite (5.22) in the form

2n+1
A%n+2e(2n+2)alz +A§n+2€(2n+2)agz + Z C§7l+2A§n+2—pA12)e[(2n+2—p)a1+pa2]z

p=1

+ Z fp ke[(27p)a1+pa27k]z + Z hp ke[(n+2fp)a1+pa27k]z _ 0’ (523)
0<ps2 0Spsn+2
0<k<2m o<k<m
where fpr (0<p<2,0<k<2m) and hpr (0<p<n+2,0<k<m) are
meromorphic functions with o (f,x) < 1 and o(hpx) < 1.  Set
J ={2n+2)a;, 2n+2)az, 2n+2—-p)as +paz (p = 1,2,---,2n + 1),
(2*]))0,1 +paz — k (p =012 k = 07"'ﬂ2m)3 (n+27p)a1 +paz — k
(p=0,1,---,n+2; k=0,1,---,m)}. By the conditions of Theorem 1.3, it is
clear that (2n +2)a; # (2n+2) as, 2n+2—p)aj+pas (p=1,2,---,2n+1),
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2a1, (n4+2)a; and 2n+2)az # 2n+2)a;, 2n+2—p)a; + pay (p =
1,2,--+,2n+ 1), 2az2, (n + 2) as.

(1) By the conditions of Theorem 1.3 (i), we have (2n+2)a; # S for all
B € J\{(2n+ 2) a1}, hence we write (5.23) in the form

A%n+26(2n+2)alz + Z aﬁeﬁz =0,
BET

where I'y € J\ {(2n 4 2) a1 }. By Lemma 2.8 and Lemma 2.9, we get A; = 0,
it is a contradiction.

(2) By the conditions of Theorem 1.3 (ii), we have (2n+ 2)ay # S for all
B € J\{(2n+ 2)as}, hence we write (5.23) in the form

A§n+2€(2n+2)a22 + Z aﬂeﬁz — 07
BeT2

where I'y € J\ {(2n + 2) a2}. By Lemma 2.8 and Lemma 2.9, we get Ay = 0,
it is a contradiction. Hence, H # 0 is proved. We know that the functions
Hy, Hy and H are of finite order. By Lemma 2.6 and (5.16), we have A (go) =
A(f" — ) = co. The proof of Theorem 1.3 is complete.
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