

On the Growth of Solutions of Some Second Order Linear Differential Equations With Entire Coefficients

Benharrat BELAÏDI and Habib HABIB

Abstract

In this paper, we investigate the order and the hyper-order of growth of solutions of the linear differential equation

$$f'' + Q(e^{-z})f' + (A_1e^{a_1z} + A_2e^{a_2z})^n f = 0,$$

where $n \ge 2$ is an integer, $A_j(z) \not\equiv 0$ (j = 1, 2) are entire functions with $\max \{\sigma(A_j): j = 1, 2\} < 1$, $Q(z) = q_m z^m + \cdots + q_1 z + q_0$ is a nonconstant polynomial and a_1, a_2 are complex numbers. Under some conditions, we prove that every solution $f(z) \not\equiv 0$ of the above equation is of infinite order and hyper-order 1.

1 Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna's value distribution theory (see [8], [13]). Let $\sigma(f)$ denote the order of growth of an entire function f and the hyper-order $\sigma_2(f)$ of f is defined by (see [9], [13])

$$\sigma_{2}\left(f\right)=\limsup_{r\rightarrow+\infty}\frac{\log\log T\left(r,f\right)}{\log r}=\limsup_{r\rightarrow+\infty}\frac{\log\log\log M\left(r,f\right)}{\log r},$$

Key Words: Linear differential equations, Entire solutions, Order of growth, Hyperorder, Fixed points.

2010 Mathematics Subject Classification: Primary 34M10; Secondary 30D35.

Received: February 2013 Accepted: June 2013 where T(r, f) is the Nevanlinna characteristic function of f and $M(r, f) = \max_{|z|=r} |f(z)|$.

In order to give some estimates of fixed points, we recall the following definition.

Definition 1.1 ([3], [10]) Let f be a meromorphic function. Then the exponent of convergence of the sequence of distinct fixed points of f(z) is defined by

$$\overline{\tau}(f) = \overline{\lambda}(f - z) = \limsup_{r \to +\infty} \frac{\log \overline{N}\left(r, \frac{1}{f - z}\right)}{\log r},$$

where $\overline{N}\left(r,\frac{1}{f}\right)$ is the counting function of distinct zeros of f(z) in $\{z:|z|< r\}$. We also define

$$\overline{\lambda}\left(f-\varphi\right) = \limsup_{r \to +\infty} \frac{\log \overline{N}(r, \frac{1}{f-\varphi})}{\log r}$$

for any meromorphic function $\varphi(z)$.

In [11], Peng and Chen have investigated the order and hyper-order of solutions of some second order linear differential equations and have proved the following result.

Theorem A ([11]) Let $A_j(z) (\not\equiv 0)$ (j=1,2) be entire functions with $\sigma(A_j) < 1$, a_1 , a_2 be complex numbers such that $a_1a_2 \neq 0$, $a_1 \neq a_2$ (suppose that $|a_1| \leq |a_2|$). If $\arg a_1 \neq \pi$ or $a_1 < -1$, then every solution $f \not\equiv 0$ of the equation

$$f'' + e^{-z}f' + (A_1e^{a_1z} + A_2e^{a_2z})f = 0$$

has infinite order and $\sigma_2(f) = 1$.

The main purpose of this paper is to extend and improve the results of Theorem A to some second order linear differential equations. In fact we will prove the following results.

Theorem 1.1 Let $n \ge 2$ be an integer, $A_j(z) \not\equiv 0$ (j = 1, 2) be entire functions with max $\{\sigma(A_j) : j = 1, 2\} < 1$, $Q(z) = q_m z^m + \cdots + q_1 z + q_0$ be nonconstant polynomial and a_1 , a_2 be complex numbers such that $a_1 a_2 \ne 0$, $a_1 \ne a_2$. If (1) $\arg a_1 \ne \pi$ and $\arg a_1 \ne \arg a_2$ or (2) $\arg a_1 \ne \pi$, $\arg a_1 = \arg a_2$ and

 $|a_2| > n |a_1|$ or (3) $a_1 < 0$ and $\arg a_1 \neq \arg a_2$ or (4) $-\frac{1}{n} (|a_2| - m) < a_1 < 0$, $|a_2| > m$ and $\arg a_1 = \arg a_2$, then every solution $f \not\equiv 0$ of the equation

$$f'' + Q(e^{-z})f' + (A_1e^{a_1z} + A_2e^{a_2z})^n f = 0$$
(1.1)

satisfies $\sigma(f) = +\infty$ and $\sigma_2(f) = 1$.

Theorem 1.2 Let $A_j(z)$ (j = 1, 2), Q(z), a_1 , a_2 , n satisfy the additional hypotheses of Theorem 1.1. If $\varphi \not\equiv 0$ is an entire function of order $\sigma(\varphi) < +\infty$, then every solution $f \not\equiv 0$ of equation (1.1) satisfies

$$\overline{\lambda}(f-\varphi) = \lambda(f-\varphi) = \sigma(f) = +\infty,$$

$$\overline{\lambda}_2(f-\varphi) = \lambda_2(f-\varphi) = \sigma_2(f) = 1.$$

Theorem 1.3 Let $A_j(z)$ (j = 1, 2), Q(z), a_1 , a_2 , n satisfy the additional hypotheses of Theorem 1.1. If $\varphi \not\equiv 0$ is an entire function of order $\sigma(\varphi) < 1$, then every solution $f \not\equiv 0$ of equation (1.1) satisfies

$$\overline{\lambda}(f-\varphi) = \overline{\lambda}(f'-\varphi) = +\infty.$$

Furthermore, if (i) $(2n+2) a_1 \neq (2-p) a_1 + pa_2 - k$ $(p=0,1,2; k=0,1,\cdots,2m), (n+2-p) a_1 + pa_2 - k$ $(p=0,1,\cdots,n+2; k=0,1,\cdots,m)$ or (ii) $(2n+2) a_2 \neq (2-p) a_1 + pa_2 - k$ $(p=0,1,2; k=0,1,\cdots,2m), (n+2-p) a_1 + pa_2 - k$ $(p=0,1,\cdots,n+2; k=0,1,\cdots,m),$ then

$$\overline{\lambda}(f''-\varphi)=+\infty.$$

Corollary 1.1 Let $A_j(z)$ (j = 1, 2), Q(z), a_1 , a_2 , n satisfy the additional hypotheses of Theorem 1.1. If $f \not\equiv 0$ is any solution of equation (1.1), then f, f' all have infinitely many fixed points and satisfy

$$\overline{\tau}(f) = \overline{\tau}(f') = \infty.$$

Furthermore, if (i) $(2n+2)a_1 \neq (2-p)a_1 + pa_2 - k$ $(p=0,1,2; k=0,1,\cdots,2m)$, $(n+2-p)a_1 + pa_2 - k$ $(p=0,1,\cdots,n+2; k=0,1,\cdots,m)$ or (ii) $(2n+2)a_2 \neq (2-p)a_1 + pa_2 - k$ $(p=0,1,2; k=0,1,\cdots,2m)$, $(n+2-p)a_1 + pa_2 - k$ $(p=0,1,\cdots,n+2; k=0,1,\cdots,m)$, then f'' has infinitely many fixed points and satisfies

$$\overline{\tau}(f'') = \infty.$$

2 Preliminary lemmas

To prove our theorems, we need the following lemmas.

Lemma 2.1 ([7]) Let f be a transcendental meromorphic function with $\sigma(f) = \sigma < +\infty$, $H = \{(k_1, j_1), (k_2, j_2), \dots, (k_q, j_q)\}$ be a finite set of distinct pairs of integers satisfying $k_i > j_i \ge 0$ $(i = 1, \dots, q)$ and let $\varepsilon > 0$ be a given constant. Then,

(i) there exists a set $E_1 \subset \left[-\frac{\pi}{2}, \frac{3\pi}{2}\right)$ with linear measure zero, such that, if $\psi \in \left[-\frac{\pi}{2}, \frac{3\pi}{2}\right) \setminus E_1$, then there is a constant $R_0 = R_0(\psi) > 1$, such that for all z satisfying $\arg z = \psi$ and $|z| \geqslant R_0$ and for all $(k, j) \in H$, we have

$$\left| \frac{f^{(k)}(z)}{f^{(j)}(z)} \right| \leqslant |z|^{(k-j)(\sigma-1+\varepsilon)}, \qquad (2.1)$$

(ii) there exists a set $E_2 \subset (1, +\infty)$ with finite logarithmic measure, such that for all z satisfying $|z| \notin E_2 \cup [0, 1]$ and for all $(k, j) \in H$, we have

$$\left| \frac{f^{(k)}(z)}{f^{(j)}(z)} \right| \le |z|^{(k-j)(\sigma-1+\varepsilon)}, \qquad (2.2)$$

(iii) there exists a set $E_3 \subset (0, +\infty)$ with finite linear measure, such that for all z satisfying $|z| \notin E_3$ and for all $(k, j) \in H$, we have

$$\left| \frac{f^{(k)}(z)}{f^{(j)}(z)} \right| \le |z|^{(k-j)(\sigma+\varepsilon)}. \tag{2.3}$$

Lemma 2.2 ([4]) Suppose that $P(z) = (\alpha + i\beta) z^n + \cdots (\alpha, \beta \text{ are real numbers, } |\alpha| + |\beta| \neq 0)$ is a polynomial with degree $n \geq 1$, that $A(z) \not\equiv 0$ is an entire function with $\sigma(A) < n$. Set $g(z) = A(z) e^{P(z)}$, $z = re^{i\theta}$, $\delta(P, \theta) = \alpha \cos n\theta - \beta \sin n\theta$. Then for any given $\varepsilon > 0$, there is a set $E_4 \subset [0, 2\pi)$ that has linear measure zero, such that for any $\theta \in [0, 2\pi) \setminus (E_4 \cup E_5)$, there is R > 0, such that for |z| = r > R, we have

(i) if $\delta(P,\theta) > 0$, then

$$\exp\left\{\left(1-\varepsilon\right)\delta\left(P,\theta\right)r^{n}\right\} \leqslant \left|g\left(re^{i\theta}\right)\right| \leqslant \exp\left\{\left(1+\varepsilon\right)\delta\left(P,\theta\right)r^{n}\right\};\tag{2.4}$$

(ii) if $\delta(P,\theta) < 0$, then

$$\exp\left\{\left(1+\varepsilon\right)\delta\left(P,\theta\right)r^{n}\right\} \leqslant \left|g\left(re^{i\theta}\right)\right| \leqslant \exp\left\{\left(1-\varepsilon\right)\delta\left(P,\theta\right)r^{n}\right\},\tag{2.5}$$

where $E_5 = \{\theta \in [0, 2\pi) : \delta(P, \theta) = 0\}$ is a finite set.

Lemma 2.3 ([11]) Suppose that $n \ge 1$ is a positive entire number. Let $P_j(z) = a_{jn}z^n + \cdots (j=1,2)$ be nonconstant polynomials, where a_{jq} $(q=1,\cdots,n)$ are complex numbers and $a_{1n}a_{2n} \ne 0$. Set $z=re^{i\theta}$, $a_{jn}=|a_{jn}|e^{i\theta_j}$, $\theta_j \in \left[-\frac{\pi}{2},\frac{3\pi}{2}\right)$, $\delta(P_j,\theta)=|a_{jn}|\cos(\theta_j+n\theta)$, then there is a set $E_6 \subset \left[-\frac{\pi}{2n},\frac{3\pi}{2n}\right)$ that has linear measure zero. If $\theta_1 \ne \theta_2$, then there exists a ray $\arg z=\theta$, $\theta \in \left(-\frac{\pi}{2n},\frac{\pi}{2n}\right)\setminus (E_6 \cup E_7)$, such that

$$\delta\left(P_{1},\theta\right) > 0, \ \delta\left(P_{2},\theta\right) < 0 \tag{2.6}$$

or

$$\delta\left(P_1,\theta\right) < 0, \ \delta\left(P_2,\theta\right) > 0, \tag{2.7}$$

where $E_7 = \left\{\theta \in \left[-\frac{\pi}{2n}, \frac{3\pi}{2n}\right) : \delta\left(P_j, \theta\right) = 0\right\}$ is a finite set, which has linear measure zero.

Remark 2.1 ([11]) In Lemma 2.3, if $\theta \in \left(-\frac{\pi}{2n}, \frac{\pi}{2n}\right) \setminus (E_6 \cup E_7)$ is replaced by $\theta \in \left(\frac{\pi}{2n}, \frac{3\pi}{2n}\right) \setminus (E_6 \cup E_7)$, then we obtain the same result.

Lemma 2.4([5]) Suppose that $k \ge 2$ and B_0, B_1, \dots, B_{k-1} are entire functions of finite order and let $\sigma = \max \{ \sigma(B_j) : j = 0, \dots, k-1 \}$. Then every solution f of the equation

$$f^{(k)} + B_{k-1}f^{(k-1)} + \dots + B_1f' + B_0f = 0$$
 (2.8)

satisfies $\sigma_2(f) \leqslant \sigma$.

Lemma 2.5 ([7]) Let f(z) be a transcendental meromorphic function, and let $\alpha > 1$ be a given constant. Then there exist a set $E_8 \subset (1, \infty)$ with finite logarithmic measure and a constant B > 0 that depends only on α and i, j $(0 \le i < j \le k)$, such that for all z satisfying $|z| = r \notin [0, 1] \cup E_8$, we have

$$\left| \frac{f^{(j)}(z)}{f^{(i)}(z)} \right| \leqslant B \left\{ \frac{T(\alpha r, f)}{r} \left(\log^{\alpha} r \right) \log T(\alpha r, f) \right\}^{j-i}. \tag{2.9}$$

Lemma 2.6([2]) Let $A_0, A_1, \dots, A_{k-1}, F \not\equiv 0$ be finite order meromorphic functions. If f is a meromorphic solution with $\sigma(f) = +\infty$ of the equation

$$f^{(k)} + A_{k-1}f^{(k-1)} + \dots + A_1f' + A_0f = F, \tag{2.10}$$

then f satisfies

$$\overline{\lambda}(f) = \lambda(f) = \sigma(f) = +\infty.$$

Lemma 2.7 ([1]) Let $A_0, A_1, \dots, A_{k-1}, F \not\equiv 0$ be finite order meromorphic functions. If f is a meromorphic solution of equation (2.10) with $\sigma(f) = +\infty$ and $\sigma_2(f) = \sigma$, then f satisfies

$$\overline{\lambda}_{2}(f) = \lambda_{2}(f) = \sigma_{2}(f) = \sigma. \tag{2.11}$$

Lemma 2.8([6], [13]) Suppose that $f_1(z), f_2(z), \dots, f_n(z)$ ($n \ge 2$) are meromorphic functions and $g_1(z), g_2(z), \dots, g_n(z)$ are entire functions satisfying the following conditions:

(i)
$$\sum_{j=1}^{n} f_j(z) e^{g_j(z)} \equiv 0;$$

(ii) $g_j(z) - g_k(z)$ are not constants for $1 \le j < k \le n$;

(iii) For $1 \le j \le n$, $1 \le h < k \le n$, $T(r, f_j) = o\left\{T\left(r, e^{g_h(z) - g_k(z)}\right)\right\}$ $(r \to \infty, r \notin E_9)$, where E_9 is a set with finite linear measure. Then $f_j(z) \equiv 0$ $(j = 1, \dots, n)$.

Lemma 2.9 ([12]) Suppose that $f_1(z)$, $f_2(z)$, \cdots , $f_n(z)$ ($n \ge 2$) are meromorphic functions and $g_1(z)$, $g_2(z)$, \cdots , $g_n(z)$ are entire functions satisfying the following conditions:

(i)
$$\sum_{j=1}^{n} f_j(z) e^{g_j(z)} \equiv f_{n+1};$$

(ii) If $1 \leqslant j \leqslant n+1, 1 \leqslant k \leqslant n$, the order of f_j is less than the order of $e^{g_k(z)}$. If $n \geqslant 2, 1 \leqslant j \leqslant n+1, 1 \leqslant h < k \leqslant n$, and the order of f_j is less than the order of $e^{g_h-g_k}$. Then $f_j(z) \equiv 0 \ (j=1,2,\cdots,n+1)$.

3 Proof of Theorem 1.1

Assume that $f \not\equiv 0$ is a solution of equation (1.1).

First step: We prove that $\sigma(f) = +\infty$. Suppose that $\sigma(f) = \sigma < +\infty$. We rewrite (1.1) as

$$\frac{f''}{f} + Q\left(e^{-z}\right)\frac{f'}{f} + A_1^n e^{na_1 z} + A_2^n e^{na_2 z} + \sum_{p=1}^{n-1} C_n^p A_1^{n-p} e^{(n-p)a_1 z} A_2^p e^{pa_2 z} = 0.$$
(3.1)

By Lemma 2.1, for any given ε ,

$$0<\varepsilon<\min\left\{\frac{\left|a_{2}\right|-n\left|a_{1}\right|}{2\left\lceil\left(2n-1\right)\left|a_{2}\right|+n\left|a_{1}\right|\right\rceil},\frac{1}{2\left(2n-1\right)}\right\},$$

there exists a set $E_1 \subset \left[-\frac{\pi}{2}, \frac{3\pi}{2}\right)$ of linear measure zero, such that if $\theta \in \left[-\frac{\pi}{2}, \frac{3\pi}{2}\right) \setminus E_1$, then there is a constant $R_0 = R_0(\theta) > 1$, such that for all z satisfying $\arg z = \theta$ and $|z| = r \geqslant R_0$, we have

$$\left| \frac{f^{(j)}(z)}{f(z)} \right| \leqslant r^{j(\sigma - 1 + \varepsilon)} \quad (j = 1, 2).$$

$$(3.2)$$

Let $z = re^{i\theta}$, $a_1 = |a_1|e^{i\theta_1}$, $a_2 = |a_2|e^{i\theta_2}$, $\theta_1, \theta_2 \in \left[-\frac{\pi}{2}, \frac{3\pi}{2}\right)$. We know that $\delta\left(pa_1z, \theta\right) = p\delta\left(a_1z, \theta\right)$ and $\delta\left(pa_2z, \theta\right) = p\delta\left(a_2z, \theta\right)$, where p > 0.

Case 1: Assume that $\arg a_1 \neq \pi$ and $\arg a_1 \neq \arg a_2$, which is $\theta_1 \neq \pi$ and $\theta_1 \neq \theta_2$.

By Lemma 2.2 and Lemma 2.3, for the above ε , there is a ray $\operatorname{arg} z = \theta$ such that $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \setminus (E_1 \cup E_6 \cup E_7)$ (where E_6 and E_7 are defined as in Lemma 2.3, $E_1 \cup E_6 \cup E_7$ is of the linear measure zero), and satisfying

$$\delta(a_1z,\theta) > 0, \delta(a_2z,\theta) < 0$$

or

$$\delta(a_1z,\theta) < 0, \, \delta(a_2z,\theta) > 0.$$

a) When $\delta\left(a_1z,\theta\right)>0,\,\delta\left(a_2z,\theta\right)<0,$ for sufficiently large r, we get by Lemma 2.2

$$|A_1^n e^{na_1 z}| \geqslant \exp\left\{ (1 - \varepsilon) \, n\delta \left(a_1 z, \theta \right) r \right\},\tag{3.3}$$

$$|A_2^n e^{na_2 z}| \leqslant \exp\left\{ (1 - \varepsilon) \, n\delta\left(a_2 z, \theta\right) r \right\} < 1,\tag{3.4}$$

$$\left| A_1^{n-p} e^{(n-p)a_1 z} \right| \le \exp\left\{ (1+\varepsilon) \left(n-p \right) \delta \left(a_1 z, \theta \right) r \right\}$$

$$\leq \exp\left\{ (1+\varepsilon)(n-1)\delta(a_1z,\theta)r \right\}, p=1,\dots,n-1,$$
 (3.5)

$$|A_2^p e^{pa_2 z}| \le \exp\{(1-\varepsilon) p\delta(a_2 z, \theta) r\} < 1, \ p = 1, \dots, n-1.$$
 (3.6)

For $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ we have

$$|Q(e^{-z})| = |q_m e^{-mz} + \dots + q_1 e^{-z} + q_0|$$

$$\leq |q_m| |e^{-mz}| + \dots + |q_1| |e^{-z}| + |q_0|$$

$$\leq |q_m| e^{-mr\cos\theta} + \dots + |q_1| e^{-r\cos\theta} + |q_0| \leq M,$$
(3.7)

where M > 0 is a some constant. By (3.1) - (3.7), we get

$$\exp\left\{ (1 - \varepsilon) \, n\delta \left(a_1 z, \theta \right) r \right\} \leqslant |A_1^n e^{n a_1 z}|$$

$$\leq \left| \frac{f''}{f} \right| + \left| Q\left(e^{-z}\right) \right| \left| \frac{f'}{f} \right| + \left| A_2^n e^{na_2 z} \right| + \sum_{p=1}^{n-1} C_n^p \left| A_1^{n-p} e^{(n-p)a_1 z} \right| \left| A_2^p e^{pa_2 z} \right| \\
\leq r^{2(\sigma-1+\varepsilon)} + Mr^{\sigma-1+\varepsilon} + 2^n \exp\left\{ \left(1+\varepsilon\right) \left(n-1\right) \delta\left(a_1 z, \theta\right) r \right\} \\
\leq M_1 r^{M_2} \exp\left\{ \left(1+\varepsilon\right) \left(n-1\right) \delta\left(a_1 z, \theta\right) r \right\}, \tag{3.8}$$

where $M_1>0$ and $M_2>0$ are some constants. By $0<\varepsilon<\frac{1}{2(2n-1)}$ and (3.8), we have

$$\exp\left\{\frac{1}{2}\delta\left(a_{1}z,\theta\right)r\right\} \leqslant M_{1}r^{M_{2}}.\tag{3.9}$$

By $\delta(a_1z,\theta) > 0$ we know that (3.9) is a contradiction.

b) When $\delta(a_1z,\theta) < 0$, $\delta(a_2z,\theta) > 0$, using a proof similar to the above, we can also get a contradiction.

Case 2: Assume that $\arg a_1 \neq \pi$, $\arg a_1 = \arg a_2$ and $|a_2| > n |a_1|$, which is $\theta_1 \neq \pi$ and $\theta_1 = \theta_2$ and $|a_2| > n |a_1|$.

By Lemma 2.3, for the above ε , there is a ray $\text{arg } z = \theta$ such that $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \setminus (E_1 \cup E_6 \cup E_7)$ and $\delta\left(a_1 z, \theta\right) > 0$. Since $|a_2| > n \, |a_1|$ and $n \ge 2$, then $|a_2| > |a_1|$, thus $\delta\left(a_2 z, \theta\right) > \delta\left(a_1 z, \theta\right) > 0$. For sufficiently large r, we have by using Lemma 2.2

$$|A_2^n e^{na_2 z}| \geqslant \exp\left\{ (1 - \varepsilon) \, n\delta\left(a_2 z, \theta\right) r \right\},\tag{3.10}$$

$$|A_1^n e^{na_1 z}| \leqslant \exp\left\{ (1+\varepsilon) \, n\delta\left(a_1 z, \theta\right) r \right\},\tag{3.11}$$

$$\left| A_1^{n-p} e^{(n-p)a_1 z} \right| \le \exp\left\{ (1+\varepsilon) (n-1) \delta(a_1 z, \theta) r \right\}, \ p = 1, \dots, n-1, \quad (3.12)$$

$$|A_2^p e^{pa_2 z}| \le \exp\{(1+\varepsilon)(n-1)\delta(a_2 z, \theta)r\}, p = 1, \dots, n-1.$$
 (3.13)

By (3.1), (3.2), (3.7) and (3.10) - (3.13) we get

$$\exp\left\{ (1 - \varepsilon) \, n\delta \left(a_2 z, \theta \right) r \right\} \leqslant |A_2^n e^{n a_2 z}|$$

$$\leqslant \left| \frac{f''}{f} \right| + \left| Q\left(e^{-z} \right) \right| \left| \frac{f'}{f} \right| + \left| A_1^n e^{na_1 z} \right| + \sum_{p=1}^{n-1} C_n^p \left| A_1^{n-p} e^{(n-p)a_1 z} \right| \left| A_2^p e^{pa_2 z} \right|$$

$$\leq r^{2(\sigma-1+\varepsilon)} + Mr^{\sigma-1+\varepsilon} + \exp\{(1+\varepsilon)n\delta(a_1z,\theta)r\}$$

$$+2^{n} \exp \{(1+\varepsilon)(n-1)\delta(a_{1}z,\theta)r\} \exp \{(1+\varepsilon)(n-1)\delta(a_{2}z,\theta)r\}$$

$$\leq M_1 r^{M_2} \exp\left\{ (1+\varepsilon) n\delta\left(a_1 z, \theta\right) r \right\} \exp\left\{ (1+\varepsilon) (n-1) \delta\left(a_2 z, \theta\right) r \right\}.$$
 (3.14)

Therefore, by (3.14), we obtain

$$\exp\left\{\alpha r\right\} \leqslant M_1 r^{M_2},\tag{3.15}$$

where

$$\alpha = [1 - \varepsilon (2n - 1)] \delta(a_2 z, \theta) - (1 + \varepsilon) n\delta(a_1 z, \theta).$$

Since
$$0 < \varepsilon < \frac{|a_2| - n|a_1|}{2[(2n-1)|a_2| + n|a_1|]}$$
, $\theta_1 = \theta_2$ and $\cos(\theta_1 + \theta) > 0$, then

$$\alpha = \left[1 - \varepsilon \left(2n - 1\right)\right] \left|a_2\right| \cos \left(\theta_2 + \theta\right) - \left(1 + \varepsilon\right) n \left|a_1\right| \cos \left(\theta_1 + \theta\right)$$

$$= \{|a_2| - n |a_1| - \varepsilon [(2n-1) |a_2| + n |a_1|]\} \cos (\theta_1 + \theta)$$

$$> \frac{|a_2| - n |a_1|}{2} \cos(\theta_1 + \theta) > 0.$$

Hence (3.15) is a contradiction.

Case 3: Assume that $a_1 < 0$ and $\arg a_1 \neq \arg a_2$, which is $\theta_1 = \pi$ and $\theta_2 \neq \pi$.

By Lemma 2.3, for the above ε , there is a ray $\operatorname{arg} z = \theta$ such that $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \setminus (E_1 \cup E_6 \cup E_7)$ and $\delta\left(a_2 z, \theta\right) > 0$. Because $\cos \theta > 0$, we have $\delta\left(a_1 z, \theta\right) = |a_1| \cos\left(\theta_1 + \theta\right) = -|a_1| \cos\theta < 0$. For sufficiently large r, we obtain by Lemma 2.2

$$|A_2^n e^{na_2 z}| \geqslant \exp\left\{ (1 - \varepsilon) \, n\delta \left(a_2 z, \theta \right) r \right\},\tag{3.16}$$

$$|A_1^n e^{na_1 z}| \leqslant \exp\left\{ (1 - \varepsilon) \, n\delta\left(a_1 z, \theta\right) r \right\} < 1,\tag{3.17}$$

$$\left| A_1^{n-p} e^{(n-p)a_1 z} \right| \leqslant \exp\left\{ (1-\varepsilon) (n-p) \delta(a_1 z, \theta) r \right\} < 1, \ p = 1, \dots, n-1,$$
(3.18)

$$|A_2^p e^{pa_2 z}| \le \exp\{(1+\varepsilon)(n-1)\delta(a_2 z,\theta)r\}, \ p=1,\dots,n-1.$$
 (3.19)

Using the same reasoning as in Case 1(a), we can get a contradiction.

Case 4. Assume that $-\frac{1}{n}(|a_2|-m) < a_1 < 0, |a_2| > m$ and $\arg a_1 = \arg a_2$, which is $\theta_1 = \theta_2 = \pi$ and $|a_1| < \frac{1}{n}(|a_2|-m)$, then $|a_2| > n |a_1| + m$, hence $|a_2| > n |a_1|$.

By Lemma 2.3, for the above ε , there is a ray $\operatorname{arg} z = \theta$ such that $\theta \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \setminus (E_1 \cup E_6 \cup E_7)$, then $\cos \theta < 0$, $\delta\left(a_1 z, \theta\right) = |a_1| \cos\left(\theta_1 + \theta\right) = -|a_1| \cos\theta > 0$, $\delta\left(a_2 z, \theta\right) = |a_2| \cos\left(\theta_2 + \theta\right) = -|a_2| \cos\theta > 0$. Since $|a_2| > n |a_1|$ and $n \ge 2$, then $|a_2| > |a_1|$, thus $\delta\left(a_2 z, \theta\right) > \delta\left(a_1 z, \theta\right) > 0$, for sufficiently large r, we get (3.10) - (3.13) hold. For $\theta \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ we have

$$\left|Q\left(e^{-z}\right)\right| \leqslant Me^{-mr\cos\theta}.\tag{3.20}$$

By (3.1), (3.2), (3.10) - (3.13) and (3.20), we get

$$\exp\left\{ \left(1-\varepsilon\right)n\delta\left(a_{2}z,\theta\right)r\right\} \leqslant \left|A_{2}^{n}e^{na_{2}z}\right|$$

$$\leq \left| \frac{f''}{f} \right| + \left| Q\left(e^{-z}\right) \right| \left| \frac{f'}{f} \right| + \left| A_1^n e^{na_1 z} \right| + \sum_{p=1}^{n-1} C_n^p \left| A_1^{n-p} e^{(n-p)a_1 z} \right| \left| A_2^p e^{pa_2 z} \right|$$

$$\leq r^{2(\sigma-1+\varepsilon)} + Mr^{\sigma-1+\varepsilon}e^{-mr\cos\theta} + \exp\left\{ (1+\varepsilon)\,n\delta\left(a_1z,\theta\right)r\right\}$$

$$+2^{n} \exp \{(1+\varepsilon)(n-1)\delta(a_{1}z,\theta)r\} \exp \{(1+\varepsilon)(n-1)\delta(a_{2}z,\theta)r\}$$

$$\leq M_1 r^{M_2} e^{-mr\cos\theta} \exp\left\{ (1+\varepsilon) n\delta\left(a_1 z, \theta\right) r \right\} \exp\left\{ (1+\varepsilon) \left(n-1\right) \delta\left(a_2 z, \theta\right) r \right\}. \tag{3.21}$$

Therefore, by (3.21), we obtain

$$\exp\left\{\beta r\right\} \leqslant M_1 r^{M_2},\tag{3.22}$$

where

$$\beta = [1 - \varepsilon (2n - 1)] \delta (a_2 z, \theta) - (1 + \varepsilon) n \delta (a_1 z, \theta) + m \cos \theta.$$

Since $|a_2| - n |a_1| - m > 0$, then

$$2[(2n-1)|a_2| + n|a_1|] > |a_2| - n|a_1| - m > 0.$$

Therefore,

$$\frac{|a_2| - n |a_1| - m}{2 \left[(2n - 1) |a_2| + n |a_1| \right]} < 1.$$

Then, we can take $0 < \varepsilon < \frac{|a_2| - n|a_1| - m}{2[(2n-1)|a_2| + n|a_1|]}$. Since $0 < \varepsilon < \frac{|a_2| - n|a_1| - m}{2[(2n-1)|a_2| + n|a_1|]}$, $\theta_1 = \theta_2 = \pi$ and $\cos \theta < 0$, then

$$\beta = -\cos\theta \{|a_2| - n |a_1| - m - \varepsilon [(2n - 1) |a_2| + n |a_1|]\}$$
$$> -\frac{1}{2} (|a_2| - n |a_1| - m) \cos\theta > 0.$$

Hence, (3.22) is a contradiction. Concluding the above proof, we obtain $\sigma\left(f\right)=+\infty.$

Second step: We prove that $\sigma_2(f) = 1$. By

$$\max\{\sigma(Q(e^{-z})), \sigma((A_1e^{a_1z} + A_2e^{a_2z})^n)\} = 1$$

and the Lemma 2.4, we get $\sigma_2(f) \leq 1$. By Lemma 2.5, we know that there exists a set $E_8 \subset (1, +\infty)$ with finite logarithmic measure and a constant B > 0, such that for all z satisfying $|z| = r \notin [0, 1] \cup E_8$, we get

$$\left| \frac{f^{(j)}(z)}{f(z)} \right| \le B \left[T(2r, f) \right]^{j+1} \quad (j = 1, 2).$$
 (3.23)

Case 1: $\theta_1 \neq \pi$ and $\theta_1 \neq \theta_2$. In first step, we have proved that there is a ray $\arg z = \theta$ where $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \setminus (E_1 \cup E_6 \cup E_7)$, satisfying

$$\delta\left(a_{1}z,\theta\right) > 0, \delta\left(a_{2}z,\theta\right) < 0 \text{ or } \delta\left(a_{1}z,\theta\right) < 0, \delta\left(a_{2}z,\theta\right) > 0.$$

a) When $\delta(a_1z, \theta) > 0$, $\delta(a_2z, \theta) < 0$, for sufficiently large r, we get (3.3) – (3.7) holds. By (3.1), (3.3) – (3.7) and (3.23), we obtain

$$\exp\left\{ (1 - \varepsilon) \, n\delta \left(a_1 z, \theta \right) r \right\} \leqslant |A_1^n e^{n a_1 z}|$$

$$\leq \left| \frac{f''}{f} \right| + \left| Q\left(e^{-z} \right) \right| \left| \frac{f'}{f} \right| + \left| A_2^n e^{na_2 z} \right| + \sum_{p=1}^{n-1} C_n^p \left| A_1^{n-p} e^{(n-p)a_1 z} \right| \left| A_2^p e^{pa_2 z} \right|$$

$$\leq B \left[T \left(2r,f\right)\right]^3 + MB \left[T \left(2r,f\right)\right]^2 + 2^n \exp\left\{\left(1+\varepsilon\right)\left(n-1\right)\delta\left(a_1z,\theta\right)r\right\}$$

$$\leq M_1 \exp\left\{ (1+\varepsilon) (n-1) \delta (a_1 z, \theta) r \right\} \left[T (2r, f) \right]^3. \tag{3.24}$$

By $0 < \varepsilon < \frac{1}{2(2n-1)}$ and (3.24), we have

$$\exp\left\{\frac{1}{2}\delta\left(a_{1}z,\theta\right)r\right\} \leqslant M_{1}\left[T\left(2r,f\right)\right]^{3}.$$
(3.25)

By $\delta(a_1z, \theta) > 0$ and (3.25), we have $\sigma_2(f) \ge 1$, then $\sigma_2(f) = 1$.

b) When $\delta(a_1z,\theta) < 0$, $\delta(a_2z,\theta) > 0$, using a proof similar to the above, we can also get $\sigma_2(f) = 1$.

Case 2: $\theta_1 \neq \pi$, $\theta_1 = \theta_2$ and $|a_2| > n |a_1|$. In first step, we have proved that there is a ray $arg z = \theta$ where $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \setminus (E_1 \cup E_6 \cup E_7)$, satisfying

$$\delta(a_2z,\theta) > \delta(a_1z,\theta) > 0$$

and for sufficiently large r, we get (3.7) and (3.10)-(3.13) hold. By (3.1), (3.7), (3.10)-(3.13) and (3.23), we get

$$\exp\{\alpha r\} \leqslant M_1 [T(2r, f)]^3,$$
 (3.26)

where

$$\alpha = [1 - \varepsilon (2n - 1)] \delta (a_2 z, \theta) - (1 + \varepsilon) n \delta (a_1 z, \theta) > 0.$$

By $\alpha > 0$ and (3.26), we have $\sigma_2(f) \ge 1$, then $\sigma_2(f) = 1$.

Case 3: $a_1 < 0$ and $\theta_1 \neq \theta_2$. In first step, we have proved that there is a ray $\arg z = \theta$ where $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \setminus (E_1 \cup E_6 \cup E_7)$, satisfying

$$\delta(a_2z,\theta) > 0$$
 and $\delta(a_1z,\theta) < 0$

and for sufficiently large r, we get (3.16) - (3.19) hold. Using the same reasoning as in second step (Case 1 (a)), we can get $\sigma_2(f) = 1$.

Case 4: $-\frac{1}{n}(|a_2|-m) < a_1 < 0, |a_2| > m \text{ and } \theta_1 = \theta_2$. In first step, we have proved that there is a ray $\arg z = \theta$ where $\theta \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \setminus (E_1 \cup E_6 \cup E_7)$, satisfying

$$\delta\left(a_{2}z,\theta\right) > \delta\left(a_{1}z,\theta\right) > 0$$

and for sufficiently large r, we get (3.10)-(3.13) hold. By (3.1), (3.10)-(3.13), (3.20) and (3.23) we obtain

$$\exp\{\beta r\} \leqslant M_1 [T(2r, f)]^3,$$
 (3.27)

where

$$\beta = [1 - \varepsilon (2n - 1)] \delta (a_2 z, \theta) - (1 + \varepsilon) n \delta (a_1 z, \theta) + m \cos \theta > 0.$$

By $\beta > 0$ and (3.27), we have $\sigma_2(f) \ge 1$, then $\sigma_2(f) = 1$. Concluding the above proof, we obtain $\sigma_2(f) = 1$. The proof of Theorem 1.1 is complete.

Example 1.1 Consider the differential equation

$$f'' + (-4e^{-3z} - 4ie^{-z} - 1)f' + (ie^z + 2e^{-z})^2 f = 0,$$
 (3.28)

where $Q(z) = -4z^3 - 4iz - 1$, $a_1 = 1$, $a_2 = -1$, $A_1(z) = i$ and $A_2(z) = 2$. Obviously, the conditions of Theorem 1.1 (1) are satisfied. The entire function $f(z) = e^{e^z}$, with $\sigma(f) = +\infty$ and $\sigma_2(f) = 1$, is a solution of (3.28).

Example 1.2 Consider the differential equation

$$f'' + \left(-8e^{-2z} - 12e^{i\frac{\pi}{3}}e^{-z} - 1 - 6e^{i\frac{2\pi}{3}}\right)f' + \left(e^{i\frac{\pi}{3}}e^{\frac{2}{3}z} + 2e^{-\frac{1}{3}z}\right)^3f = 0, (3.29)$$

where $Q(z)=-8z^2-12e^{i\frac{\pi}{3}}z-1-6e^{i\frac{2\pi}{3}},\ a_1=\frac{2}{3},\ a_2=-\frac{1}{3},\ A_1(z)=e^{i\frac{\pi}{3}}$ and $A_2(z)=2$. Obviously, the conditions of Theorem 1.1 (1) are satisfied. The entire function $f(z)=e^{e^z}$, with $\sigma(f)=+\infty$ and $\sigma_2(f)=1$, is a solution of (3.29).

Example 1.3 Consider the differential equation

$$f'' + \left(-e^{-3z} - 4e^{i\frac{\pi}{4}}e^{-2z} - 6ie^{-z} - 1 - 4e^{i\frac{3\pi}{4}}\right)f' + \left(e^{-\frac{1}{2}z} + e^{i\frac{\pi}{4}}e^{\frac{1}{2}z}\right)^4 f = 0,$$
(3.30)

where $Q(z)=-z^3-4e^{i\frac{\pi}{4}}z^2-6iz-1-4e^{i\frac{3\pi}{4}},\ a_1=-\frac{1}{2},\ a_2=\frac{1}{2},\ A_1(z)=1$ and $A_2(z)=e^{i\frac{\pi}{4}}$. Obviously, the conditions of Theorem 1.1 (3) are satisfied. The entire function $f(z)=e^{e^z}$, with $\sigma(f)=+\infty$ and $\sigma_2(f)=1$, is a solution of (3.30).

4 Proof of Theorem 1.2

We prove that $\overline{\lambda}(f-\varphi) = \lambda(f-\varphi) = \sigma(f) = +\infty$ and $\overline{\lambda}_2(f-\varphi) = \lambda_2(f-\varphi) = \sigma_2(f) = 1$. First, setting $\omega = f - \varphi$. Since $\sigma(\varphi) < \infty$, then we have $\sigma(\omega) = \sigma(f) = +\infty$. From (1.1), we have

$$\omega'' + Q(e^{-z})\omega' + (A_1e^{a_1z} + A_2e^{a_2z})^n\omega = H, (4.1)$$

where $H=-\left[\varphi''+Q\left(e^{-z}\right)\varphi'+\left(A_1e^{a_1z}+A_2e^{a_2z}\right)^n\varphi\right]$. Now we prove that $H\not\equiv 0$. In fact if $H\equiv 0$, then

$$\varphi'' + Q(e^{-z})\varphi' + (A_1e^{a_1z} + A_2e^{a_2z})^n\varphi = 0.$$
(4.2)

Hence φ is a solution of equation (1.1) with $\sigma(\varphi) = \infty$ and by Theorem 1.1, it is a contradiction. Since $\sigma(f) = \infty$, $\sigma(\varphi) < \infty$ and $\sigma_2(f) = 1$, we get $\sigma_2(\omega) = \sigma_2(f - \varphi) = \sigma_2(f) = 1$. By the Lemma 2.6 and Lemma 2.7, we have $\overline{\lambda}(\omega) = \lambda(\omega) = \sigma(\omega) = \sigma(f) = +\infty$ and $\overline{\lambda}_2(\omega) = \lambda_2(\omega) = \sigma_2(\omega) = \sigma_2(f) = 1$, i.e., $\overline{\lambda}(f - \varphi) = \lambda(f - \varphi) = \sigma(f) = +\infty$ and $\overline{\lambda}_2(f - \varphi) = \lambda(f - \varphi) = \sigma(f) = 1$.

5 Proof of Theorem 1.3

Suppose that $f \not\equiv 0$ is a solution of equation (1.1), then $\sigma(f) = +\infty$ by Theorem 1.1. Since $\sigma(\varphi) < 1$, then by Theorem 1.2, we have $\overline{\lambda}(f - \varphi) = +\infty$. Now we prove that $\overline{\lambda}(f' - \varphi) = \infty$. Set $g_1(z) = f'(z) - \varphi(z)$, then $\sigma(g_1) = \sigma(f') = \sigma(f) = \infty$. Set $B(z) = Q(e^{-z})$ and $R(z) = A_1 e^{a_1 z} + A_2 e^{a_2 z}$, then $B'(z) = -e^{-z}Q'(e^{-z})$ and $R' = (A'_1 + a_1A_1)e^{a_1 z} + (A'_2 + a_2A_2)e^{a_2 z}$. Differentiating both sides of equation (1.1), we have

$$f''' + Bf'' + (B' + R^n)f' + nR'R^{n-1}f = 0.$$
(5.1)

By (1.1), we have

$$f = -\frac{1}{R^n} (f'' + Bf'). (5.2)$$

Substituting (5.2) into (5.1), we have

$$f''' + \left(B - n\frac{R'}{R}\right)f'' + \left(B' + R^n - nB\frac{R'}{R}\right)f' = 0.$$
 (5.3)

Substituting $f' = g_1 + \varphi$, $f'' = g'_1 + \varphi'$, $f''' = g''_1 + \varphi''$ into (5.3), we get

$$g_1'' + E_1 g_1' + E_0 g_1 = E, (5.4)$$

where

$$E_1 = B - n\frac{R'}{R}, \quad E_0 = B' + R^n - nB\frac{R'}{R},$$

$$E = -\left\{\varphi'' + \left(B - n\frac{R'}{R}\right)\varphi' + \left(B' + R^n - nB\frac{R'}{R}\right)\varphi\right\}.$$

Now we prove that $E \not\equiv 0$. In fact, if $E \equiv 0$, then we get

$$\frac{\varphi''}{\varphi}R + \frac{\varphi'}{\varphi}(BR - nR') + B'R - nBR' + R^{n+1} = 0.$$
 (5.5)

Obviously $\frac{\varphi''}{\varphi}$, $\frac{\varphi'}{\varphi}$ are meromorphic functions with $\sigma\left(\frac{\varphi''}{\varphi}\right) < 1$, $\sigma\left(\frac{\varphi'}{\varphi}\right) < 1$. We can rewrite (5.5) in the form

$$\sum_{k=0}^{m} f_k e^{(a_1-k)z} + \sum_{l=0}^{m} h_l e^{(a_2-l)z} + \sum_{p=1}^{n} C_{n+1}^p A_1^{n+1-p} A_2^p e^{[(n+1-p)a_1+pa_2]z} + A_1^{n+1} e^{(n+1)a_1z} + A_2^{n+1} e^{(n+1)a_2z} = 0,$$
(5.6)

where f_k $(k = 0, 1, \dots, m)$ and h_l $(l = 0, 1, \dots, m)$ are meromorphic functions with $\sigma(f_k) < 1$ and $\sigma(f_l) < 1$. Set $I = \{a_1 - k \ (k = 0, 1, \dots, m), \ a_2 - l \ (l = 0, 1, \dots, m), \ (n + 1 - p) \ a_1 + pa_2 \ (p = 1, 2, \dots, n), \ (n + 1) \ a_1, \ (n + 1) \ a_2\}$. By the conditions of the Theorem 1.1, it is clear that $(n + 1) \ a_1 \neq a_1, (n + 1) \ a_2, (n + 1 - p) \ a_1 + pa_2 \ (p = 1, 2, \dots, n)$.

(i) If $(n+1) a_1 \neq a_1 - k$ $(k = 1, \dots, m)$, $a_2 - l$ $(l = 0, 1, \dots, m)$, then we write (5.6) in the form

$$A_1^{n+1} e^{(n+1)a_1 z} + \sum_{\beta \in \Gamma_1} \alpha_{\beta} e^{\beta z} = 0,$$

where $\Gamma_1 \subseteq I \setminus \{(n+1) a_1\}$. By Lemma 2.8 and Lemma 2.9, we get $A_1 \equiv 0$, it is a contradiction.

(ii) If $(n+1)a_1 = \gamma$ such that $\gamma \in \{a_1 - k \ (k = 1, \dots, m), a_2 - l \ (l = 0, 1, \dots, m)\}$, then $(n+1)a_2 \neq \beta$ for all $\beta \in I \setminus \{(n+1)a_2\}$. Hence, we write (5.6) in the form

$$A_2^{n+1} e^{(n+1)a_2 z} + \sum_{\beta \in \Gamma_2} \alpha_\beta e^{\beta z} = 0,$$

where $\Gamma_2 \subseteq I \setminus \{(n+1) \, a_2\}$. By Lemma 2.8 and Lemma 2.9, we get $A_2 \equiv 0$, it is a contradiction. Hence, $E \not\equiv 0$ is proved. We know that the functions E_1 , E_0 and E are of finite order. By Lemma 2.6 and (5.4), we have $\overline{\lambda}(g_1) = \overline{\lambda}(f' - \varphi) = \infty$.

Now we prove that $\overline{\lambda}(f'' - \varphi) = \infty$. Set $g_2(z) = f''(z) - \varphi(z)$, then $\sigma(g_2) = \sigma(f'') = \sigma(f) = \infty$. Differentiating both sides of equation (1.1), we have

$$f^{(4)} + Bf''' + (2B' + R^n) f'' + (B'' + 2nR'R^{n-1}) f'$$
$$+ n \left[R''R^{n-1} + (n-1)R'^2R^{n-2} \right] f = 0.$$
 (5.7)

Combining (5.2) with (5.7), we get

$$f^{(4)} + Bf''' + \left(2B' + R^n - n\frac{R''}{R} - n(n-1)\frac{R'^2}{R^2}\right)f''$$

$$+ \left(B'' + 2nR'R^{n-1} - nB\frac{R''}{R} - n(n-1)B\frac{R'^2}{R^2}\right)f' = 0.$$
 (5.8)

Now we prove that $B'+R^n-nB\frac{R'}{R}\not\equiv 0$. Suppose that $B'+R^n-nB\frac{R'}{R}\equiv 0$, then we have

$$B'R + R^{n+1} - nBR' = 0. (5.9)$$

We can write (5.9) in the form (5.6), then by the same reasoning as in the proof of $\overline{\lambda}(f'-\varphi)=\infty$ we get a contradiction. Hence $B'+R^n-nB\frac{R'}{R}\not\equiv 0$ is proved. Set

$$\psi(z) = B'R + R^{n+1} - nBR', \tag{5.10}$$

$$S_1 = 2B'R^2 + R^{n+2} - nR''R - n(n-1)R'^2,$$
(5.11)

$$S_2 = B''R^2 + 2nR'R^{n+1} - nBR''R - n(n-1)BR'^2,$$
 (5.12)

$$S_3 = BR - nR'. (5.13)$$

By (5.3), (5.10) and (5.13), we get

$$f' = -\frac{R}{\psi(z)} \left(f''' + \frac{S_3}{R} f'' \right). \tag{5.14}$$

By (5.14), (5.11), (5.12) and (5.8), we obtain

$$f^{(4)} + \left(B - \frac{S_2}{R\psi(z)}\right)f''' + \left(\frac{S_1}{R^2} - \frac{S_2S_3}{R^2\psi(z)}\right)f'' = 0.$$
 (5.15)

Substituting $f'' = g_2 + \varphi$, $f''' = g'_2 + \varphi'$, $f^{(4)} = g''_2 + \varphi''$ into (5.15) we get

$$g_2'' + H_1 g_2' + H_0 g_2 = H, (5.16)$$

where

$$H_1 = B - \frac{S_2}{R\psi(z)}, \quad H_0 = \frac{S_1}{R^2} - \frac{S_2S_3}{R^2\psi(z)},$$

$$-H = \varphi'' + \varphi' H_1 + \varphi H_0.$$

We can get

$$H_1 = \frac{L_1(z)}{R\psi(z)}, H_0 = \frac{L_0(z)}{R\psi(z)},$$
 (5.17)

where

$$L_{1}(z) = B'BR^{2} + BR^{n+2} - nB^{2}R'R - B''R^{2} - 2nR'R^{n+1}$$

$$+ nBR''R + n(n-1)BR'^{2}, \qquad (5.18)$$

$$L_{0}(z) = 2B'^{2}R^{2} + 3B'R^{n+2} - 2nB'BR'R + R^{2n+2} - 3nBR'R^{n+1}$$

$$- nB'R''R - nR''R^{n+1} - n(n-1)B'R'^{2} + (n^{2} + n)R'^{2}R^{n} - B''BR^{2}$$

$$+ nB^{2}R''R + n(n-1)B^{2}R'^{2} + nB''R'R. \qquad (5.19)$$

Therefore

$$\frac{-H}{\varphi} = \frac{1}{R\psi(z)} \left(\frac{\varphi''}{\varphi} R\psi(z) + \frac{\varphi'}{\varphi} L_1(z) + L_0(z) \right), \tag{5.20}$$

$$R\psi(z) = B'R^2 + R^{n+2} - nBR'R. \tag{5.21}$$

Now we prove that $-H \not\equiv 0$. In fact, if $-H \equiv 0$, then by (5.20) we have

$$\frac{\varphi''}{\varphi}R\psi(z) + \frac{\varphi'}{\varphi}L_1(z) + L_0(z) = 0.$$
(5.22)

Obviously, $\frac{\varphi''}{\varphi}$ and $\frac{\varphi'}{\varphi}$ are meromorphic functions with $\sigma\left(\frac{\varphi''}{\varphi}\right) < 1$, $\sigma\left(\frac{\varphi'}{\varphi}\right) < 1$. By (5.18), (5.19) and (5.21), we can rewrite (5.22) in the form

$$A_1^{2n+2}e^{(2n+2)a_1z}+A_2^{2n+2}e^{(2n+2)a_2z}+\sum_{p=1}^{2n+1}C_{2n+2}^pA_1^{2n+2-p}A_2^pe^{[(2n+2-p)a_1+pa_2]z}$$

$$+ \sum_{\substack{0 \le p \le 2\\0 \le k \le 2m}} f_{p,k} e^{[(2-p)a_1 + pa_2 - k]z} + \sum_{\substack{0 \le p \le n+2\\0 \le k \le m}} h_{p,k} e^{[(n+2-p)a_1 + pa_2 - k]z} = 0, \quad (5.23)$$

where $f_{p,k}$ $(0 \le p \le 2, 0 \le k \le 2m)$ and $h_{p,k}$ $(0 \le p \le n+2, 0 \le k \le m)$ are meromorphic functions with $\sigma(f_{p,k}) < 1$ and $\sigma(h_{p,k}) < 1$. Set $J = \{(2n+2) a_1, (2n+2) a_2, (2n+2-p) a_1 + pa_2 (p=1,2,\cdots,2n+1), (2-p) a_1 + pa_2 - k (p=0,1,2; k=0,\cdots,2m), (n+2-p) a_1 + pa_2 - k (p=0,1,\cdots,n+2; k=0,1,\cdots,m)\}$. By the conditions of Theorem 1.3, it is clear that $(2n+2) a_1 \ne (2n+2) a_2, (2n+2-p) a_1 + pa_2 (p=1,2,\cdots,2n+1),$

 $2a_1$, $(n+2) a_1$ and $(2n+2) a_2 \neq (2n+2) a_1$, $(2n+2-p) a_1 + pa_2$ $(p=1,2,\dots,2n+1), 2a_2, (n+2) a_2$.

(1) By the conditions of Theorem 1.3 (i), we have $(2n+2) a_1 \neq \beta$ for all $\beta \in J \setminus \{(2n+2) a_1\}$, hence we write (5.23) in the form

$$A_1^{2n+2} e^{(2n+2)a_1 z} + \sum_{\beta \in \Gamma_1} \alpha_\beta e^{\beta z} = 0,$$

where $\Gamma_1 \subseteq J \setminus \{(2n+2) a_1\}$. By Lemma 2.8 and Lemma 2.9, we get $A_1 \equiv 0$, it is a contradiction.

(2) By the conditions of Theorem 1.3 (ii), we have $(2n+2) a_2 \neq \beta$ for all $\beta \in J \setminus \{(2n+2) a_2\}$, hence we write (5.23) in the form

$$A_2^{2n+2} e^{(2n+2)a_2 z} + \sum_{\beta \in \Gamma_2} \alpha_\beta e^{\beta z} = 0,$$

where $\Gamma_2 \subseteq J \setminus \{(2n+2) \, a_2\}$. By Lemma 2.8 and Lemma 2.9, we get $A_2 \equiv 0$, it is a contradiction. Hence, $H \not\equiv 0$ is proved. We know that the functions H_1 , H_0 and H are of finite order. By Lemma 2.6 and (5.16), we have $\overline{\lambda}(g_2) = \overline{\lambda}(f'' - \varphi) = \infty$. The proof of Theorem 1.3 is complete.

References

- [1] B. Belaïdi, Growth and oscillation theory of solutions of some linear differential equations, Mat. Vesnik 60 (2008), no. 4, 233–246.
- [2] Z. X. Chen, Zeros of meromorphic solutions of higher order linear differential equations, Analysis 14 (1994), no. 4, 425–438.
- [3] Z. X. Chen, The fixed points and hyper-order of solutions of second order complex differential equations (in Chinese), Acta Math. Sci. Ser. A Chin. Ed. 20 (2000), no. 3, 425–432.
- [4] Z. X. Chen, The growth of solutions of $f'' + e^{-z}f' + Q(z)f = 0$ where the order(Q) = 1, Sci. China Ser. A 45 (2002), no. 3, 290–300.
- [5] Z. X. Chen and K. H. Shon, On the growth of solutions of a class of higher order differential equations, Acta Math. Sci. Ser. B Engl. Ed. 24 (2004), no. 1, 52–60.
- [6] F. Gross, On the distribution of values of meromorphic functions, Trans. Amer. Math. Soc. 131(1968), 199–214.

- [7] G. G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2) 37 (1988), no. 1, 88–104.
- [8] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs Clarendon Press, Oxford 1964.
- [9] K. H. Kwon, Nonexistence of finite order solutions of certain second order linear differential equations, Kodai Math. J. 19 (1996), no. 3, 378–387.
- [10] M. S. Liu, X. M. Zhang, Fixed points of meromorphic solutions of higher order Linear differential equations, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 1, 191–211.
- [11] F. Peng and Z. X. Chen, On the growth of solutions of some second-order linear differential equations, J. Inequal. Appl. 2011, Art. ID 635604, 1–9.
- [12] J. F. Xu, H. X. Yi, The relation between solutions of higher order differential equations with functions of small growth, Acta Math. Sci., Chinese Series, 53 (2010), 291–296.
- [13] C. C. Yang and H. X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557. Kluwer Academic Publishers Group, Dordrecht, 2003.

Benharrat BELAÏDI

Department of Mathematics, Laboratory of Pure and Applied Mathematics University of Mostaganem (UMAB), B. P. 227 Mostaganem-Algeria.

Email: belaidi@univ-mosta.dz

Habib HABIB

Department of Mathematics, Laboratory of Pure and Applied Mathematics University of Mostaganem (UMAB), B. P. 227 Mostaganem-Algeria.

Email: habibhabib2927@yahoo.fr