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THE TOTAL GRAPH OF A
COMMUTATIVE SEMIRING

Shahabaddin Ebrahimi Atani and Fatemeh Esmaeili Khalil Saraei

Abstract

We introduce and investigate the total graph of a commutative semir-
ing with non-zero identity. The main purpose of this paper is to extend
the definition and some results given in [2] to a more general semiring
case.

1 Introduction

The concepts of the graph of the zero-divisors of a ring was first introduced by
Beck in [5] when discussing the coloring of a commutative ring. In his work all
elements of the ring were vertices of the graph. D. D. Anderson and Naseer
use this same concept in [1]. We adopt the approach used by D.F. Anderson
and Livingston in [3] and consider only nonzero zero-divisors as vertices of the
graph. D.F. Anderson and Livingston, and Mulay in [13] examined, among
other things, the diameter and girth of the zero-divisor graph of a commutative
ring. Let R be a commutative ring with Z(R) its set of zero-divisors elements.
The total graph of R, denoted by T (Γ(R)), is the (undirected) graph with
all elements of R as vertices, and for distinct x, y ∈ R, the vertices x and y
are adjacent if and only if x + y ∈ Z(R). The total graph of a commutative
ring have been introduced and studied by D.F. Anderson and A. Badawi in
[2]. In [10], the notion of the total torsion element graph of a module over a
commutative ring is introduced. Some other investigations into properties of
zero-divisor graph of a commutative semiring may be found in [7, 8].
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Ideals of semirings play a central role in the structure theory and are useful
for many purposes [11, 12]. However, they do not in general coincide with the
ideals of rings and, for this reason, their use is somewhat limited in trying
to obtain analogues of ring theorems for semirings. Indeed, many results in
rings apparently have no analogues in semirings using only ideals. In order to
overcome this deficiency, the authors defined a more restricted class of ideals
in semirings, which are called the class of ”k-ideals” and the class of ”Q-ideals”
[4, 11, 12, 6]. In the present paper we introduce a new class of graphs, called
the total graph of a commutative semiring, and we completely characterize the
structure of this graph. The total graph of a commutative ring and the total
graph of a commutative semiring are different concepts. Some of our results are
analogous to the results given in [2]. The corresponding results are obtained
by modification and here we give a complete description of the total graph
of a commutative semiring. The study of the total graph of a commutative
semiring R breaks naturally into two cases depending on whether or not Z(R)
is an ideal of R. In the third section, we handle the case when Z(R) is not an
ideal of R; in the fourth section, we do the case when Z(R) is an ideal of R
((either k-ideal or Q-ideal)).

2 Preliminaries

For the sake of completeness, we state some definitions and notations used
throughout. For a graph Γ, by E(Γ) and V (Γ), we denote the set of all edges
and vertices, respectively. We recall that a graph is connected if there exists a
path connecting any two distinct vertices. At the other extreme, we say that
a graph is totally disconnected if no two vertices of this graph are adjacent.
The distance between two distinct vertices a and b, denoted by d(a, b), is the
length of a shortest path connecting them (if such a path does not exist, then
d(a, a) = 0 and d(a, b) =∞). The diameter of a graph Γ, denoted by diam(Γ),
is equal to sup{d(a, b) : a, b ∈ V (Γ)}. A graph is complete if it is connected
with diameter less than or equal to one. The girth of a graph Γ, denoted gr(Γ),
is the length of a shortest cycle in Γ, provided Γ contains a cycle; otherwise;
gr(Γ) = ∞. We denote the complete graph on n vertices by Kn and the
complete bipartite graph on m and n vertices by Km,n (we allow m and n to
be infinite cardinals). We will sometimes call a K1,m a star graph. We say
that two (induced) subgraphs Γ1 and Γ2 of Γ are disjoint if Γ1 and Γ2 have
no common vertices and no vertex of Γ1 (respectively, Γ2) is adjacent (in Γ)
to any vertex not in Γ1 (respectively, Γ2).

Throughout this paper R is a commutative semiring with identity. In order
to make this paper easier to follow, we recall in this section various notions
from semiring theory which will be used in the sequel. For the definitions of
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monoid, semirings, and ideals we refer [11, 12, 4, 6]. All semiring in this paper
are commutative with non-zero identity. Let R be a semiring.

(1) A semiring R is said to be a semidomain whenever a, b ∈ R with ab = 0
implies that either a = 0 or b = 0.

(2) A subtractive ideal (= k-ideal) I is an ideal of R such that if x, x+y ∈ I,
then y ∈ I (so {0R} is a k-ideal of R).

(3) An element x of R is called a zero-sum in R if x+y = 0 for some y ∈ R.
We use S(R) to denote the set of all zero-sum elements of R.

(4) A semiring R is called a R-cancellative semiring if whenever rs = rt
for elements s, t, r ∈ R with r 6= 0, then s = t.

(5) An ideal I of a semiring R is called a partitioning ideal (= Q-ideal) if
there exists a subset Q of R such that
(a) R = ∪{q + I : q ∈ Q}
(b) If q1, q2 ∈ Q, then (q1 + I) ∩ (q2 + I) 6= ∅ if and only if q1 = q2.

Let I be a Q-ideal of R and let R/I = {q + I : q ∈ Q}. Then R/I forms a
semiring under the operations ⊕ and � defined as follows: (q1+I)⊕(q2+I) =
q3 + I, where q3 ∈ Q is the unique element such that q1 + q2 + I ⊆ q3 + I and
(q1 + I) � (q2 + I) = q4 + I, where q4 ∈ Q is the unique element such that
q1q2 + I ⊆ q4 + I. This semiring R/I is called the quotient semiring of R by
I [5].

(6) We define the total graph of a semiring R, denoted by T (Γ(R)), as
follows: V (T (Γ(R))) = R, E(T (Γ(R))) = {{x, y} : x + y ∈ Z(R)}. We will
use Reg(R) to denote the set of elements of R that are not zero-divisors. Let
Reg(Γ(R)) be the (induced) subgraph of T (Γ(R)) with vertices Reg(R), and
let Z(Γ(R)) be the (induced) subgraph of T (Γ(R)) with vertices Z(R).

3 Z(R) is not an ideal of R

Let R be a commutative ring. In this section, we study the total graph T (Γ(R))
when Z(R) is not an ideal of R. Our stating point is the following proposition:

Proposition 3.1. Let R be a commutative semiring. Then the following
hold:

(i) If R is a semi-domain with 2 = 1R + 1R = {0}, then R is a ring.
(ii) If r ∈ Reg(R), then 2 ∈ Z(R) if and only if 2r ∈ Z(R).

Proof. (i) Let r ∈ R. We may assume that r 6= 0. By assumption, there
exists 0 6= s ∈ R such that 2s = 0. Since s(2r) = (2s)r = 0, we have
2r ∈ Z(R) = {0}, as required.

(ii) It suffices to show that if 2r ∈ Z(R), then 2 ∈ Z(R). There exists
a non-zero element s of R such that (2s)r = s(2r) = 0; hence 2s = 0 since
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r /∈ Z(R). Thus 2 ∈ Z(R).

Theorem 3.2. Let R be a commutative semiring. Then the following
hold:

(i) T (Γ(R)) is complete if and only if Z(R) = R.
(ii) T (Γ(R)) is totally disconnected if and only if Z(R) = S(R) = {0}.

Proof. (i) The sufficiency is clear. Conversely, suppose that T (Γ(R)) is com-
plete and let r ∈ R. Then r is adjacent to 0. Thus r = r + 0 ∈ Z(R), and
hence we have equality.

(ii) Let T (Γ(R)) be totally disconnected. Then 0 is not adjacent to any
vertex; hence r = r + 0 /∈ Z(R) for every non-zero element r of R. Thus
Z(R) = {0}. If there exists a non-zero element s of S(R), then there is an
element 0 6= t ∈ R such that s+ t = 0 ∈ Z(R), which is a contradiction. Thus
S(R) = {0}. Conversely, suppose that there exist distinct a, b ∈ R such that
a + b ∈ Z(R) = {0}. Then a, b ∈ S(R), a contradiction. Hence T (Γ(R)) is
totally disconnected.

Lemma 3.3. Let R be a semiring such that Z(R) is not an ideal of R.
Then there are distinct r, r′ ∈ Z(R)∗ such that r + r′ ∈ Reg(R).

Proof. It is enough to show that Z(R) is always closed under scalar multipli-
cation of its elements by elements of R. Let a ∈ Z(R) and r ∈ R. There
is a non-zero element s ∈ R with sa = 0; hence s(ra) = r(sa) = 0. Thus
ra ∈ Z(R). This completes the proof.

Theorem 3.4. Let R be a semiring such that Z(R) is not an ideal of R.
Then Z(Γ(R)) is connected with diam(Z(Γ(R))) = 2.

Proof. Let r ∈ Z(R)∗. Then r is adjacent to 0. Thus r − 0 − s is a path in
Z(Γ(R)) of length two between any two distinct r, s ∈ Z(R)∗. Moreover, there
exist nonadjacent r, s ∈ Z(R)∗ by Lemma 3.3; thus diam(Z(Γ(R))) = 2.

Example 3.5 shows that Theorem 3.1 (2) and Theorem 3.3 in [2], in general,
are not true when R is a semiring.

Example 3.5 Let S = {0, 1, a} be the idempotent semiring in which
1 + a = a+ 1 = a and let R = S ⊕ S. Then R is a semiring with 9 elements.
An inspection will show that Z(R) = {(0, 0), (1, 0), (0, 1), (a, 0), (0, a)} is not
an ideal of R and R = 〈Z(R)〉. Moreover, Z(Γ(R)) is disjoint from Reg(Γ(R))
and Reg(Γ(R)) is a totally disconnected subgraph of T (Γ(R)). Hence T (Γ(R))
is disconnected.

Definition 3.6. A semiring R is called a subtractive semiring if every
cyclic ideal of R is a k-ideal.
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Example 3.7. Assume that E+ be the set of all non-negative integers
and let R = E+ ∪ {∞}. Define a + b = max{a, b} and ab = min{a, b} for
all a, b ∈ R. Then R is a commutative semiring with 1R = ∞ and 0R = 0.
An inspection will show that the list of ideals of R are: R, E+ and for every
non-negative integer n

In = {0, 1, ..., n}.

It is clear that every proper ideal of R is a k-ideal. So R is a subtractive
semiring.

lemma 3.8. Let R be a subtractive semiring which is not a ring. Then
S(R) ⊆ Z(R).

Proof. If S(R) = {0}, we are done. Suppose that 0 6= r ∈ S(R). Then there
is a s ∈ S(R) such that r + s = 0. Thus s ∈ Rr since Rr is a k-ideal. Then
there exists t ∈ R such that (1 + t)r = 0. It then follows from [9, Lemma 2.1]
that 1 + t 6= 0. Thus r ∈ Z(R), as required.

Theorem 3.9. Let R be a subtractive semiring which is not a ring. If
|S(R)| ≥ 3, then gr(Z(Γ(R))) = 3.

Proof. By assumption and Lemma 3.8, there are non-zero elements x, y of
S(R) with x, y ∈ Z(R) and x + y ∈ Z(R). Thus 0 − x − y − 0 is a 3-cycle in
Z(Γ(R)), as required.

Theorem 3.10. Let R be a semiring R such that Z(R) is not an ideal of
R. Then either gr(Z(Γ(R))) = 3 or gr(Z(Γ(R))) =∞.

Proof. If x + y ∈ Z(R) for some distinct x, y ∈ Z(R)∗, then 0 − x − y − 0 is
a 3-cycle in Z(Γ(R)); so gr(Z(Γ(R))) = 3. Otherwise, x + y ∈ Reg(R) for all
distinct x, y ∈ Z(R). Therefore, in this case, each x ∈ Z(R)∗ is adjacent to 0,
and no two distinct x, y ∈ Z(R)∗ are adjacent. Thus Z(Γ(R)) is a star graph
with center 0; hence gr(Z(Γ(R))) =∞.

Lemma 3.11. Let R be a semiring R such that Z(R) is not an ideal of
R. Then |Z(R)| ≥ 3.

Proof. By Lemma 3.3, there are distinct x, y ∈ Z(R)∗ such that x + y ∈
Reg(R); hence |Z(R)| ≥ 3.

Theorem 3.12. Let R be a semiring such that Z(R) is not an ideal of R.
Then gr(Reg(Γ(R))) = 3 or ∞.
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Proof. We may assume that Reg(Γ(R)) contains a cycle. So there is a path
x − y − z in Reg(R). If x + z ∈ Z(R), then we have a 3-cycle in Reg(Γ(R)).
So we may assume that x + z /∈ Z(R). There exist r1, r2 ∈ Z(R) such that
r1 + r2 /∈ Z(R) by Lemma 3.3. So there are 0 6= t1, t2 ∈ R such that r1t1 =
r2t2 = 0 and then t1t2 = 0 since t1t2(r1 + r2) = 0. Therefore t1x+ t1z ∈ Z(R)
since t2(t1x + t1z) = 0. Thus t1x − t1y − t1z − t1x is a 3-cycle in Reg(Γ(R))
and the proof is complete.

4 Z(R) is an ideal of R

Let R be a commutative semiring. The structure of the total graph T (Γ(R))
may be completely described in those cases when zero-divisor elements form
an ideal.

Proposition 4.1. Let R be a commutative semiring R such that Z(R) is
an ideal of R. Then the following hold:

(i) Z(Γ(R)) is a complete (induced) subgraph of T (Γ(R)).
(ii) If I is an ideal of R, then T (Γ(I)) is an induced subgraph of T (Γ(R))

if and only if Z(I) = I ∩ Z(R).
(iii) If (0 : R) 6= 0, then T (Γ(R)) is a complete graph.

Proof. The proofs are straightforward.

Example 4.2. (1) An ideal of a semiring in general need not be a either
k-ideal or Q-ideal. Let R be the set of all real numbers x satisfying 0 < x ≤ 1,
and define a + b = a.b = min{a, b} for all a, b ∈ R. Then (R,+, .) is easily
checked to be a commutative semiring with 1 as identity. Each real number
r such that 0 < r < 1 defines an ideal Ir = {t ∈ R : t ≤ r} of R. However,
r + 1 = r together r ∈ Ir and 1 /∈ Ir show that Ir is not a k-ideal of R. In
particular, Ir is not a Q-ideal of R since every Q-ideal is a k-ideal.

(2) Let R denote the semiring of non-negative integers with the usual
operations of addition and multiplication. If m ∈ R− {0}, the ideal

Im = {km : k ∈ R}

is a Q-ideal of R when Q = {0, 1, · · · ,m− 1}. In particular, Im is a k-ideal.
(3) Assume that R denote the semiring of non-negative integers. Define

x+ y = gcd(x, y) and x.y = lcm(x, y). It is easy to see that R is a semiring in
which every element is idempotent. The ideal I = {0, 2, 4, · · · } is a k-ideal of
R but is not a Q-ideal.

Remark 4.3. Let R be a semidomain. Then Z(R) = {0} is a Q-ideal of
R, where Q = R− {0} (so it is a k-ideal of R).
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Example 4.4 shows that there is a commutative semiring R such that Z(R)
is an ideal of R, but it is not a k-ideal.

Example 4.4. Assume that E+ be the set of all non-negative integers and
let R = {(a, b) : a, b ∈ E+}. Define (a, b) + (c, d) = (min{a, c},max{b, d}) and
(a, b)∗ (c, d) = (ac, bd) for all (a, b), (c, d) ∈ R. Then (R,+, ∗) is easily checked
to be a commutative semiring. An inspection will show that Z(R) = {(a, b) ∈
R : a = 0 or b = 0} is an ideal of R. However, (0, 1) + (2, 5) = (0, 5) ∈ Z(R)
together with (2, 5) /∈ Z(R) and (0, 1) ∈ Z(R) show that Z(R) is not a k-ideal
of R. Also, T (Γ(R)) is a connected graph since every element is adjacent
to (0, 0) in T (Γ(R)). Moreover, gr(T (Γ(R))) = 3 since there is a 3-cyclic
(0, 0)− (0, 1)− (1, 0)− (0, 0) in T (Γ(R)).

Example 4.5 shows that there is a commutative semiring such that Z(R)
is a k-ideal but it is not Q-ideal.

Example 4.5. Assume that R is the set of all non-negative integers and
let a, b, k ∈ R. Define a+ b = gcd(a, b) and

a ∗ b =

 0 if gcd(a, b) = 2k,
1 if gcd(a, b) = 2k + 1,
0 if a = 0 or b = 0.

Then (R,+, ∗) is easily checked to be a commutative semiring which is not
a semidomain (note that 2 ∗ 6 = 0). An inspection will show that Z(R) =
{0, 2, 4, 6, · · · } is a k-ideal of R but is not a Q-ideal of R by Example 4.2 (3).
Moreover, Z(Γ(R)) is a complete graph and Reg(Γ(R)) is a totally discon-
nected graph.

The main goal of this section is a general structure theorem (Theorem 4.8)
for Reg(Γ(R)) when either Z(R) is a k-ideal of R or Z(R) is a Q-ideal. But
first, we record the basic observation that if Z(R) is a k-ideal of (resp. Z(R)
is not a k-ideal), then the subgraph Z(Γ(R)) is disjoint from Reg(Γ(R)) (resp.
Z(Γ(R)) is not disjoint from Reg(Γ(R)). Thus we will concentrate on the
subgraph Reg(Γ(R)) throughout this section.

Theorem 4.6. Let R be a commutative semiring such that Z(R) is a
k-ideal of R. If r and r′ are distinct elements of Reg(R) that are connected
by a path with r + r′ /∈ Z(R) (i.e., if r and r′ are not adjacent), then there is
a path in Reg(Γ(M)) of length at most 2 between r and r′.

Proof. Let Z(R) be a k-ideal of R. It suffices to show that if r1, r2, r3 and r4
are distinct vertices of Reg(R) and there is a path r1− r2− r3− r4 from r1 to
r4, then r1 and r4 are adjacent. Now we have r1 + r2 + r3 + r4 ∈ Z(R). Then
Z(R) being k-ideal of R gives r1 + r4 ∈ Z(R), and so r1 and r4 are adjacent,
as required.
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Compare the next theorem with [2, Theorem 2.1].
Theorem 4.7. Let R be a commutative semiring R. Then the following

hold:
(i) If Z(R) is a k-ideal of R, then Z(Γ(R)) is disjoint from Reg(Γ(R)).
(ii) If Z(R) is not a k-ideal of R, then Z(Γ(R)) is not disjoint from

Reg(Γ(R)).

Proof. (i) If Z(Γ(R)) is not disjoint from Reg(Γ(R)), then there exist r ∈ Z(R)
and s ∈ Reg(R) such that r+s ∈ Z(R). Thus s ∈ Z(R) since Z(R) is a k-ideal
of R which is a contradiction. Thus Z(Γ(R)) is disjoint from Reg(Γ(R)).

(ii) By assumption, there exist a ∈ Z(R) and b ∈ Reg(R) such that a+ b ∈
Z(R). Let x ∈ R. We define the subset N(x) as follows: N(x) =

{r ∈ Z(R) : there is a path of finite length between x and r}.

It is clear that if x ∈ Z(R), then Z(R) ⊆ N(x), and so N(x) 6= ∅. Set I = {x ∈
R : N(x) 6= ∅}. Therefore, Z(R) ⊂ I since b ∈ I and b /∈ Z(R). Now we show
that I is an ideal of R. Let r1, s1 ∈ I. Therefore, there exist t1, t

′
1 ∈ Z(R),

r1, r2, · · · , rn ∈ R and s1, s2, · · · , sk ∈ R such that r1 − r2 − · · · − rn − t1 and
s1−s2−· · ·−sk−t′1 are paths of finite lengths between r1, t1 and s1, t

′
1, and so

we have ri+ri+1, sj+sj+1, rn+t1, sk+t′1, t1+t′1 ∈ Z(R) for each 1 ≤ i ≤ n−1
and 1 ≤ j ≤ k− 1. We may assume that n ≤ k. So (ri + si) + (ri+1 + si+1) ∈
Z(R) for each 1 ≤ i ≤ n− 1. Then (r1 + s1)− (r2 + s2)− · · · − (rn + sn)−

(t1 + sn+1)− (t′1 + sn+2)− (t1 + sn+3)− · · · − t1

is a path of finite length between r1 + s1 and t1. Hence N(r1 + s1) 6= ∅,
and so r1 + s1 ∈ I. Now, let r ∈ R. Therefore, rr1 − rr2 − · · · − rrn − rt1
is a path between rr1 and rt1 of finite length, and so N(rx) 6= ∅. Thus I
is an ideal of R and Z(R) ⊂ I. It is easy to see that T (Γ(I)) is a connected
subgraph of T (Γ(R)) containing Z(Γ(R)). Hence, Z(Γ(R)) is not disjoint from
Reg(Γ(R)).

Compare the next theorem with [2, Theorem 2.2].
Theorem 4.8. Let R be a commutative semiring R and |Z(R)| = α. Then

The following hold:
(i) If Z(R) is a k-ideal of R and 2 ∈ Z(R), then Reg(Γ(R)) is the union of

disjoint complete subgraphs.
(ii) If Z(R) is a k-ideal of R and 2 /∈ Z(R), then Reg(Γ(R)) is the union

of totally disconnected subgraphs and some connected subgraphs.
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(iii) If Z(R) is a Q-ideal of R, |Q − Z(R)| = β and 2 ∈ Z(R), then
Reg(Γ(R)) is the union of β disjoint Kλ’s such that λ ≤ α.

(iv) If Z(R) is a Q-ideal of R, |Q − Z(R)| = β and 2 /∈ Z(R), then
Reg(Γ(R)) is the union of totally disconnected subgraphs and complete bipar-
tite subgraphs.

Proof. (i) Let 2 ∈ Z(R). We set up an equivalence relation ∼ on Reg(R) as
follows: for r, r′ ∈ Reg(R), we write r ∼ r′ if and only if r + r′ ∈ Z(R). It
is straightforward to check that ∼ is an equivalence relation on Reg(R): for
r ∈ Reg(R), we denote the equivalence class which contains r by [r]. Now let
r ∈ Reg(R). If [r] = {r}, then (r + a) + (r + b) = 2r + (a + b) ∈ Z(R) for
every a, b ∈ Z(R) by Proposition 3.1. So r + Z(R) is a complete subgraph
with at most α vertices. If |[r]| = γ > 1, then for every r′ ∈ [r] we have
(r+ a) + (r′+ b) = (r+ r′) + a+ b ∈ Z(R), where a, b ∈ Z(R). Thus r+Z(R)
is a part of a complete graph Kν with ν ≤ αγ vertices. Therefore, Reg(Γ(R))
is the union of disjoint complete subgraphs.

(ii) Let 2 /∈ Z(R) and r ∈ Reg(R). Set

N(r) = {r′ ∈ Reg(R) : r + r′ ∈ Z(R)}.

If N(r) = ∅, then r + r′ /∈ Z(R) for every r′ ∈ Reg(R). In this case, we show
that r + Z(R) is a totally disconnected subgraph of Reg(Γ(R)). If (r + a) +
(r + b) ∈ Z(R) for some a, b ∈ Z(R), then 2r + a + b ∈ Z(R); so 2r ∈ Z(R),
which is a contradiction by Proposition 3.1. Therefore, r + Z(R) is a totally
disconnected subgraph of Reg(Γ(R)). We may assume that N(r) 6= ∅. Then
r+r′ ∈ Z(R) for some r′ ∈ Reg(R). Thus (r+a)+(r′+b) = (r+r′)+(a+b) ∈
Z(R) for every a, b ∈ Z(R); hence each element of r+Z(R) is adjacent to each
element of r′ + Z(R). If |N(r)| = ν, then we have a connected subgraph of
Reg(Γ(R)) with at most αν vertices. Hence, If 2 /∈ Z(R), then Reg(Γ(R)) is
the union of totally disconnected subgraphs and some connected subgraphs.

(iii) First, we show that q + Z(R) ⊆ Reg(R) for every q ∈ Q − Z(R). If
q + a /∈ Reg(R) for some a ∈ Z(R), then q + a ∈ Z(R); hence q ∈ Z(R) since
Z(R) is a k-ideal which is a contradiction. Let 2 ∈ Z(R) and q ∈ Q − Z(R).
Then each coset q+Z(R) is a complete subgraph of Reg(R) with λ vertices such
that λ ≤ α (note that (q1+Z(R))∩(q2+Z(R)) 6= ∅ if and only if q1 = q2) since
(q+a)+(q+b) = 2q+(a+b) ∈ Z(R) for all a, b ∈ Z(R) by Proposition 3.1 and
Z(R) is an ideal. Next, we show that distinct cosets form disjoint subgraphs
of Reg(Γ(R)). If q1 + a and q2 + b are adjacent for some q1, q2 ∈ Q − Z(R)
and a, b ∈ Z(R), then (q1 + a) + (q2 + b) ∈ Z(R) gives q1 + q2 ∈ Z(R) since
Z(R) is a k-ideal of R. So q2 + 2q1 = q1 + (q1 + q2) ∈ q1 + Z(R). Likewise,
q2+2q1 ∈ q2+Z(R) by Proposition 3.1. So q2+2q1 ∈ (q1+Z(R))∩(q2+Z(R));
hence q1 = q2. Thus Reg(Γ(R)) is the union of β disjoint induced subgraphs
q + Z(R), each of which is a Kλ such that λ ≤ α.
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(iv) Assume that 2 /∈ Z(R) and let q ∈ Q−Z(R). If q+q′ /∈ Z(R) for every
q′ ∈ Q−Z(R), then N(q) = ∅. Then by (ii), q+Z(R) is a totally disconnected
subgraph of Reg(Γ(R)). So we may assume that q + q′ ∈ Z(R) for some q′ ∈
Q−Z(R). Then by (ii) each element of q+Z(R) is adjacent to each element of
q′ +Z(R). Now we show that q′ is the unique element. Let q+ q′′ ∈ Z(R) for
some q′′ ∈ Q−Z(R). Therefore, q+q′+q′′ = q′+(q+q′′) ∈ q′+Z(R). Likewise,
q+q′+q′′ = q′′+(q+q′) ∈ q′′+Z(r). Thus (q′+Z(R))∩(q′′+z(R)) 6= ∅ gives
q′ = q′′. Therefore (q + Z(R)) ∪ (q′ + Z(R)) is a complete bipartite subgraph
of Reg(Γ(R)). So Reg(Γ(R)) is the union of totally disconnected subgraphs
and complete bipartite subgraphs.

Proposition 4.9. Let R be a commutative semiring R. Then the following
hold:

(i) If Z(R) is a k-ideal of R and Reg(Γ(R)) is complete, then |Reg(R)| = 1
or |Reg(R)| = 2.

(ii) If Z(R) is a Q-ideal of R and Reg(Γ(R)) is complete, then |R/Z(R)| = 2
or |R/Z(R)| = 3.

(iii) If Z(R) is a Q-ideal of R, |R/Z(R)| = 2 and 2 ∈ Z(R), then Reg(Γ(R))
is complete.

Proof. (i) If 2 ∈ Z(R), then 2r ∈ Z(R) for every r ∈ Reg(R). Then r + Z(R)
is a complete subgraph of Reg(Γ(R)); hence |Reg(R)| = 1 since Reg(Γ(R)) is
complete. If 2 /∈ Z(R), then for each r ∈ Reg(R), there exists r′ ∈ Reg(R)
such that r + r′ ∈ Z(R). So |Reg(R)| = 2 since Reg(Γ(R)) is complete. In
this case, Reg(Γ(R)) is a complete bipartite graph (see Theorem 4.8).

(ii) Since every Q-ideal is a k-ideal, the part (i) gives |Reg(R)| = 1 or
|Reg(R)| = 2. If |Reg(R)| = 1, then R = Z(R) ∪ (q + Z(R)) for q ∈ Reg(R)
and hence |R/Z(R)| = 2. Similarly, if |Reg(R)| = 2, then R = Z(R) ∪ (q +
Z(R)) ∪ (q′ + Z(R)) for q, q′ ∈ Reg(R) with q 6= q′, and hence |R/Z(R)| = 3.

(iii) By assumption, R = Z(R) ∪ (q + Z(R)) for some q ∈ Q − Z(R); so
2q ∈ Z(R) by Proposition 3.1. Let r, r′ ∈ Reg(R). Then r, r′ ∈ q + Z(R). So
r + r′ = (q + a) + (q + b) = 2q + (a+ b) ∈ Z(R)) for some a, b ∈ Z(R). Thus
Reg(Γ(M)) is complete.

Proposition 4.10. Let R be a commutative semiring such that Z(R) is
a Q-ideal of R. Then the following hold:

(i) If Reg(Γ(R)) is connected, then |R/Z(R)| = 2 or |R/Z(R)| = 3.
(ii) If |R/Z(R)| = 2 and 2 ∈ Z(R), then Reg(Γ(R)) is connected.

Proof. (i) Let Reg(Γ(R)) be a connected graph. Then Reg(Γ(R)) is a single
complete graph Kλ or a bipartite graph by Theorem 4.8. Hence Reg(Γ(R)) is
a complete graph. Now the assertion follows from Proposition 4.9.

(ii) This follows directly from Proposition 4.9.
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Theorem 4.11 Let R be a commutative semiring R. Then the following
hold:

(i) If Z(R) is a k-ideal of R, then diam(Reg(Γ(R))) = 0 if and only if
Z(R) = {0} and |R| = 2.

(ii) Let Z(R) be a Q-ideal of R. Then:
(a) diam(Reg(Γ(R))) = 1 if and only if 2 ∈ Z(R) and |R/Z(R)| = 2.
(b) diam(Reg(Γ(R))) = 2 if and only if |R/Z(R)| = 3, 2 /∈ Z(R) and

q + q′ ∈ Z(R) for every q, q′ ∈ Q− Z(R).
(c) Otherwise diam(Reg(Γ(R))) =∞.

Proof. (i) If diam(Reg(Γ(R))) = 0, then Reg(Γ(R)) is a complete graph K1,
and so |Z(R)| = |Reg(R)| = 1 by Theorem 4.8. Hence Z(R) = {0} and
|R| = 2. The other implication is clear.

(ii) (a) If diam(Reg(Γ(R))) = 1, then Reg(Γ(R)) is a complete graph Kλ

with λ ≤ |Z(R)| by Theorem 4.8. Therefore, 2 ∈ Z(R) and |Q − Z(R)| = 1.
Thus R = Z(R) ∪ (q + Z(R)) for some q ∈ Q − Z(R); hence |R/Z(R)| = 2.
The converse follows from Theorem 4.8.

(ii) (b) If diam(Reg(Γ(R))) = 2, then Reg(Γ(R)) is a complete bipartite
graph K1,2 or K2,2; thus 2 /∈ Z(R) and |Q − Z(R)| = 2 by Theorem 4.8.
Since Reg(Γ(R)) has not any totally disconnected subgraph, we must have
q + q′ ∈ Z(R) for every q, q′ ∈ Q− Z(R).

Remark 4.12. Let R and M be as described in Example 4.5. So Z(R) =
{0, 2, 4, 6, · · · } is a k-ideal of R but it is not a Q-ideal of R. Also, Z(Γ(R))
is a complete graph and Reg(Γ(R)) is a totally disconnected graph. Since
gcd(2, 4) = 2, we have 2 ∗ 4 = 0; hence 2 ∈ Z(R). Moreover, R = Z(R) ∪ (1 +
Z(R)) and diam(Reg(Γ(R))) =∞. Hence Theorem 4.11 (ii) is not true when
Z(R) is not a Q-ideal of R.

Proposition 4.13. Let R be a commutative semiring such that Z(R) is
a k-ideal of R. Then gr(Reg(Γ(R))) = 3, 4 or ∞. In particular, if Reg(Γ(R))
contains a cycle, gr(Reg(Γ(R))) ≤ 4.

Proof. Let Reg(Γ(R)) contains a cycle. Then Reg(Γ(R)) is not a totally dis-
connected graph, so by the proof of Theorem 4.8, Reg(Γ(R)) has either a
complete or a complete bipartite subgraph. Therefore, it must contain either
a 3-cycle or a 4-cycle. Thus gr(Reg(Γ(R))) ≤ 4.

Theorem 4.14. Let R be a commutative semiring such that Z(R) be a
k-ideal of R. Then the following hold:

(i) gr(Reg(Γ(R))) = 3 if and only if 2 ∈ Z(R) and |r+Z(R)| ≥ 3 for some
r ∈ Reg(R).

(ii) gr(Reg(Γ(R))) = 4 if and only if 2 /∈ Z(R) and r+ r′ ∈ Z(R) for some
r, r′ ∈ Reg(R).
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Proof. (i) Assume that gr(Reg(Γ(R))) = 3. Then by Theorem 4.8, Reg(Γ(R))
is a complete graph Kλ with 3 ≤ λ. Therefore, 2 ∈ Z(R) and |r + Z(R)| ≥ 3
for some r ∈ Reg(R).

(ii) If gr(Reg(Γ(R))) = 4, then by Theorem 4.8, Reg(Γ(R)) has a complete
bipartite subgraph; hence 2 /∈ Z(R) and r+ r′ ∈ Z(R) for some r, r′ ∈ Reg(R)
by Theorem 4.8. The other implications of (i) and (ii) follows directly from
Theorem 4.8.

Theorem 4.15. Let R be a commutative semiring such that Z(R) be a
k-ideal of R. Then the following hold:

(i) gr(T (Γ(R))) = 3 if and only if |Z(R)| ≥ 3.
(ii) gr(T (Γ(R))) = 4 if and only if 2 /∈ Z(R), |Z(R)| < 3 and r+ r′ ∈ Z(R)

for some r, r′ ∈ Reg(R).
(iii) Otherwise, gr(T (Γ(R))) =∞.

Proof. (i) This follows from Proposition 4.1.
(ii) Since gr(Z(Γ(R)) = 3 or ∞, then gr(Reg(Γ(R))) = 4. Therefore,

2 /∈ Z(R) and r + r′ ∈ Z(R) for some r, r′ ∈ Reg(R) by Theorem 4.14. On
the other hand, gr(T (Γ(R)) 6= 3; so |Z(R)| < 3. The other implication follows
from Theorem 4.8.
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