

Altering distances, some generalizations of Meir - Keeler theorems and applications

Alina-Mihaela Patriciu and Valeriu Popa

Abstract

The purpose of this paper is to prove a general theorem of Meir -Keeler type using the notion of altering distance for occasionally weakly compatible mappings satisfying an implicit relation.

As application, a problem of Meir - Keeler type satisfying a condition of integral type becomes a special case of a problem of Meir - Keeler type with an altering distance.

1 Introduction

Let f and g be self mappings of a metric space (X, d). We say that $x \in X$ is a coincidence point of f and g if fx = gx.

We denote by C(f,g) the set of all coincidence points of f and g.

A point w is a point of coincidence of f and g if there exists an $x \in X$ such that w = fx = gx.

Jungck [10] defined f and g to be compatible if $\lim d(fgx_n, gfx_n) = 0$ whenever $\{x_n\}$ is a sequence in X such that $\lim fx_n = \lim gx_n = t$ for some $t \in X$.

In 1994, Pant introduced the notion of pointwise R - weakly commuting mappings. It is proved in [25] that pointwise R - weakly commuting is equivalent to commutativity in coincidence points.

2010 Mathematics Subject Classification: Primary 54H25; Secondary 47H10.

Received: January 2013 Accepted: February 2013

Key Words: Fixed point, Meir - Keeler type, altering distance, integral type, occasionally weakly compatible.

Definition 1.1 ([11]). Two self mappings of a metric space (X, d) are said to be weakly compatible if fgu = gfu for each $u \in C(f, g)$.

Al - Thagafi and Naseer Shahzad [3] introduced the notion of occasionally weakly compatible mappings.

Definition 1.2. Two self mappings f and g of a metric space (X,d) are said to be occasionally weakly compatible (owc) mappings if there exists a point $x \in X$ which is a coincidence point of f and g at which f and g commute.

Remark 1.1. Two weakly compatible mappings having coincidence points are owc. The converse is not true, as shown in the Example of [3].

Some fixed point theorems for occasionally weakly compatible mappings are proved in [2], [12], [34] and in other papers.

Lemma 1.1 ([12]). Let X be a nonempty set and let f and g be owc self maps of X. If f and g have a unique point of coincidence w = fx = gx, then w is the unique common fixed point of f and g.

2 Preliminaries

In 1969, Meir and Keeler [19], established a fixed point theorem for self mappings of a metric space (X, d) satisfying the following condition:

for each $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$\varepsilon < d(x, y) < \varepsilon + \delta \text{ implies } d(fx, fy) < \varepsilon.$$
 (2.1)

There exists a vast literature which generalizes the result of Meir-Keeler. In [18], Mati and Pal proved a fixed point theorem for a self mapping of a metric space (X, d) satisfying the following condition which is a generalization of (2.1):

for $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\varepsilon < \max\{d(x,y), d(x,fx), d(y,fy)\} < \varepsilon + \delta \text{ implies } d(fx,fy) < \varepsilon.$$
 (2.2)

In [29] and [35], Park-Rhoades, respectively Rao-Rao extend this result for two self mappings f and g of a metric space (X,d) satisfying the following condition:

$$\varepsilon < \max \left\{ d(fx, fy), d(fx, gx), d(fy, gy), \frac{1}{2} \left[d(fx, gy) + d(fy, gx) \right] \right\} < \varepsilon + \delta$$
(2.3)

implies $d(gx, gy) < \varepsilon$.

In 1986, Jungck [10] and Pant [21] extend these results for four mappings. It is known by Jungck [10], Pant [22], [24], [25] and other papers that, in the case of theorems for four mappings A, B, S and $T:(X,d) \to (X,d)$, a condition of Meir-Keeler type does not assure the existence of a fixed point. The following theorem is stated in [9].

Theorem 2.1. Let (A, S) and (B, T) be compatible pairs of self mappings of a complete metric space (X, d) such that

- (1) $AX \subset TX$ and $BX \subset SX$,
- (2) given an $\varepsilon > 0$ there exists a $\delta > 0$ such that for all $x, y \in X$,

$$\varepsilon \leq M(x,y) < \varepsilon + \delta \text{ implies } d(Ax,By) < \varepsilon,$$

where

$$\begin{split} M(x,y) = \max \quad \Big\{ d(Sx,Ty), d(Sx,Ax), d(Ty,By), \\ \frac{1}{2} \left[d(Sx,By) + d(Ty,Ax) \right] \Big\} \end{split}$$

and

(3)

$$d(Ax, By) < k(d(Sx, Ty) + d(Sx, Ax) + d(Ty, By) + d(Sx, By) + d(Ty, Ax))$$

for all $x, y \in X$, where $k \in \left[0, \frac{1}{3}\right)$.

If one of mappings A, B, S and T is continuous then A, B, S and T have a unique common fixed point.

Some similar theorems are proved in [8], [27], [28] and in other papers. Recently, Theorem 2.1 was improved and extended for weakly compatible pairs in [4].

Theorem 2.2. Let (A, S) and (B, T) be weakly compatible pairs of self mappings of a complete metric space (X, d) such that the following conditions hold:

- 1) $AX \subset TX$ and $BX \subset SX$,
- 2) one of AX, BX, SX and TX is closed,

3) for each $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$\varepsilon < M(x,y) < \varepsilon + \delta \text{ implies } d(Ax,By) \le \varepsilon,$$

4) $x, y \in X$, M(x, y) > 0 implies d(Ax, By) < M(x, y),

5)

$$d(Ax, By) < k \left[d(Sx, Ty) + d(Sx, Ax) + d(Ty, By) + d(Sx, By) + d(Ty, Ax) \right]$$

for all $x, y \in X$, where $k \in [0, \frac{1}{3})$.

Then A, B, S and T have a unique common fixed point.

Other generalizations of Theorem 2.1 are proved in [5].

Theorem 2.3. Let (A, S) and (B, T) be weakly compatible pairs of self mappings of a complete metric space (X, d) such that

- 1) $AX \subset TX$ and $BX \subset SX$,
- 2) one of AX, BX, SX and TX is closed,
- 3) given an $\varepsilon > 0$, there exists a $\delta > 0$ such that for all x, y in X

$$\varepsilon \leq M(x,y) < \varepsilon + \delta \text{ implies } d(Ax,By) < \varepsilon,$$

4)

$$\begin{array}{lcl} d(Ax,By) & \leq & k \max \left\{ d(Sx,Ty), d(Sx,Ax), d(Ty,By), \\ & & d(Sx,By), d(Ty,Ax) \right\} \end{array}$$

for all x, y in X, where $k \in [0, 1)$.

Then A, B, S and T have a unique common fixed point.

Remark 2.1. Because if (X, d) is complete and AX, BX, SX, TX are closed, then AX, BX, SX, TX are complete subspaces of X, in Theorems 2.2, 2.3 the conditions that X is complete and AX, BX, SX, TX are closed should be replaced by the statement that one of AX, BX, SX, TX is a complete subspace of X.

In [6], Branciari established the following result.

Theorem 2.4. Let (X,d) be a complete metric space, $c \in (0,1)$ and $f: X \to X$ such that

$$\int_{0}^{d(fx,fy)} h(t)dt \le c \int_{0}^{d(x,y)} h(t)dt, \tag{2.4}$$

whenever $h:[0,\infty)\to [0,\infty)$ is a Lebesgue measurable mapping which is summable (i.e. with a finite integral) on each compact subset of $[0,\infty)$ such that for $\varepsilon>0$, $\int\limits_0^\varepsilon h(t)dt>0$. Then, f has a unique fixed point z such that, for each $x\in X$, $\lim\limits_0^\varepsilon fx_0=z$.

Theorem 2.4 is extended to compatible, weakly compatible, occasional weakly compatible in [1], [15], [16], [20], [34] and in other papers.

Quite recently, Gairola and Rawat [7] proved a fixed point theorem for two pairs of maps satisfying a new contractive condition of integral type, using the concept of occasionally weakly compatible mappings, which generalize Theorem 2.1.

Theorem 2.5. Let A, B, S and T be self mappings of a metric space (X, d) satisfying the following conditions:

- 1) $AX \subset TX$ and $BX \subset SX$.
- 2) given $\varepsilon > 0$ there exists $\delta > 0$ such that for all x, y in X,

$$\int\limits_{0}^{M(x,y)}h(t)dt<\varepsilon+\delta \ implies \ \int\limits_{0}^{d(Ax,By)}h(t)dt\leq\varepsilon,$$

where h(t) is as in Theorem 2.4 and $\int_{0}^{M(x,y)} h(t)dt > 0$ implies

$$\int_{0}^{d(Ax,By)} h(t)dt < \int_{0}^{M(x,y)} h(t)dt,$$

3)
$$\int_{0}^{d(Ax,By)} h(t)dt < k \left[\int_{0}^{d(Sx,Ty)} h(t)dt + \int_{0}^{d(Sx,Ax)} h(t)dt + \int_{0}^{d(Ty,By)} h(t)dt + \int_{0}^{d(Sx,By)} h(t)dt + \int_{0}^{d(Ty,Ax)} h(t)dt \right],$$

for all x, y in X and $k \in [0, \frac{1}{3})$.

If one of AX, BX, SX, TX is a complete subspace of X, then:

- a) A and S have a coincidence point,
- b) B and T have a coincidence point.

Moreover, if the pairs (A, S) and (B, T) are occasionally weakly compatible mappings, then A, B, S and T have a unique common fixed point.

Definition 2.1. An altering distance is a mapping $\psi : [0, \infty) \to [0, \infty)$ which satisfies

```
(\psi_1): \psi(t) is increasing and continuous,
```

$$(\psi_2)$$
: $\psi(t) = 0$ if and only if $t = 0$.

Fixed point problem involving an altering distance have been studied in [14], [17], [32], [36], [37] and in other papers.

Lemma 2.1. The function $\psi(x) = \int_0^x h(t)dt$, where h(t) is as in Theorem 2.4, is an altering distance.

Proof. By definitions of $\psi(t)$ and h(t) it follows that $\psi(x)$ is increasing and $\psi(x) = 0$ if and only if x = 0. By Lemma 2.5 [20], $\psi(x)$ is continuous.

In [30] and [31] the study of fixed points for mappings satisfying implicit relations was initiated. A general fixed point theorem of Meir-Keeler type for noncontinuous weakly compatible mappings satisfying an implicit relation, which generalize (2.1) and others is proved in [33].

The purpose of this paper is to prove a general theorem of Meir-Keeler type using the notion of altering distance for occasionally weakly compatible mappings satisfying an implicit relation.

As an application, a problem of Meir-Keeler type satisfying a condition of integral type becomes a special case of Meir-Keeler type with an altering distance.

3 Implicit relation

Let \mathcal{F}_{MK} be the set of all real continuous mappings $\phi(t_1,...,t_6): \mathbb{R}^6_+ \to \mathbb{R}$, increasing in t_1 satisfying the following conditions:

```
(\phi_1): \phi(t, 0, 0, t, t, 0) \le 0 implies t = 0,
```

$$\phi(t, 0, t, 0, 0, t) \le 0 \text{ implies } t = 0,$$

$$(\phi_3)$$
: $\phi(t, t, 0, 0, t, t) > 0, \forall t > 0.$

Example 3.1. $\phi(t_1,...,t_6) = t_1 - k(t_2 + t_3 + t_4 + t_5 + t_6)$, where $k \in [0,\frac{1}{3}]$.

Example 3.2. $\phi(t_1,...,t_6) = t_1 - at_2 - b(t_3 + t_4) - c(t_5 + t_6)$, where $a, b, c \ge 0, b + c < 1$ and a + 2c < 1.

Example 3.3. $\phi(t_1,...,t_6) = t_1 - b(t_3 + t_4) - c \min\{t_5,t_6\}$, where $b, c \ge 0$, b < 1 and a + c < 1.

Example 3.4. $\phi(t_1,...,t_6) = t_1 - h \max\{t_2,t_3,t_4,t_5,t_6\}, \text{ where } h \in (0,1).$

Example 3.5. $\phi(t_1,...,t_6) = t_1 - h \max\{t_2,t_3,t_4,\frac{1}{2}(t_5+t_6)\}, \text{ where } h \in (0,1).$

Example 3.6. $\phi(t_1,...,t_6) = t_1^2 - at_2^2 - t_3t_4 - bt_5^2 - ct_6^2$, where $a, b, c \ge 0$ and a+b+c < 1.

Example 3.7. $\phi(t_1,...,t_6) = t_1^3 - k(t_2^3 + t_3^3 + t_4^3 + t_5^3 + t_6^3)$, where $k \in [0,\frac{1}{3})$.

Example 3.8. $\phi(t_1,...,t_6) = t_1^3 - \frac{t_3^2 \cdot t_4^2 + t_5^2 \cdot t_6^2}{1 + t_2 + t_3 + t_4}$.

Example 3.9. $\phi(t_1,...,t_6) = t_1 - \max\{ct_2,ct_3,ct_4,at_5+bt_6\}$, where $a,b,c \ge 0, c < 1$ and a+b < 1.

Example 3.10. $\phi(t_1, ..., t_6) = t_1 - \alpha \max\{t_2, t_3, t_4\} - (1 - \alpha)(at_5 + bt_6)$, where $\alpha \in [0, 1)$, $a, b \ge 0$ and a + b < 1.

Example 3.11. $\phi(t_1,...,t_6) = t_1 - \max\left\{t_2, \frac{1}{2}(t_3 + t_4), \frac{1}{2}[(t_5 + t_6)k]\right\}$, where $k \in [0,1)$.

Example 3.12. $\phi(t_1,...,t_6) = t_1 - \max\left\{k_1t_2, \frac{k_2}{2}(t_3+t_4), \frac{t_5+t_6}{2}\right\}$, where $k_1 \in [0,1), k_2 \in [1,2)$.

Example 3.13. $\phi(t_1,...,t_6) = t_1 - \max\left\{k_1(t_2 + t_3 + t_4), \frac{k_2}{2}(t_5 + t_6)\right\}$, where $k_1 \in [0,1), k_2 \in [0,2)$.

Let $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ be a function satisfying the following conditions:

 $(\varphi_1): \varphi$ is continuous,

 (φ_2) : φ is nondecreasing on \mathbb{R}_+ ,

 $(\varphi_3):$ $0 < \varphi(t) < t \text{ for } t > 0.$

Example 3.14. $\phi(t_1,...,t_6) = t_1 - \varphi \max \left\{ t_2, t_3, t_4, t_5, \frac{t_6}{2} \right\}$.

Example 3.15. $\phi(t_1,...,t_6) = t_1 - \varphi \max \left\{ t_2, \frac{t_3 + t_4}{2}, \frac{t_5 + t_6}{2} \right\}$.

Example 3.16. $\phi(t_1,...,t_6) = t_1 - \varphi \max \left\{ t_2, t_3, t_4, \frac{k}{2}(t_5 + t_6) \right\}$, where $k \in [0,2)$.

Example 3.17. $\phi(t_1,...,t_6) = t_1 - \varphi \max \left\{ t_2, t_3, t_4, \frac{t_5 + t_6}{2} \right\}.$

4 Main results

Theorem 4.1. Let A, B, S, T be self mappings of a metric space (X,d) satisfying the inequality:

$$\phi(\psi(d(Ax, By)), \psi(d(Sx, Ty)), \psi(d(Ax, Sx)),
\psi(d(Ty, By)), \psi(d(Sx, By)), \psi(d(Ty, Ax))) \le 0$$
(4.1)

for all x, y in X, where ϕ satisfies property (ϕ_3) and ψ is an altering distance. If there exist $u, v \in X$ such that Su = Au and Tv = Bv, then A and S have a unique point of coincidence and B and T have a unique point of coincidence.

Proof. First we prove that Su = Tv. If $Su \neq Tv$, using (4.1), we have, successively:

$$\phi(\psi(d(Au,Bv)), \psi(d(Su,Tv)), \psi(d(Au,Su)), \\ \psi(d(Tv,Bv)), \psi(d(Su,Bv)), \psi(d(Tv,Au))) \le 0,$$

$$\phi(\psi(d(Su,Tv)),\psi(d(Su,Tv)),0,0,\psi(d(Su,Tv)),\psi(d(Su,Tv))) \le 0,$$

a contradiction of (ϕ_3) if d(Su, Tv) > 0. Hence $\psi(d(Su, Tv)) = 0$, which implies that Su = Tv.

Assume that there exists a $p \in X$ such that Ap = Sp. Then by (4.1) we have successively:

$$\phi(\psi(d(Ap,Bv)), \psi(d(Sp,Tv)), \psi(d(Sp,Ap)), \\ \psi(d(Tv,Bv)), \psi(d(Sp,Bv)), \psi(d(Tv,Ap))) \le 0,$$

$$\phi(\psi(d(Sp,Tv)),\psi(d(Sp,Tv)),0,0,\psi(d(Sp,Tv)),\psi(d(Sp,Tv))) < 0,$$

a contradiction of (ϕ_3) if d(Sp, Tv) > 0. Therefore Sp = Tv and z = Au = Su is the unique point of coincidence of A and S. Similarly, w = Tv = Bv is the unique point of coincidence of B and T.

Lemma 4.1. Let A, B, S, T be self mappings of a metric space (X, d) such that $AX \subset TX$ and $BX \subset SX$ and ψ is an altering distance. For each $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$\varepsilon < \psi(M(x,y)) < \varepsilon + \delta \text{ implies } \psi(d(Ax,By)) \le \varepsilon,$$
 (4.2)

$$\psi(M(x,y)) > 0 \text{ implies } \psi(d(Ax,By)) < \psi(M(x,y)). \tag{4.3}$$

For $x_0 \in X$ and $\{y_n\}$ defined by $y_{2n-1} = Tx_{2n-1} = Ax_{2n-2}$ and $y_{2n} = Sx_{2n} = Bx_{2n-1}$ for $n \in \mathbb{N}^*$ and $d_n = d(y_n, y_{n+1})$, then $\lim d_n = 0$.

Proof. First we prove that if, for some $k \in \mathbb{N}^*$, $d_{k+1} > 0$, then

$$\psi(d_{k+1}) < \psi(d_k). \tag{4.4}$$

- a) Assume that $d_{2k} > 0$ for some $k \in \mathbb{N}^*$. Then $M(x_{2k}, x_{2k-1}) > 0$ otherwise $Ax_{2k} = Bx_{2k-1}$, i.e. $y_{2k} = y_{2k+1}$ so $d_{2k} = 0$, a contradiction. Hence $d_{2k} = d(Ax_{2k}, Bx_{2k-1}) < M(x_{2k}, x_{2k-1})$ which implies by (4.3) that $0 < \psi(d_{2k}) < \psi(M(x_{2k}, x_{2k-1})) \le \psi(\max\{d_{2k-1}, d_{2k}\}) = \psi(d_{k-1})$.
- b) If $d_{2k+1} > 0$ for some $k \in \mathbb{N}^*$, using a similar argument as in a), one can verify that $\psi(d_{2k+1}) < \psi(d_{2k})$.
 - c) Combining the results of a) and b) we may conclude that

$$\psi(d_{k-1}) < \psi(d_{2k}) \text{ for } k \in \mathbb{N}^*. \tag{4.5}$$

Moreover, if for some $k \in \mathbb{N}^*$, $\psi(d_k) = 0$, then $d_k = 0$ which implies $d_{k+1} = 0$ because, if $d_{k+1} > 0$, then $\psi(d_{k+1}) > 0$ which implies by a) and b) that $\psi(d_{k+1}) < \psi(d_k) = 0$, a contradiction. Hence, for $n \ge k$ we have $y_n = y_k$ and hence $\lim d(y_n, y_{n+1}) = 0$.

We prove that $\lim d(y_n, y_{n+1}) = 0$ for $\psi(d_k) > 0$.

By (4.5) it follows that $\psi(d_n)$ is strictly decreasing, hence convergent to some $\ell \in \mathbb{R}_+$. Suppose that $\ell > 0$. Then by (4.2) for $\varepsilon = \ell$, there exists a $\delta > 0$ such that $\ell < \psi(d_n) < \ell + \delta$ for $n \ge k$. In particular $\ell < \psi(M(x_{2k}, x_{2k+1})) < \ell + \delta$, since $M(x_{2k}, x_{2k+1}) = \max\{d_{2k}, d_{2k+1}\} \le \ell$. Hence $\ell < \psi(d_{2k}) \le \ell$, a contradiction, and $\ell = 0$. Let $a_n = \psi(d(y_n, y_{n+1}))$, $n \ge 0$. Then by the continuity of ψ we obtain

$$0 = \lim a_n = \lim \psi(d(y_n, y_{n+1})) = \psi(\lim d(y_n, y_{n+1})).$$

Hence
$$\lim d(y_n, y_{n+1}) = 0$$
.

Theorem 4.2. Let A, B, S and T be self mappings of a metric space (X, d) satisfying the following conditions:

- a) $AX \subset TX$ and $BX \subset SX$,
- b) given an $\varepsilon > 0$ there exists a $\delta > 0$ such that for all $x, y \in X$

$$\varepsilon < \psi(M(x,y)) < \varepsilon + \delta \text{ implies } \psi(d(Ax,By)) \le \varepsilon,$$

- c) $\psi(M(x,y)) > 0$ implies $\psi(d(Ax,By)) < \psi(M(x,y))$,
- d) the inequality (4.1) holds for all x, y in X, where $\phi \in \mathcal{F}_{MK}$ and ψ is an altering distance.

If one of AX, BX, SX, TX is a complete subspace of X, then:

- e) A and S have a coincidence point,
- f) B and T have a coincidence point.

Moreover, if the pairs (S, A) and (T, B) are occasionally weakly compatible mappings, then A, B, S and T have a unique common fixed point.

Proof. First we prove that $\{y_n\}$ is a Cauchy sequence. Since by Lemma 4.1, $\lim d(y_n,y_{n+1})=0$ it is sufficient to show that $\{y_{2n}\}$ is a Cauchy sequence. Suppose that $\{y_{2n}\}$ is not a Cauchy sequence. Then there exists an $\varepsilon>0$ such that for even integer 2k, there exists even integers 2m(k) and 2n(k) such that $d(y_{2m(k)},y_{2n(k)})>\varepsilon$ with $2m(k)>2n(k)\geq 2k$. For even integer 2k, let 2m(k) be the least even integer exceeding 2n(k) such that $d(y_{2n(k)},y_{2m(k)})<\varepsilon$.

As in Theorem 2.2 [12] we deduce that

$$\lim d(y_{2n(k)}, y_{2m(k)}) = \varepsilon,$$

$$\lim d(y_{2n(k)}, y_{2m(k)-1}) = \varepsilon,$$

$$\lim d(y_{2n(k)+1}, y_{2m(k)-1}) = \varepsilon.$$

On the other hand we have successively

$$d(y_{2n(k)}, y_{2m(k)}) \le d_{2n(k)} + d(Ax_{2n(k)}, Bx_{2m(k)-1}),$$

$$d(y_{2n(k)}, y_{2m(k)}) - d_{2n(k)} \le d(y_{2n(k)+1}, y_{2m(k)}).$$

Hence

$$\psi(d(y_{2n(k)}, y_{2m(k)}) - d_{2n(k)}) \le \psi(d(y_{2n(k)+1}, y_{2m(k)})).$$

Setting in (4.1) $x = x_{2n(k)}$ and $y = x_{2m(k)-1}$ we obtain

$$\phi(\psi(d(y_{2n(k)}, y_{2m(k)})), \psi(d(y_{2n(k)}, y_{2m(k)-1})), \psi(d(y_{2n(k)}, y_{2n(k)+1})), \psi(d(y_{2m(k)-1}, y_{2m(k)})), \psi(d(y_{2n(k)}, y_{2m(k)})), \psi(d(y_{2m(k)-1}, y_{2n(k)})) \leq 0,$$

$$\phi(\psi(d(y_{2n(k)},y_{2m(k)})-d_{2n(k)}),\psi(d(y_{2n(k)},y_{2m(k)-1})),\psi(d(y_{2n(k)},y_{2n(k)+1})),\\ \psi(d(y_{2m(k)-1},y_{2m(k)})),\psi(d(y_{2n(k)},y_{2m(k)})),\psi(d(y_{2m(k)-1},y_{2n(k)}))\leq 0.$$

Letting n tend to infinity we obtain

$$\phi(\psi(\varepsilon), \psi(\varepsilon), 0, 0, \psi(\varepsilon), \psi(\varepsilon)) \le 0,$$

a contradiction of (ϕ_3) . Hence, $\{y_{2n}\}$ is a Cauchy sequence. It follows that $\{y_n\}$ is a Cauchy sequence.

Assume that least one of AX or TX is a complete subspace of X.

Since $y_{2n+1} \in AX \subset TX$ and $\{y_{2n+1}\}$ is a Cauchy sequence, there exists a $u \in TX$ such that $\lim y_{2n+1} = u$. The sequence $\{y_n\}$ converges to u since it

is Cauchy and has the subsequence $\{y_{2n+1}\}$ convergent to u. Let $v \in X$ such that u = Tv. Setting $x = x_{2n}$ and y = v in (4.1) we get

$$\phi(\psi(d(Ax_{2n}, Bv)), \psi(d(Sx_{2n}, Tv)), \psi(d(Sx_{2n}, Ax_{2n})), \psi(d(Tv, Bv)), \psi(d(Sx_{2n}, Bv)), \psi(d(Tv, Ax_{2n}))) \leq 0,$$

$$\phi(\psi(d(y_{2n+1},Bv)),\psi(d(y_{2n},Tv)),\psi(d(y_{2n},y_{2n+1})),\psi(d(Tv,Bv)),\psi(d(y_{2n},Bv)),\psi(d(u,y_{2n+1}))) \leq 0.$$

Letting n tend to infinity in the above inequality we obtain

$$\phi(\psi(d(u, Bv)), 0, 0, \psi(d(u, Bv)), \psi(d(u, Bv)), 0) \le 0.$$

From (ϕ_1) , $\psi(d(u,Bv))=0$ which implies that d(u,Bv)=0 i.e. u=Bv. Hence u=Tv=Bv and v is a coincidence point of T and B. Since $u=Bv\in BX\subset SX$, there exists a $w\in X$ such that u=Sw. Using a similar argument as above we obtain u=Aw. Hence, u=Tv=Bv=Sw=Aw.

Indeed, setting x = w and $y = x_{2n+1}$ in (4.1) we obtain

$$\phi(\psi(d(Aw, y_{2n+2})), \psi(d(u, y_{2n+2})), \psi(d(u, Aw)), \psi(d(y_{2n+1}, y_{2n+2})), \psi(d(u, y_{2n+2})), \psi(d(y_{2n+1}, Aw))) \le 0,$$

and letting n tend to infinity we obtain

$$\phi(\psi(d(Aw, u)), 0, \psi(d(u, Aw)), 0, 0, \psi(d(Aw, u))) \le 0.$$

By (ϕ_1) it follows that $\psi(d(Aw, u)) = 0$, hence u = Aw.

By Theorem 4.1 u is the unique point of coincidence of A, S and B, T.

If the pairs (A, S) and (B, T) are occasionally weakly compatible, then by Lemma 1.1 u is the unique common fixed point of A, B, S and T.

Taking A = B and S = T in Theorem 4.2 we obtain

Theorem 4.3. Let A and S and T be self mappings of a metric space (X, d) satisfying the following conditions:

- 1) $AX \subset SX$,
- 2) $\varepsilon < \psi(M_1(x,y)) < \varepsilon + \delta$ implies $\psi(d(Ax,By)) \le \varepsilon$, where $M_1(x,y) = \max\{d(Sx,Sy),d(Sx,Ax),d(Sy,Ty),d(Sx,Ay),d(Sy,Ax)\}$,
- 3) $\psi(M_1(x,y)) > 0 \text{ implies } \psi(d(Ax,By)) < \psi(M_1(x,y)).$
- 4) $\phi(\psi(d(Ax,Ay)),\psi(d(Sx,Sy)),\psi(d(Sx,Ax)),\psi(d(Sy,Ay)),\psi(d(Sx,Ay)),$ $\psi(d(Sy,Ax))) \leq 0$ for all x,y in X, where $\phi \in \mathcal{F}_{MK}$ and ψ is an altering distance.

If one of SX and AX is a complete subspace of X, then:

5) A and S have a coincidence point.

Moreover, if the pair (A, S) is occasionally weakly compatible, then A and S have a unique common fixed point.

For $\psi(t) = t$ by Theorem 4.2 we obtain

Theorem 4.4. Let A, B, S and T be self mappings of a metric space (X,d) satisfying the following conditions:

- 1) $AX \subset SX$,
- 2) given an $\varepsilon > 0$, there exists a $\delta > 0$ such that for all x, y in $X, \varepsilon < M(x,y) < \varepsilon + \delta$ implies $d(Ax,By) \leq \varepsilon$,
- 3) M(x,y) > 0 implies d(Ax, By) < M(x,y),
- 4) $\phi(d(Ax, By), d(Sx, Ty), d(Sx, Ax), d(Ty, By), d(Sx, By), d(Ty, Ax)) \leq 0$ for all x, y in X and $\phi \in \mathcal{F}_{MK}$.

If one of AX, BX, SX, TX is a complete subspace of X, then:

- 5) A and S have a coincidence point,
- 6) B and T have a coincidence point.

Moreover, if the pairs (A, S) and (B, T) are occasionally weakly compatible, then A, B, S and T have a unique common fixed point.

Remark 4.1. 1) By Example 3.1 and Theorem 4.4 we obtain a generalization of Theorem 2.2 and Theorem 2.1.

- 2) By Example 3.4 and Theorem 4.4 we obtain a generalization of Theorem 2.1 [5].
- 3) By Example 3.12 and Theorem 4.4 we obtain a generalization of the result from [27].
- 4) By Example 3.11 and Theorem 4.4 we obtain a generalization of the result from [28] for $k \in [0,1)$.
- 5) By Example 3.16 and Theorem 4.4 we obtain a generalization of Theorem 2.1 [26].
- 6) Theorem 4.4 is a generalization of Theorem 5 [33] for weakly compatible mappings satisfying an implicit relation.
- 7) By Examples 3.2, 3.3, 3.5 3.10, 3.13 3.15 we obtain new fixed point theorems of Meir Keeler type.

5 Applications

Theorem 5.1. Let A, B, S and T be self mappings of a metric space (X,d) satisfying conditions (a), (b), (c) of Theorem 4.2. Assume that there exists a $\phi \in \mathcal{F}_{MK}$ such that:

$$\phi\left(\int_{0}^{d(Ax,By)}h(t)dt,\int_{0}^{d(Sx,Ty)}h(t)dt,\int_{0}^{d(Sx,Ax)}h(t)dt, \\
\int_{0}^{d(Ty,By)}d(Sx,By)\int_{0}^{d(Ty,Ax)}h(t)dt,\int_{0}^{d(Ty,Ax)}h(t)dt\right) \leq 0$$
(5.1)

for all x, y in X where h(t) is as in Theorem 2.4.

If one of AX, BX, SX, TX is a complete subspace of X then:

- 1) A and S have a coincidence point,
- 2) B and T have a coincidence point.

Moreover, if the pairs (A, S) and (B, T) are occasionally weakly compatible, then A, B, S and T have a unique common fixed point.

Proof. Let

$$\begin{split} \psi(d(Ax,By)) &= \int\limits_{0}^{d(Ax,By)} h(t)dt, \psi(d(Sx,Ty)) = \int\limits_{0}^{d(Sx,Ty)} h(t)dt, \\ \psi(d(Sx,Ax)) &= \int\limits_{0}^{d(Sx,Ax)} h(t)dt, \psi(d(Ty,By)) = \int\limits_{0}^{d(Ty,By)} h(t)dt, \\ \psi(d(Sx,By)) &= \int\limits_{0}^{d(Sx,By)} h(t)dt, \psi(d(Ty,Ax)) = \int\limits_{0}^{d(Ty,Ax)} h(t)dt, \end{split}$$

where h(t) is as in Theorem 2.4.

By Lemma 2.1 $\psi(x) = \int_{0}^{x} h(t)dt$ is an altering distance.

By (5.1) we obtain

$$\phi(\psi(d(Ax, By)), \psi(d(Sx, Ty)), \psi(d(Sx, Ax)), \\ \psi(d(Ty, By)), \psi(d(Sx, By)), \psi(d(Ty, Ax))) \le 0$$

for all x, y in X, which is inequality (4.1).

Hence, the conditions of Theorem 4.2 are satisfied and the conclusion of Theorem 5.1 it follows from Theorem 4.2. \Box

Remark 5.1. If h(t) = 1 we obtain Theorem 4.3.

Remark 5.2. By Theorem 5.1 and Example 3.1 we obtain Theorem 2.5.

Examples 3.2 - 3.17 are new results.

References

- [1] A. Aliouche, A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying contractive conditions of integral type, J. Math. Anal. Appl. **322**(2000), 796 802.
- [2] A. Aliouche and V. Popa, Common fixed point for occasionally weakly compatible mappings via implicit relations, Filomat **22**(2)(2008), 99 107.
- [3] M. A. Al Thagafi and Naseer Shahzad, Generalized I nonexpansive maps and invariant approximations, Acta Math. Sinica **24**(5)(2008), 867 876.
- [4] H. Bouhajdera and A. Djoudi, On common fixed point theorems of Meir Keeler type, An. Şt. Univ. Ovidius Constanţa 16(2)(2008), 39 46.
- [5] H. Bouhajdera and B. Fisher, Common fixed point theorems of Meir Keeler type for weakly compatible mappings, Mathematica Moravica 11(2007), 9-16.
- [6] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Intern. J. Math. Math. Sci. 29, 9(2002), 531 - 536.
- [7] U. Gairola and A. R. Rawat, A fixed point theorem for two pairs of maps satisfying a new contractive condition of integral type (submitted).
- [8] K. Jha, Common fixed point for weakly compatible maps in metric spaces, Kathmandu Univ. J. Sci. Eng. Techn. 1, 4(2007), 1 - 6.
- [9] K. Jha, R. Pant and S. L. Singh, Common fixed point for compatible mappings in metric spaces, Radovi Mat. 12(2003), 107 114.
- [10] G. Jungck, Compatible mappings and common fixed points, Intern. J. Math. Math. Sci. 9(1986), 771 779.
- [11] G. Jungck, Common fixed points for noncontinuous nonself maps on a nonnumeric space, Far. East J. Math. Sci. 4(2)(1996), 199 215.
- [12] G. Jungck and B. E. Rhoades, Fixed points for occasionally weakly compatible mappings, Fixed Point Theory 7(2)(2007), 287 297.
- [13] S. M. Kang, Y. J. Cho and G. Jungck, Common fixed point of compatible mappings, Intern. J. Math. Math. Sci. 13(1)(1990), 61 66.
- [14] M. S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between points, Bull. Austral. Math. Soc. **30**(1984), 1 9.

- [15] J. K. Kohli and S. Washistha, Common fixed point theorems for compatible and weak compatible mappings satisfying general contractive conditions, Stud. Cerc. St. Ser. Mat. Univ. Bacău 16(2006), 33 42.
- [16] S. Kumar, R. Chugh and R. Kumar, Fixed point theorem for compatible mappings satisfying a contractive condition of integral type, Soochow J. Math. 33(2007), 181 - 185.
- [17] B. Marzuki and A. M. Mbarki, Multivalued fixed point theorems by altering distances between points, Southwest J. Pure Appl. Math. 1(2002), 126 -134.
- [18] M. Mati and T. K. Pal, Generalizations of two fixed point theorems, Bull. Calcutta Math. Soc. Math. Soc. 70(1978), 57 - 61.
- [19] A. Meir and E. Keeler, A theorem of contraction mappings, J. Math. Anal. Appl. 28(1969), 326 - 329.
- [20] M. Mocanu and V. Popa, Some fixed point theorems for mappings satisfying implicit relations in symmetric spaces, Libertas Math. 28(2008), 1 13.
- [21] R. P. Pant, Common fixed point of two pairs of commuting mappings, Indian J. Pure Appl. Math. 17(2) (1986), 187 - 192.
- [22] R. P. Pant, Common fixed points of weakly commuting mappings, Math. Student **62**, 1 4 (1993), 97 102.
- [23] R. P. Pant, Common fixed points for noncommuting mappings, J. Math. Anal. Appl. 188(1994), 436 - 440.
- [24] R. P. Pant, Common fixed point theorems for contractive maps, J. Math. Anal. Appl. **226**(1998), 251 286.
- [25] R. P. Pant, Common fixed points for four mappings, Calcutta Math. Soc. 9(1998), 281 - 287.
- [26] R. P. Pant, A new common fixed point principle, Soochow J. Math. 27, 3(2001), 287 292.
- [27] R. P. Pant and K. Jha, A generalization of Meir Keeler type common fixed point for four mappings, J. Natural and Physical Sciences 16(1 -2)(2002), 77 - 84.
- [28] R. P. Pant and K. Jha, A generalization of Meir Keeler type fixed point theorems for four mappings, Ultra Science 15(1)(2003), 97 102.

- [29] S. Park and B. E. Rhoades, *Meir Keeler contractive conditions*, Math. Japonica **26**(1)(1981), 13 20.
- [30] V. Popa, Fixed point theorems for implicit contractive mappings, Stud. Cerc. St. Ser. Math. Univ. Bacău 7(1997), 129 - 133.
- [31] V. Popa, Some fixed point theorem for four compatible mappings satisfying an implicit relation, Demontratio Math. **32**(1999), 157 163.
- [32] V. Popa, A fixed point theorem for four compatible mappings in compact metric spaces, U. P. B. Bull. Ser. A 63, 4(2001), 43 46.
- [33] V. Popa, A general common fixed point theorem of Meir Keeler type for noncontinuous weak compatible mappings, Filomat 18(2004), 33 - 40.
- [34] V. Popa and M. Mocanu, A new viewpoint in the study of fixed points for mappings satisfying a contractive condition of integral type, Bull. Inst. Politeh. Iaşi, Sect. Mat. Mec. Teor. Fiz. 53(57), 5(2007), 269 272.
- [35] J. H. N. Rao and K. P. R. Rao, Generalizations of fixed point theorem of Meir and Keeler type, Indian J. Pure Appl. Math. 16(1)(1985), 1249 -1262.
- [36] K. P. Sastri and G. V. R. Babu, Fixed point theorems by altering distances, Bull. Calcutta Math. Soc. 90(1998), 175 - 182.
- [37] K. P. Sastri and G. V. R. Babu, Some fixed point theorems by altering distance between the points, Indian J. Pure Appl. Math. 30(1999), 641 -647.

Alina-Mihaela PATRICIU,

Department of Mathematics, Informatics and Education Sciences,

"Vasile Alecsandri" University of Bacău,

157 Calea Mărășești, Bacău, 600115, Romania.

Email: alina.patriciu@ub.ro

Valeriu POPA.

Department of Mathematics, Informatics and Education Sciences,

"Vasile Alecsandri" University of Bacău,

157 Calea Mărășești, Bacău, 600115, Romania.

Email: vpopa@ub.ro