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Three solutions to a p(x)-Laplacian problem in
weighted-variable-exponent Sobolev space

Wen-Wu Pan, Ghasem Alizadeh Afrouzi and Lin Li

Abstract

In this paper, we verify that a general p(x)-Laplacian Neumann prob-
lem has at least three weak solutions, which generalizes the correspond-
ing result of the reference [R. A. Mashiyev, Three Solutions to a Neu-
mann Problem for Elliptic Equations with Variable Exponent, Arab. J.
Sci. Eng. 36 (2011) 1559-1567].

1 Introduction

Recently, elliptic equations with variable exponents have been extensively in-
vestigated and have received much attention. They have been the subject of
recent developments in nonlinear elasticity theory and electrorheological fluids
dynamics [16]. In that context, let us mention that there appeared a series of
papers on problems which lead to spaces with variable exponent, we refer the
reader to Fan et al. [8, 9], Ruzicka [16] and the references therein.

Let us point out that when p(x) = p = constant, there is a large literature
which deal with problems involving the p-Laplacian with Dirichlet boundary
conditions both in bounded or unbounded domains, which we do not need to
cite here since the reader may easily find such papers.

Note that many papers deal with problems related to the p-Laplacian with
Neumann conditions in the scalar case. We can cite, among others, the articles
[1, 4] and refer to the references therein for details. The case of p(x)-Laplacian

Key Words: p(x)-Laplacian problems, Neumann problems, Ricceri’s variational principle
2010 Mathematics Subject Classification: Primary 34B15; Secondary 35A15, 35G99.
Received: January 2012
Accepted: May 2013

195



196 W.-W. Pan, G. A. Afrouzi and L. Li

with Neumann conditions has been studied by Dai [6], Mihailescu [13] and Liu
[11].

In this paper, we will consider the Neumann problems involving the p(x)-
Laplacian operator{
−div

(
|∇u|p(x)−2∇u

)
+ a(x)|u|p(x)−2u = λf(x, u) + µg(x, u), in Ω,

∂u
∂ν = 0, on ∂Ω,

(P)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary, λ, µ > 0
are real numbers, p(x) is a continuous function on Ω with infx∈Ω p(x) > N
and a ∈ L∞(Ω) with essinfx∈Ω a(x) = a0 > 0. We denote by ν the outward
unit normal to ∂Ω. The main interest in studying such problems arises from
the presence of the p(x)-Laplacian operator div

(
|∇u|p(x)−2∇u

)
, which is a

generalization of the classical p-Laplacian operator div
(
|∇u|p−2∇u

)
obtained

in the case when p is a positive constant.

When µ = 0, in [12], R. A. Mashiyev studied the particular case

f(t) = b|t|q−2t− d|t|s−2t

where b and d are positive constants, 2 < s < q < infx∈Ω p(x) and N <
infx∈Ω p(x); and

f(x, t) = |t|q(x)−2t− |t|s(x)−2t

where

2 < inf
x∈Ω

s(x) ≤ sup
x∈Ω

s(x) < inf
x∈Ω

q(x) ≤ sup
x∈Ω

q(x) < inf
x∈Ω

p(x)

and N < infx∈Ω p(x) for all x ∈ Ω. He established the existence of at least
three weak solutions by using the Ricceri’s variational principle.

In this paper, we assume f(x, u) and g(x, u) satisfies the following general
conditions:

(f1) f, g : Ω× R→ R are Carathéodory functions and satisfies

|f(x, t)| ≤ c1 + c2 |t|α(x)−1
, ∀(x, t) ∈ Ω× R,

|g(x, t)| ≤ c′1 + c′2 |t|
β(x)−1

, ∀(x, t) ∈ Ω× R,

where α(x), β(x) ∈ C(Ω), α(x), β(x) > 1 and 1 < α+ = maxx∈Ω α(x) <
p− = minx∈Ω p(x), 1 < β+ = maxx∈Ω β(x) < p− = minx∈Ω p(x) and c1,
c2, c′1, c′2 are positive constants.
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(f2) There exist a constant t0 and following conditions satisfies

f(x, t) < 0 when |t| ∈ (0, t0)

f(x, t) > M > 0 when |t| ∈ (t0,+∞),

where M is a positive constant.

Following along the same lines as in [12], we will prove that there also exist
three weak solutions for such a general problem for λ sufficiently large and
requiring µ small enough.

2 Preliminary results and lemma

In this part, we introduce some theories of Lebesgue–Sobolev space with vari-
able exponent. The detailed description can be found in [10, 17, 8, 9]. Denote
by S(Ω) the set of all measurable real functions on Ω. Set

C+(Ω) =
{
p : p ∈ C(Ω), p(x) > 1,∀x ∈ Ω

}
.

For any p ∈ C+(Ω), denote

1 < p− := inf
x∈Ω

p(x) ≤ p(x) ≤ p+ := sup
x∈Ω

p(x) <∞.

Let p ∈ C+(Ω). Define the generalized Lebesgue space by

Lp(x)(Ω) =

{
u|u ∈ S(Ω),

∫
Ω

|u(x)|p(x) dx <∞
}
,

then Lp(x)(Ω) endowed with the norm

|u|p(x) = inf

{
β > 0 :

∫
Ω

∣∣∣∣u(x)

β

∣∣∣∣p(x)

dx ≤ 1

}
,

becomes a Banach space.
Let a ∈ S(Ω), and a(x) > 0 for a.e. x ∈ Ω. Define the weighted variable

exponent Lebesgue space L
p(x)
a (Ω) by

Lp(x)
a (Ω) =

{
u|u ∈ S(Ω),

∫
Ω

a(x)|u(x)|p(x) dx <∞
}
,

with the norm

|u|p(x) = inf

{
β > 0 :

∫
Ω

a(x)

∣∣∣∣u(x)

β

∣∣∣∣p(x)

dx ≤ 1

}
.
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From now on, we suppose that a ∈ L∞(Ω) and essinfx∈Ω a(x) = a0 > 0. Then

obviously L
p(x)
a (Ω) is a Banach space (see [5] for details).

The variable exponent Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
,

with the norm

‖u‖ = |u|p(x) + |∇u|p(x).

Next, the weighted-variable-exponent Sobolev space W
1,p(x)
a (Ω) is defined by

W 1,p(x)
a (Ω) =

{
u ∈ Lp(x)

a (Ω) : |∇u| ∈ Lp(x)
a (Ω)

}
,

with the norm

‖u‖a = inf

{
β > 0 :

∫
Ω

(∣∣∣∣∇u(x)

β

∣∣∣∣p(x)

+ a(x)

∣∣∣∣u(x)

β

∣∣∣∣p(x)
)

dx ≤ 1

}
,∀u ∈W 1,p(x)

a (Ω).

Then the norms ‖ · ‖a and ‖ · ‖ in W
1,p(x)
a (Ω) are equivalent. If 1 < p− ≤ p+ <

∞, then the space W
1,p(x)
a (Ω) is a separable and reflexive Banach space.

We set ρ(u) =
∫

Ω

(
|∇u|p(x) + a(x)|u|p(x)

)
dx.

Proposition 1 ([7], Proposition 2.5). For all u ∈W 1,p(x)
a (Ω), we have

(i) ‖u‖a ≤ 1⇒ ‖u‖p+a ≤ ρ(u) ≤ ‖u‖p−a ,

(ii) ‖u‖a ≥ 1⇒ ‖u‖p−a ≤ ρ(u) ≤ ‖u‖p+a .

Remark 1. If N < p− ≤ p(x) for any x ∈ Ω, by Theorem 2.2. in [9]

and the equivalence of the norms ‖ · ‖a and ‖ · ‖, we deduce that W
1,p(x)
a (Ω) ↪→

W
1,p−
a (Ω). Since N < p−, it follows that W

1,p(x)
a (Ω) ↪→W

1,p−
a (Ω) ↪→↪→ C(Ω).

Defining the norm

‖u‖∞ = sup
x∈Ω

|u(x)|,

then there exists a constant k > 0 such that

‖u‖∞ ≤ k‖u‖a, ∀u ∈W 1,p(x)
a (Ω).

To prove the existence of at least three weak solutions for each of the given
problem (P), we will use the following result proved in [15] that, on the basis
of [2], can be equivalently stated as follows
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Theorem 1. Let X be a separable and reflexive real Banach space; Φ : X →
R a continuously Gâteaux differentiable and sequentially weakly lower semi-
continuous functional whose Gâteaux derivative admits a continuous inverse
on X∗, Ψ : X → R a continuously Gâteaux differentiable functional whose
Gâteaux derivative is compact. Assume that

(i) lim‖u‖→∞ Φ(u) + λΨ(u) =∞ for all λ > 0;
and there are r ∈ R and u0, u1 ∈ X such that

(ii) Φ(u0) < r < Φ(u1);

(iii) infu∈Φ−1([−∞,r]) Ψ(u) > (Φ(u1)−r)Ψ(u0)+(r−Φ(u0))Ψ(u1)
Φ(u1)−Φ(u0)

Then there exist an open interval Λ ∈ (0,∞) and a positive real number q such
that for each λ ∈ Λ and every continuously Gâteaux differentiable functional
J : X → R with compact derivative, there exists σ > 0 such that for each
µ ∈ [0, σ], the equation

Φ′(u) + λΨ′(u) + µJ ′(u) = 0

has at least three solutions in X whose norms are less than q.

3 The main result and proof of the theorem

In this part, we will prove that for problem (P) there also exist three weak
solutions for the general case.

Definition 1. We say u ∈W 1,p(x)
a is a weak solution of problem (P) if∫

Ω

(
|∇u|p(x)−2∇u∇v + a(x)|u|p(x)−2u

)
dx− λ

∫
Ω

f(x, u)v dx

− µ
∫

Ω

g(x, u)v dx = 0

for any v ∈W 1,p(x)
a

Theorem 2. Assume that p− > N and f(x, u) satisfies (f1), (f2). Then
there exist an open interval Λ ∈ (0,∞) and a positive real number q > 0 such
that each λ ∈ Λ and every function g : Ω × R → R which satisfying (f1),
there exists δ > 0 such that for each µ ∈ [0, δ] problem (P) has at least three
solutions whose norms are less than q.



200 W.-W. Pan, G. A. Afrouzi and L. Li

Proof. Let X denote the weighted variable exponent Lebesgue space

W
1,p(x)
a (Ω). Define

F (x, t) =

∫ t

0

f(x, s) ds and G(x, t) =

∫ t

0

g(x, s) ds.

In order to use Theorem 1, we define the functions Φ, Ψ, J : X → R by

Φ(u) =

∫
Ω

1

p(x)
(|∇u|p(x) + a(x)up(x)) dx

Ψ(u) = −
∫

Ω

F (x, u) dx

J(u) = −
∫

Ω

G(x, u) dx

Arguments similar to those used in the proof of Proposition 3.1 in [14], we
know Φ,Ψ, J ∈ C1(X,R) with the derivatives given by

〈Φ′(u), v〉 =

∫
Ω

(|∇u|p(x)−2∇u∇v + a(x)up(x)−2uv) dx

〈Ψ′(u), v〉 = −
∫

Ω

f(x, u)v dx

〈J ′(u), v〉 = −
∫

Ω

g(x, u)v dx

for any u, v ∈ X. Thus, there exists λ, µ > 0 such that u is a critical point of
the operator Φ(u) + λΨ(u) + µJ(u), that is Φ′(u) + λΨ′(u) + µJ ′(u) = 0. For
proving our result, it is enough to verify that Φ, Ψ and J satisfy the hypotheses
of Theorem 1.

It is obvious that (Φ′)−1 : X∗ → X exists and continuous, because Φ′ :
X → X∗ is a homeomorphism by Lemma 2.2 in [12]. Moreover, Ψ′, J ′ : X →
X∗ are completely continuous because of the assumption (f1) and [10], which
imply Ψ′ and J ′ are compact.

Next, we will verify that condition(i) of Theorem 1 is fulfilled. In fact, by
Proposition 1, we have

Φ(u) ≥ 1

p+

∫
Ω

(|∇u|p(x)+a(x)|u|p(x)) dx =
1

p+
ρ(u) ≥ 1

p+
‖u‖p

−

a , u ∈ X, ‖u‖a > 1.

On the other hand, due to the assumption (f1), we have

Ψ(u) = −
∫

Ω

F (x, u) dx =

∫
Ω

−F (x, u) dx
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and

|F (x, t)| ≤ c1|t|+ c2
1

α(x)
|t|α(x).

Therefore,

Ψ(u) ≥ −c1
∫

Ω

|u|dx− c2
∫

Ω

1

α(x)
|u|α(x) dx

≥ −c3‖u‖a −
c2
α+

∫
Ω

(
|u|α

+

+ |u|α
−
)

dx

= −c3‖u‖a − c4(|u|α
+

α+ + |u|α
−

α−)

Using Remark 1, we know that X is continuously embedded in Lα
+

and Lα
−

.
Furthermore, we can find two positive constants d1, d2 > 0 such that

|u|α+ ≤ d1‖u‖a and |u|α− ≤ d2‖u‖a ∀u ∈ X.

Moreover
Ψ(u) ≥ −c3‖u‖a − c4d1‖u‖α

+

a − c4d2‖u‖α
−

a .

It follows that

Φ(u) + λΨ(u) ≥
(

1

p+
− λc3

)
‖u‖p

−

a − λc4(d1‖u‖α
+

a + d2‖u‖α
−

a ),∀u ∈ X.

Since 1 < α+ < p−, then lim‖u‖a→∞ Φ(u) + λΨ(u) =∞ and (i) is verified.
In the following, we will verify the conditions (ii) and (iii) in Theorem 1.

By F ′t (x, t) = f(x, t) and assumption (f2), it follows that F (x, t) is increasing
for t ∈ (t0,∞) and decreasing for t ∈ (0, t0), uniformly with respect to x.
Obviously, F (x, 0) = 0. F (x, t) → ∞ when t → ∞, because of assumption
(f2). Then there exists a real number δ > t0 such that

F (x, t) ≥ 0 = F (x, 0) ≥ F (x, τ), ∀x ∈ X, t > δ, τ ∈ (0, t0).

Let a, b be two real numbers such that 0 < a < min{t0, k} with k given in
Remark 1 and b > δ satisfies

bp
−
‖a‖L1(Ω) > 1

and
bp

+

‖a‖L1(Ω) > 1.

Let b > 1. When t ∈ [0, a], we have F (x, t) ≤ F (x, 0), it follows that∫
Ω

sup
0≤t≤a

F (x, t) dx ≤
∫

Ω

F (x, 0) dx = 0
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Furthermore, we can get
∫

Ω
F (x, b) dx > 0 because of b > δ.

Moreover,

1

kp+
ap

+

bp−

∫
Ω

F (x, b) dx > 0.

The above two inequalities imply∫
Ω

sup
0≤t≤a

F (x, t) dx ≤ 0 <
1

kp+
ap

+

bp−

∫
Ω

F (x, b) dx.

Consider u0, u1 ∈ X with u0(x) = 0 and u1(x) = b for any x ∈ Ω. We define

r = 1
p+

(
a
k

)p+
. Clearly, r ∈ (0, 1). A simple computation implies

Φ(u0) = Ψ(u0) = 0

and

Φ(u1) =

∫
Ω

1

p(x)
a(x)bp(x) dx ≥ 1

p+
bp

−
‖a‖L1(Ω) >

1

p+
>

1

p+

(a
k

)p+
Ψ(u1) = −

∫
Ω

F (x, u1(x)) dx = −
∫

Ω

F (x, b) dx.

Similarly for b < 1, by help of Proposition 1, we get the desired result.
Thus, we obtain

Φ(u0) < r < Φ(u1)

and (ii) in Theorem 1 is verified.
On the other hand, we have

− (Φ(u1)− r)Ψ(u0) + (r − Φ(u0))Ψ(u1)

Φ(u1)− Φ(u0)
= −rΨ(u1)

Φ(u1)
= r

∫
Ω
F (x, b) dx∫

Ω
1

p(x)a(x)bp(x) dx
> 0.

Next, we consider the case u ∈ X with Φ(u) ≤ r < 1. Since 1
p(x)ρ(u) ≤ Φ(u) ≤

r, we obtain ρ(u) ≤ p+r =
(
a
k

)p+
< 1, it follows that ‖u‖a < 1. Furthermore,

it is clear that
1

p+
‖u‖p

+

a ≤
1

p+
ρ(u) ≤ Φ(u) ≤ r.

Thus, using Remark 1, we have

|u(x)| ≤ k‖u‖a ≤ k(p+r)
1

p+ = a ∀x ∈ Ω, u ∈ X,Φ(u) ≤ r.

The above inequality shows that

− inf
u∈Φ−1([−∞,r])

Ψ(u) = sup
u∈Φ−1([−∞,r])

−Ψ(u) ≤
∫

Ω

sup
0≤t≤a

F (x, t) dx ≤ 0.
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It follows that

− inf
u∈Φ−1([−∞,r])

Ψ(u) < r

∫
Ω
F (x, b) dx∫

Ω
1

p(x)a(x)bp(x) dx
.

That is

inf
u∈Φ−1([−∞,r])

Ψ(u) >
(Φ(u1)− r)Ψ(u0) + (r − Φ(u0))Ψ(u1)

Φ(u1)− Φ(u0)

which means that condition (iii) in Theorem 1 is verified. Then the proof of
Theorem 2 is achieved.

Remark 2. Applying ([3], Theorem2.1) in the proof of Theorem 2, an upper
bound of the interval of parameters λ for which (P) has at least three weak
solutions is obtained when µ = 0. To be precise, in the conclusion of Theorem
2 one has

Λ ⊆

]
0, h

∫
Ω

1
p(x)a(x)bp(x) dx∫
Ω
F (x, b) dx

[
for each h > 1 and b as in the proof of Theorem 2.
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