

ON THE IMAGES OF ELLIPSES UNDER SIMILARITIES

Nihal Yılmaz Özgür

Abstract

We consider ellipses corresponding to any norm function on the complex plane and determine their images under the similarities which are special Möbius transformations.

1 Introduction

It is well-known that Möbius transformations map circles to circles where straight lines are considered to be circles through ∞ . It is also well-known that all norms on $\mathbb C$ are equivalent. In [5], the present author considered circles corresponding to any norm function and determined their images under the Möbius transformations on the complex plane. Recently, in [2] and [3], Adam Coffman and Marc Frantz considered the images of non-circular ellipses (corresponding to the Euclidean norm function) under the Möbius transformations. In [6], the present author determined the images of non-circular ellipses under the harmonic Möbius transformations.

Motivated by the above studies, we consider the images of ellipses corresponding to any norm function on $\mathbb C$ under the Möbius transformations.

Key Words: Möbius transformation, ellipse, norm.

2010 Mathematics Subject Classification: Primary 30C35; Secondary 51F15.

Received: February, 2012. Accepted: April, 2012. Throughout the paper, we consider the real linear space structure of the complex plane \mathbb{C} and investigate the answer of the following question:

If w = T(z) is a Möbius transformation and $\|.\|$ is any norm function on \mathbb{C} , then does T take ellipses to ellipses in this norm?

Note that all Möbius transformations do not map ellipses to ellipses corresponding to the Euclidean norm function on \mathbb{C} . From [2] and [3], we know that the Möbius transformations which map ellipses to ellipses are similarity transformations. In our case, we see that the rotation map $z \to e^{i\phi}z$ do not map ellipses to ellipses for every value of the real number ϕ . Thus we restrict our investigations to similarity transformations.

2 Main results

We give a brief account of Möbius transformations (see [1] and [4] for more details).

A Möbius transformation T is a function of the form

$$T(z) = \frac{az+b}{cz+d}; a, b, c, d \in \mathbb{C} \text{ and } ad-bc \neq 0.$$
 (2.1)

Such transformations form a group under composition. The Möbius transformations with c=0 form the subgroup of *similarities*. Such transformations have the form

$$z \to \alpha z + \beta; \alpha, \beta \in \mathbb{C}, \alpha \neq 0.$$
 (2.2)

The transformation $z \to \frac{1}{z}$ is called an *inversion*. Here we use the well-known fact that every Möbius transformation T of the form (2.1) is a composition of finitely many similarities and inversions.

Let $\|.\|$ be any norm function on \mathbb{C} . A circle whose center is at z_0 and of radius r is denoted by $S_r(z_0)$ and defined by $S_r(z_0) = \{z \in \mathbb{C} : \|z - z_0\| = r\}$. An ellipse is the locus of points z with the property that the sum of the distances from z to two given fixed points, say F_1 and F_2 , is a constant. The two fixed points are called foci. Thus the set $\{z \in \mathbb{C} : \|z - F_1\| + \|z - F_2\| = r\}$ is the ellipse with foci F_1 and F_2 . We denote this ellipse by $E_r(F_1, F_2)$. If the two foci coincide, then the ellipse is a circle.

Now we recall the following lemma which will be used later.

Lemma 2.1. [5] Let ||.|| be any norm function on the complex plane. Then for every $\phi \in \mathbb{R}$, the following function define a norm on the complex plane:

$$||z||_{\phi} = ||e^{-i\phi}z||.$$
 (2.3)

We begin the following lemma.

Lemma 2.2. Let $\|.\|$ be any norm on \mathbb{C} . Then the similarity transformations of the form

$$f(z) = \alpha z + \beta; \ \alpha \neq 0, \ \alpha \in \mathbb{R},$$
 (2.4)

map ellipses to ellipses corresponding to this norm function.

Proof. Let $\|.\|$ be any norm and let $E_r(F_1, F_2)$ be any ellipse corresponding to this norm. If f(z) is a similarity transformation of the form (2.4), then the image of $E_r(F_1, F_2)$ under f is the ellipse $E_{|\alpha|r}(f(F_1), f(F_2))$. Indeed, we have

$$||f(z) - f(F_1)|| + ||f(z) - f(F_2)||$$

$$= ||\alpha z + \beta - (\alpha F_1 + \beta)|| + ||\alpha z + \beta - (\alpha F_2 + \beta)||$$

$$= ||\alpha(z - F_1)|| + ||\alpha(z - F_2)||$$

$$= ||\alpha| (||z - F_1|| + ||z - F_2||) = |\alpha| r.$$

Now we consider the norm functions defined in (2.3). Notice that for the Euclidean norm, all of the norm functions $\|.\|_{\phi}$ are equal to the Euclidean norm. For any other norm function we have $\|.\|_{k\pi} = \|.\|$ where $k \in \mathbb{Z}$.

Then we can give the following theorem:

Theorem 2.1. Let $w = f(z) = \alpha z + \beta$; $\alpha \neq 0$, $\alpha, \beta \in \mathbb{C}$. Then for every ellipse $E_r(F_1, F_2)$ corresponding to any norm function $\|.\|$ on \mathbb{C} , $f(E_r(F_1, F_2))$ is an ellipse corresponding to the same norm function or corresponding to the norm function $\|z\|_{\phi} = \|e^{-i\phi}.z\|$, where $\phi = \arg(\alpha)$.

Proof. Let $w = f(z) = \alpha z + \beta$; $\alpha \neq 0$, $\alpha, \beta \in \mathbb{C}$. If $E_r(F_1, F_2)$ is an Euclidean ellipse, then from [3] we know that $f(E_r(F_1, F_2))$ is again an Euclidean ellipse. Suppose that $E_r(F_1, F_2)$ is not an Euclidean ellipse. Let us write f(z) = f(z)

 $|\alpha| e^{i\phi}z + \beta$; $\alpha \neq 0$, $\phi = \arg(\alpha)$ and let $f_1(z) = e^{i\phi}z$, $f_2(z) = |\alpha| z + e^{-i\phi}\beta$. We have $f(z) = (f_1 \circ f_2)(z)$.

Then by Lemma 2.2, the transformation $f_2(z)$ maps ellipses to ellipses corresponding to this norm function. Let $w = f_1(z) = e^{i\phi}z$, $\phi \neq k\pi$, $k \in \mathbb{Z}$. Now we consider the norm function $\|.\|_{\phi}$ given in Lemma 2.1. We get

$$||w - f(F_1)||_{\phi} + ||w - f(F_2)||_{\phi} = ||e^{i\phi}(z - F_1)||_{\phi} + ||e^{i\phi}(z - F_2)||_{\phi}$$
$$= ||e^{-i\phi} [e^{i\phi}(z - F_1)]|| + ||e^{-i\phi} [e^{i\phi}(z - F_2)]||$$
$$= ||z - F_1|| + ||z - F_2|| = r.$$

This shows that the image of the ellipse $E_r(F_1, F_2)$ under the transformation $w = f_1(z) = e^{i\phi}z$, $(\phi \neq k\pi, k \in \mathbb{Z})$ is the ellipse $E_r(f(F_1), f(F_2))$ corresponding to the norm function $\|.\|_{\phi}$ given in (2.3).

We note that we do not know the exact values of ϕ for which $\|.\|_{\phi} = \|.\|$. This is an open problem. If $\|.\|_{\phi} = \|.\|$, then the transformation $f_1(z) = e^{i\phi}z$ maps ellipses to ellipses corresponding to this norm function. In general $f_1(z) = e^{i\phi}z$ do not map ellipses to ellipses corresponding to the same norm function. For example, let $\|.\|$ be any norm with $\|1\| \neq \|i\|$ and $\phi = \frac{\pi}{2}$. Assume that $\|z\|_{\frac{\pi}{2}} = \|z\|$ for all $z \in \mathbb{C}$. For z = 1 we have $\|i\| = \|1\|$, which is a contradiction. Therefore the transformation $z \to e^{\frac{\pi}{2}i}z$ maps ellipses corresponding to the norm function $\|.\|$ to ellipses corresponding to the norm function $\|.\|_{\frac{\pi}{2}}$. We give the following conjecture for the norm functions with the properties $\|1\| = \|i\|$ and $\|z\| = \|\overline{z}\|$ for all $z \in \mathbb{C}$.

Conjecture 2.1. Let $\|.\|$ be any norm on \mathbb{C} with $\|1\| = \|i\|$. Assume that $\|z\| = \|\overline{z}\|$ for all $z \in \mathbb{C}$. Then we have $\|.\|_{\frac{\pi}{2}} = \|.\|$ and hence the transformation $z \to e^{\frac{\pi}{2}i}z$ maps ellipses to ellipses corresponding to this norm function.

If this conjecture is true, then we have also the transformation $z \to e^{\frac{\pi}{2}i}z$ maps circles to circles corresponding to this norm function as a corollary.

Example 2.1. Let us consider the norm function

$$||z|| = 2|x| + |y|$$

on \mathbb{C} . Let $F_1 = -1$ and $F_2 = 1$. The image of the ellipse $E_6(F_1, F_2)$ under the transformation $w = e^{\frac{\pi}{2}i}z$ is not an ellipse corresponding to the same norm but

Figure 1:

it is the ellipse $E_6(-i,i)$ corresponding to the norm function $||z||_{\frac{\pi}{2}} = |x| + 2|y|$, (see Figure 1).

Finally we note that Lemma 2.2 and Theorem 2.1 hold also for hyperbolas corresponding to any norm function on the complex plane.

References

[1] A. F. Beardon, Algebra and Geometry, Cambridge University Press, Cambridge, 2005.

- [2] A. Coffman and M. Frantz, Ellipses in the Inversive Plane, MAA Indiana Section Meeting, Mar. 2003.
- [3] A. Coffman and M. Frantz, Möbius Transformations and Ellipses, The Pi Mu Epsilon Journal, 12 (2007), no.6, 339-345.
- [4] G. A. Jones and D. Singerman, Complex functions. An algebraic and geometric viewpoint, Cambridge University Press, Cambridge, 1987.
- [5] N. Yılmaz Özgür, On some mapping properties of Möbius transformations, Aust. J. Math. Anal. Appl., 6 (2009), no. 1, Art. 13, 8 pp.
- [6] N. Yılmaz Özgür, Ellipses and Harmonic Möbius Transformations, An. St. Univ. Ovidius Constanta, 18 (2010), no. 2, 201-208.

Nihal YILMAZ ÖZGÜR, Department of Mathematics, Balıkesir University, Balıkesir, Türkiye.

Email: nihal@balikesir.edu.tr