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Existence results for boundary value problems
of arbitrary order integrodifferential equations

in Banach spaces

K. Karthikeyan and Bashir Ahmad

Abstract

We study a boundary value problem of fractional integrodifferential
equations involving Caputo’s derivative of order α ∈ (n− 1, n) in a Ba-
nach space. Existence and uniqueness results for the problem are estab-
lished by means of the Hölder’s inequality together with some standard
fixed point theorems.

1 Introduction

The study of fractional differential equations has recently gained much at-
tention due to extensive applications of these equations in the mathematical
modelling of physical, engineering and biological phenomena. Examples and
details concerning the development of the theory, methods and applications
of fractional calculus can be found in the books [9], [11] and papers [1], [3],
[4], [6], [7]. For some results on boundary value problems of fractional inte-
grodifferential equations, we refer to the papers [2], [5], [12] and the references
therein.

In this paper, we study the existence and uniqueness of solutions for the
following boundary value problem of nonlinear fractional integrodifferential
equations (BVP)

cDαy(t) = f(t, y(t), (Gy)(t), (Sy)(t)), t ∈ J = [0, T ],
y(0) = y0, y

′(0) = y10 , y
′′(0) = y20 , · · · , y(n−1)(0) = yn−20 ,

y(n−1)(T ) = yT ,
(1)
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where α ∈ (n − 1, n), cDα is the Caputo fractional derivative of order α,
f : J ×X ×X → X is a given continuous function, X is a Banach space and
y0, y

i
0 (i = 1, 2, · · · , n− 2, n > 2, n is an integer), yT are some elements of X

and G, S are integral operators given by

(Gy)(t) =

∫ t

0

k1(t, s)y(s)ds,

and

(Sy)(t) =

∫ t

0

k2(t, s)y(s)ds

with

γ0 = max

∫ t

0

k1(t, s)ds, γ1 = max

∫ t

0

k2(t, s)ds,

k1, k2 ∈ C ([0, T ]× [0, T ],R+).

The paper is organized as follows. In Section 2, we recall some concepts of
fractional calculus and known results. In Section 3, we present main results:
the first result is based on Banach contraction principle, while the second
one is obtained by applying Schaeffer’s fixed point theorem. An illustrative
example is also presented.

2 Preliminaries

Let C(J,X) denotes the Banach space of all continuous functions from J into
X with the norm ‖y‖∞ := sup{‖y(t)‖ : t ∈ J}. For measurable functions

m : J → R, define the norm ‖m‖Lp(J,R) =

(∫
J

|m(t)|pdt
) 1
p

<∞, 1 ≤ p <∞,

where Lp(J,R) is the Banach space of all Lebesgue measurable functions.

Now let us recall some basic concepts of fractional calculus ([8], [10]).

Definition 2.1. For at least (n−1)-times continuously differentiable function
h : [0,∞)→ R, the Caputo derivative of fractional order q is defined as

cDqh(t) =
1

Γ(n− q)

∫ t

0

(t− s)n−q−1h(n)(s)ds, n− 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q.
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Definition 2.2. The Riemann-Liouville fractional integral of order q is defined
as

Iqh(t) =
1

Γ(q)

∫ t

0

h(s)

(t− s)1−q
ds, q > 0,

provided the integral exists.

Lemma 2.1[8]. For α > 0, the general solution of fractional differential
equation cDαh(t) = 0 is

h(t) = c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,

where ci ∈ R, i = 0, 1, 2, · · · , n− 1.

Lemma 2.2. Let α > 0. Then

Iα(cDαh)(t) = h(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,

for some ci ∈ R, i = 0, 1, 2, · · · , n− 1, n = −[−α].

Definition 2.3. A function y ∈ C(J,X) with its α-derivative existing on J
is said to be a solution of the fractional BVP (1.1) if y satisfies the equation
cDαy(t) = f(t, y(t), (Gy)(t), (Sy)(t)) a.e. on J , and the conditions y(0) =
y0, y

′(0) = y10 , y
′′(0) = y20 , · · · , y(n−1)(0) = yn−20 , y(n−1)(T ) = yT .

To define the solution for problem (1), we need the following auxiliary
lemma.

Lemma 2.3. Let f̄ : J → X be a continuous. A function y ∈ C(J,X) is a
solution of the fractional integral equation

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f̄(s)ds

− tn−1

(n− 1)!Γ(α− n+ 1)

∫ T

0

(T − s)α−nf̄(s)ds

+y0 + y10t+
y20
2!
t2 + · · ·+ yn−20

(n− 2)!
tn−2 +

yT
(n− 1)!

tn−1,

if and only if y is a solution of the problem
cDαy(t) = f̄(t), t ∈ J = [0, T ], α ∈ (n− 1, n),
y(0) = y0, y

′(0) = y10 , y
′′(0) = y20 , · · · , y(n−1)(0) = yn−20 ,

y(n−1)(T ) = yT ,
(2)
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Proof. The proof is based on Lemma 2.2 and employs the standard arguments,
for instance, see [1]. So we omit it.

In view of Lemma 2.3, we define the solution of (1) as follows.

Lemma 2.4. Let f : J × X × X × X → X be continuous function. Then
y ∈ C(J,X) is a solution of the fractional integral equation

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s), (Gy)(s), (Sy(s)))ds

− tn−1

(n− 1)!Γ(α− n+ 1)

∫ T

0

(T − s)α−nf(s, y(s), (Gy)(s), (Sy(s)))ds

+y0 + y10t+
y20
2!
t2 + · · ·+ yn−20

(n− 2)!
tn−2 +

yT
(n− 1)!

tn−1,

if and only if y is a solution of the fractional BVP (1.1)

In the sequel, we need the following results.

Lemma 2.5. (Bochner theorem) A measurable function f : J → X is Bochner
integrable if ‖f‖ is Lebesgue integrable.

Lemma 2.6. (Mazur lemma) If K is a compact subset of X, then its convex
closure convK is compact.

Lemma 2.7. (Ascoli-Arzela theorem) Let S = {s(t)} is a function family of
continuous mappings s : [a, b]→ X. If S is uniformly bounded and equicontin-
uous, and for any t∗ ∈ [a, b], the set {s(t∗)} is relatively compact, then there ex-
ists a uniformly convergent function sequence {sn(t)}(n = 1, 2, · · · , t ∈ [a, b])
in S.

Theorem 2.8. (Schaeffer’s fixed point theorem). Let F : X → X be com-
pletely continuous operator. If the set

E(F ) = {x ∈ X : x = λ∗Fx for some λ∗ ∈ [0, 1]}

is bounded, then F has fixed points.

3 Main results

To prove the main results, we introduce the following assumptions:
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(H1) The function f : J×X×X×X → X is strongly measurable with respect
to t on J .

(H2) There exists a constant α1 ∈ (0, α) and real-valued functions m1(t),

m2(t), m3(t) ∈ L
1
α1 (J,X) such that

‖f(t, x(t), (Gx)(t), (Sx)(t))− f(t, y(t), (Gy)(t), (Sy)(t))‖
≤ m1(t)‖x− y‖+m2(t)‖Gx−Gy‖+m3(t)‖Sx− Sy‖,

for each t ∈ J and x, y ∈ X.

(H3) There exists a constant α2 ∈ (0, α) and real-valued function h(t) ∈
L

1
α2 (J,X) such that

‖f(t, y, (Gy), (Sy)‖ ≤ h(t), for each t ∈ J and all y ∈ X,

with H = ‖h‖
L

1
α2 (J,X)

.

(H4) The function f : J ×X ×X ×X → X is continuous.

(H5) There exist constants λ ∈ [0, 1 − 1
p ) for some 1 < p < 1

1−α and N > 0
such that

‖f(t, u,Gu, Su)‖ ≤ N(1 + γ0‖u‖λ + γ1‖u‖λ) for each t ∈ J and all u ∈ X.

Our first result is based on Banach’s contraction principle. For the sake of
convenience, we set the notation:

M = ‖m1 + γ0m2 + γ1m3‖
L

1
α1 (J,X)

.

Theorem 3.1. Assume that (H1)− (H3) hold. If

Ωα,T,n =
M

Γ(α)

Tα−α1

(α−α1

1−α1
)1−α1

+
M

(n− 1)!Γ(α− n+ 1)

Tα−α1

(α−α1−n+1
1−α1

)1−α1
< 1, (3)

then the problem (1) has a unique solution on J .

Proof. For each t ∈ J , we have∫ t

0

∥∥∥(t− s)α−1f(s, y(s), (Gy)(s), (Sy(s)))
∥∥∥ds

≤
(∫ t

0

(t− s)
α−1
1−α2 ds

)1−α2
(∫ t

0

(h(s))
1
α2 ds

)α2
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≤
(∫ t

0

(t− s)
α−1
1−α2 ds

)1−α2
(∫ T

0

(h(s))
1
α2 ds

)α2

≤ Tα−α2H

(α−α2

1−α2
)1−α2

.

Thus, ‖(t − s)α−1f(s, y(s), (Sy)(s), (Gy(s)))‖ is Lebesgue integrable with re-
spect to s ∈ [0, t] for all t ∈ J and y ∈ C(J,X). Then (t − s)α−1f(s, y(s),
(Gy)(s), (Sy(s))) is Bochner integrable with respect to s ∈ [0, t] for all t ∈ J
by Lemma 2.5. Since∫ T

0

∥∥∥(T − s)α−nf(s, y(s), (Gy)(s), (Sy(s)))
∥∥∥ds

≤
(∫ T

0

(T − s)
α−n
1−α2 ds

)1−α2
(∫ T

0

(h(s))
1
α2 ds

)α2

≤ Tα−α2−n+1H

(α−α2−n+1
1−α2

)1−α2
,

therefore, ‖(T − s)α−nf(s, y(s), (Gy)(s), (Sy)(s))‖ is Lebesgue integrable with
respect to s ∈ [0, T ] for all t ∈ J and y ∈ C(J,X). Hence (T − s)α−nf(s, y(s),
(Gy)(s), (Sy)(s)) is Bochner integrable with respect to s ∈ [0, T ] for all t ∈ J
by Lemma 2.5.
Let us choose

r ≥ HTα−α2

Γ(α)(α−α2

1−α2
)1−α2

+
HTα−α2

(n− 1)!Γ(α− n+ 1)
(

1− α2

α− α2 − n+ 1
)1−α2

+‖y0‖+ ‖y10‖T +
‖y20‖

2!
T 2 + · · ·+ ‖y

n−2
0 ‖

(n− 2)!
Tn−2 +

‖yT ‖
(n− 1)!

Tn−1.

Now we define an operator F on Br := {y ∈ C(J,X) : ‖y‖ ≤ r} by

(Fy)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s), (Gy)(s), (Sy)(s))ds

− tn−1

(n− 1)!Γ(α− n+ 1)

∫ T

0

(T − s)α−nf(s, y(s), (Gy)(s), (Sy)(s))ds

+y0 + y10t+
y20
2!
t2 + · · ·+ yn−20

(n− 2)!
tn−2 +

yT
(n− 1)!

tn−1, t ∈ J. (4)

Observe that the problem (1) has solutions if the operator F has fixed points
on Br. It will be shown by means of Banach contraction principle that F has
a fixed point. The proof is divided into two steps.
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Step 1. Fy ∈ Br for every y ∈ Br.
For every y ∈ Br and any δ > 0, by (H3) and the Hölder’s inequality, we get

‖(Fy)(t+ δ)− (Fy)(t)‖

≤
∥∥∥ 1

Γ(α)

∫ t+δ

0

(t+ δ − s)α−1f(s, y(s), (Gy)(s), (Sy)(s))ds

− 1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s), (Gy)(s), (Sy)(s))ds
∥∥∥

+
∥∥∥ (t+ δ)n−1

(n− 1)!Γ(α− n+ 1)

∫ T

0

(T − s)α−nf(s, y(s), (Gy)(s), (Sy)(s))ds

− tn−1

(n− 1)!Γ(α− n+ 1)

∫ T

0

(T − s)α−nf(s, y(s), (Gy)(s), (Sy)(s))ds
∥∥∥

+
∥∥∥y10(t+ δ − t) +

y20
2!

[(t+ δ)2 − t2] + · · ·+ yn−20

(n− 2)!
[(t+ δ)n−2 − tn−2]

+
yT

(n− 1)!
[(t+ δ)n−1 − tn−1]

∥∥∥
≤ 1

Γ(α)

∫ t

0

[(t+ δ − s)α−1 − (t− s)α−1]‖f(s, y(s), (Gy)(s), (Sy)(s))‖ds

+
1

Γ(α)

∫ t+δ

t

(t+ δ − s)α−1‖f(s, y(s), (Gy)(s), (Sy)(s))‖ds

+
[(t+ δ)n−1 − tn−1]

(n− 1)!Γ(α− n+ 1)

∫ T

0

(T − s)α−n‖f(s, y(s), (Gy)(s), (Sy)(s))‖ds

+‖y10‖(t+ δ − t) +
‖y20‖

2!
[(t+ δ)2 − t2] + · · ·+ ‖y

n−2
0 ‖

(n− 2)!
[(t+ δ)n−2 − tn−2]

+
‖yT ‖

(n− 1)!
[(t+ δ)n−1 − tn−1]

≤ 1

Γ(α)

∫ t

0

[(t+ δ − s)α−1 − (t− s)α−1]h(s)ds

+
1

Γ(α)

∫ t+δ

t

(t+ δ − s)α−1h(s)ds

+
[(t+ δ)n−1 − tn−1]

(n− 1)!Γ(α− n+ 1)

∫ T

0

(T − s)α−nh(s)ds

+‖y10‖(t+ δ − t) +
‖y20‖

2!
[(t+ δ)2 − t2] + · · ·+ ‖y

n−2
0 ‖

(n− 2)!
[(t+ δ)n−2 − tn−2]

+
‖yT ‖

(n− 1)!
[(t+ δ)n−1 − tn−1]
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≤ 1

Γ(α)

(∫ t

0

[(t+ δ − s)α−1 − (t− s)α−1]
1

1−α2 ds

)1−α2
(∫ t

0

(h(s))
1
α2 ds

)α2

+
1

Γ(α)

(∫ t+δ

t

(t+ δ − s)
α−1
1−α2 ds

)1−α2
(∫ t+δ

t

(h(s))
1
α2 ds

)α2

+
[(t+ δ)n−1 − tn−1]

(n− 1)!Γ(α− n+ 1)

(∫ T

0

(T − s)
α−n
1−α2 ds

)1−α2
(∫ T

0

(h(s))
1
α2 ds

)α2

+‖y10‖(t+ δ − t) +
‖y20‖

2!
[(t+ δ)2 − t2] + · · ·+ ‖y

n−2
0 ‖

(n− 2)!
[(t+ δ)n−2 − tn−2]

+
‖yT ‖

(n− 1)!
[(t+ δ)n−1 − tn−1]

≤ 1

Γ(α)

(∫ t

0

[(t+ δ − s)
α−1
1−α2 − (t− s)

α−1
1−α2 ]ds

)1−α2
(∫ t

0

(h(s))
1
α2 ds

)α2

+
1

Γ(α)

(∫ t+δ

t

(t+ δ − s)
α−1
1−α2 ds

)1−α2
(∫ t+δ

t

(h(s))
1
α2 ds

)α2

+
[(t+ δ)n−1 − tn−1]

(n− 1)!Γ(α− n+ 1)

(∫ T

0

(T − s)
α−n
1−α2 ds

)1−α2
(∫ T

0

(h(s))
1
α2 ds

)α2

+‖y10‖(t+ δ − t) +
‖y20‖

2!
[(t+ δ)2 − t2] + · · ·+ ‖y

n−2
0 ‖

(n− 2)!
[(t+ δ)n−2 − tn−2]

+
‖yT ‖

(n− 1)!
[(t+ δ)n−1 − tn−1]

≤ H

Γ(α)

(
(t+ δ)

α−α2
1−α2

α−α2

1−α2

− δ
α−α2
1−α2

α−α2

1−α2

− t
α−α2
1−α2

α−α2

1−α2

)1−α2

+
H

Γ(α)

(
δ
α−α2
1−α2

α−α2

1−α2

)1−α2

+
[(t+ δ)n−1 − tn−1]

(n− 1)!Γ(α− n+ 1)

Tα−α2−n+1H

(α−α2−n+1
1−α2

)1−α2

+‖y10‖(t+ δ − t) +
‖y20‖

2!
[(t+ δ)2 − t2] + · · ·+ ‖y

n−2
0 ‖

(n− 2)!
[(t+ δ)n−2 − tn−2]

+
‖yT ‖

(n− 1)!
[(t+ δ)n−1 − tn−1].

It is obvious that the right-hand side of the above inequality tends to zero as
δ → 0. Therefore, F is continuous on J , that is, Fy ∈ C(J,X). Moreover, for
y ∈ Br and all t ∈ J , we get

‖(Fy)(t)‖

≤ 1

Γ(α)

∫ t

0

(t− s)α−1‖f(s, y(s), (Gy)(s), (Sy)(s))‖ds
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+
tn−1

(n− 1)!Γ(α− n+ 1)

∫ T

0

(T − s)α−n‖f(s, y(s), (Gy)(s), (Sy)(s))‖ds

+‖y0‖+ ‖y10‖T +
‖y20‖

2!
T 2 + · · ·+ ‖y

n−2
0 ‖

(n− 2)!
Tn−2 +

‖yT ‖
(n− 1)!

Tn−1

≤ 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

− tn−1

(n− 1)!Γ(α− n+ 1)

∫ T

0

(T − s)α−nh(s)ds

+‖y0‖+ ‖y10‖T +
‖y20‖

2!
T 2 + · · ·+ ‖y

n−2
0 ‖

(n− 2)!
Tn−2 +

‖yT ‖
(n− 1)!

Tn−1

≤ 1

Γ(α)

(∫ t

0

(t− s)
α−1
1−α2 ds

)1−α2
(∫ t

0

(h(s))
1
α2 ds

)α2

+
[(t+ δ)n−1 − (t)n−1]

(n− 1)!Γ(α− n+ 1)

(∫ T

0

(T − s)
α−n
1−α2 ds

)1−α2
(∫ T

0

(h(s))
1
α2 ds

)α2

+‖y0‖+ ‖y10‖T +
‖y20‖

2!
T 2 + · · ·+ ‖y

n−2
0 ‖

(n− 2)!
Tn−2 +

‖yT ‖
(n− 1)!

Tn−1

≤ HTα−α2

Γ(α)(α−α2

1−α2
)1−α2

+
HTα−α2

(n− 1)!Γ(α− n+ 1)(α−α2−n+1
1−α2

)
1−α2

+‖y0‖+ ‖y10‖T +
‖y20‖

2!
T 2 + · · ·+ ‖y

n−2
0 ‖

(n− 2)!
Tn−2 +

‖yT ‖
(n− 1)!

Tn−1

≤ r,

which implies that ‖Fy‖∞ ≤ r. Thus, we can conclude that for all y ∈
Br, Fy ∈ Br, that is, F : Br → Br.
Step 2. F is a contraction mapping on Br.
For x, y ∈ Br and any t ∈ J , using (H2), the Hölder’s inequality and

‖f(s, x(s), (Gx)(s), (Sx)(s))− f(s, y(s), (Gy)(s), (Sy)(s))‖
≤ m1(s)‖x(s)− y(s)‖+m2(s)‖Gx(s)−Gy(s)‖+m3(s)‖Sx(s)− Sy(s)‖
= ρ(s),

we get

‖(Fx)(t)− (Fy)(t)‖

≤ 1

Γ(α)

∫ t

0

(t− s)α−1ρ(s)ds+
tn−1

(n− 1)!Γ(α− n+ 1)

∫ T

0

(T − s)α−nρ(s)ds

≤ ‖x− y‖∞
Γ(α)

(∫ t

0

(t− s)
α−1
1−α1 ds

)1−α1
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×
(∫ t

0

(m1(s) + γ0m2(s) + γ1m3(s))
1
α1 ds

)α1

+
Tn−1

(n− 1)!Γ(α− n+ 1)

(∫ T

0

(T − s)
α−n
1−α1 ds

)1−α1

×
(∫ T

0

(m1(s) + γ0m2(s) + γ1m3(s))
1
α1 ds

)α1

≤
(

M

Γ(α)

Tα−α1

Γ(α)(α−α1

1−α1
)1−α1

+
M

(n− 1)!Γ(α− n+ 1)

Tα−α1

(α−α1−n+1
1−α1

)1−α1

)
×‖x− y‖∞.

So we obtain

‖Fx− Fy‖∞ ≤ Ωα,T,n‖x− y‖∞.

Thus, F is contraction by the condition (3). Hence, by Banach contraction
mapping principle, the operator F has a unique fixed point which is the unique
solution of the problem (1).

Our next result is based on Schaeffer’s fixed point theorem.

Theorem 3.2. Assume that (H1), (H4) and (H5) hold. Then the problem
(1) has at least one solution on J .

Proof. As before, let F : C(J,X) → C(J,X) be the operator defined by
(4). We will show that F satisfies the hypotheses of Theorem 2.8. The proof
consists of several steps.
Step 1. F is a continuous operator.
Let {yn} be a sequence such that yn → y in C(J,X). Then for each t ∈ J ,
using the continuity of f , we have

‖Fyn − Fy‖∞

≤
(

Tα

Γ(α+ 1)
+

Tα

(n− 1)!Γ(α− n+ 2)

)
×‖f(·, yn(·), (Gy)n(·), (Sy)n(·))− f(·, y(·), (Gy)(·), (Sy)(·))‖∞ → 0

as n→∞.

Step 2. F maps bounded sets into bounded sets in C(J,X).
Indeed, it is enough to show that for any η∗ > 0, there exists a l > 0 such that
for each y ∈ Bη∗ = {y ∈ C(J,X) : ‖y‖∞ ≤ η∗}, we have ‖Fy‖∞ ≤ l.
For each t ∈ J , by (H4), we get

‖(Fy)(t)‖
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≤ N(1 + γ0‖y‖λ + γ1‖y‖λ)

Γ(α)

∫ t

0

(t− s)α−1ds

+
N(1 + γ0‖y‖λ + γ1‖y‖λ)Tn−1

(n− 1)!Γ(α− n+ 1)

∫ T

0

(T − s)α−nds

+‖y0‖+ ‖y10‖T +
‖y20‖

2!
T 2 + · · ·+ ‖y

n−2
0 ‖

(n− 2)!
Tn−2 +

‖yT ‖
(n− 1)!

Tn−1

≤ N(1 + γ0(η∗)λ + γ1(η∗)λ)

Γ(α)

∫ t

0

(t− s)α−1ds

+
Tn−1N((1 + γ0(η∗)λ + γ1(η∗)λ)

(n− 1)!Γ(α− n+ 1)

∫ T

0

(T − s)α−nds

+‖y0‖+ ‖y10‖T +
‖y20‖

2!
T 2 + · · ·+ ‖y

n−2
0 ‖

(n− 2)!
Tn−2 +

‖yT ‖
(n− 1)!

Tn−1

≤
(

1

Γ(α+ 1)
+

1

(n− 1)!Γ(α− n+ 2)

)
TαN(1 + γ0(η∗)λ + γ1(η∗)λ)

+‖y0‖+ ‖y10‖T +
‖y20‖

2!
T 2 + · · ·+ ‖y

n−2
0 ‖

(n− 2)!
Tn−2 +

‖yT ‖
(n− 1)!

Tn−1 := l,

which implies that

‖Fy‖∞ ≤ l.

Step 3. F maps bounded sets into equicontinuous sets of C(J,X).
Let 0 ≤ t1 < t2 ≤ T, y ∈ Bη∗ . Using (H4) again, we have

‖(Fy)(t2)− (Fy)(t1)‖

≤ N(1 + γ0‖y‖λ + γ1‖y‖λ)

Γ(α)

∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]ds

+
N(1 + γ0‖y‖λ + γ1‖y‖λ)

Γ(α)

∫ t2

t1

(t2 − s)α−1ds

+
tn−12 − tn−11

(n− 1)!Γ(α− n+ 1)

∫ T

0

(T − s)α−nN(1 + γ0‖y‖λ + γ1‖y‖λ)ds

+‖y10‖(t2 − t1) +
‖y20‖

2!
(t22 − t21) + · · ·+ ‖y

n−2
0 ‖

(n− 2)!
(tn−22 − tn−21 )

+
‖yT ‖

(n− 1)!
(tn−12 − tn−11 )

≤ N(1 + γ0(η∗)λ + γ1(η∗)λ)

Γ(α)

(∫ t1

0

[(t2 − s)α−1 − (t1 − s)α−1]ds
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+

∫ t2

t1

(t2 − s)α−1ds
)

+
(t22 − t21)N((1 + γ0(η∗)λ + γ1(η∗)λ)

(n− 1)!Γ(α− n+ 1)

∫ T

0

(T − s)α−nds

+‖y10‖(t2 − t1) +
‖y20‖

2!
(t22 − t21) + · · ·+ ‖y

n−2
0 ‖

(n− 2)!
(tn−22 − tn−21 )

+
‖yT ‖

(n− 1)!
(tn−12 − tn−11 )

≤ N(1 + γ0(η∗)λ + γ1(η∗)λ)

Γ(α+ 1)
(tα2 − tα1 )

+
Tα−n+1N(1 + γ0(η∗)λ + γ1(η∗)λ)

(n− 1)!Γ(α− n+ 2)
(tn−12 − tn−11 )

+‖y10‖(t2 − t1) +
‖y20‖

2!
(t22 − t21) + · · ·+ ‖y

n−2
0 ‖

(n− 2)!
(tn−22 − tn−21 )

+
‖yT ‖

(n− 1)!
(tn−12 − tn−11 ).

As t2 → t1, the right-hand side of the above inequality tends to zero, therefore
F is equicontinuous.
Now, let {yn}, n = 1, 2, · · · be a sequence on Bη∗ , and

(Fyn)(t) = (F1yn)(t) + (F2yn)(t) + (F3y)(t), t ∈ J,

where

(F1yn)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, yn(s), (Gy)n(s), (Sy)n(s))ds, t ∈ J,

(F2yn)(t) = − tn−1

(n− 1)!Γ(α− n+ 1)

×
∫ T

0

(T − s)α−nf(s, yn(s), (Gy)n(s), (Sy)n(s))ds, t ∈ J,

(F3y)(t) = y0 + y10t+
y20
2!
t2 + · · ·+ yn−20

(n− 2)!
tn−2 +

yT
(n− 1)!

tn−1, t ∈ J.

In view of the condition (H5) and Lemma 2.6, we know that conv K1 is
compact. For any t∗ ∈ J ,

(F1yn)(t∗) =
1

Γ(α)
lim
k→∞

k∑
i=1

t∗

k

(
t∗ − it∗

k

)α−1



Existence results for boundary value problems of arbitrary order 167

×f
(
it∗

k
, yn

(
it∗

k

)
, (Gyn)(

it∗

k
), (Syn)(

it∗

k
)

))
=

t∗

Γ(α)
ξn1,

where

ξn1 = lim
k→∞

k∑
i=1

1

k

(
t∗ − it∗

k

)α−1
f

(
it∗

k
, yn

(
it∗

k

)
, (Gyn)(

it∗

k
), (Syn)(

it∗

k
)

))
.

Since conv K1 is convex and compact, we know that ξn1 ∈ conv K1. Hence, for
any t∗ ∈ J , the set {(F1yn)(t∗)} is relatively compact. By Lemma 2.7, every se-
quence {(F1yn)(t)} contains a uniformly convergent subsequence {(F1ynk)(t)},
k = 1, 2, · · · on J . Thus, the set {F1y : y ∈ Bη∗} is relatively compact.

Set

(F2yn)(t) = − tn−1

(n− 1)!Γ(α− n+ 1)

×
∫ t

0

(t− s)α−nf(s, yn(s), (Gyn)(s), (Syn)(s))ds, t ∈ J,

For any t∗ ∈ J ,

(F3yn)(t∗) = − (t∗)n−1

(n− 1)!Γ(α− n+ 1)

× lim
k→∞

k∑
i=1

t∗

k

(
t∗ − it∗

k

)α−n
f

(
it∗

k
, yn

(
it∗

k

)
, (Gyn)

(
it∗

k

)
, (Syn)

(
it∗

k

))
= − (t∗)n

(n− 1)!Γ(α− n+ 1)
ξn2,

where

ξn2 = lim
k→∞

k∑
i=1

1

k

(
t∗ − it∗

k

)α−n
f

(
it∗

k
, yn

(
it∗

k

)
, (Gyn)

(
it∗

k

)
, (Syn)

(
it∗

k

))
.

Since conv K2 is convex and compact, we know that ξn2 ∈ conv K2. Hence, for
any t∗ ∈ J , the set {(F2yn)(t∗)} is relatively compact. By Lemma 2.7, every
{(F2yn)(t)} contains a uniformly convergent subsequence {(F2ynk)(t)}, k =
1, 2, · · · on J . In particular, the sequence {(F2yn)(t)} contains a uniformly
convergent subsequence {(F2ynk)(t)}, k = 1, 2, · · · on J . Thus, the set {F2y :
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y ∈ Bη∗} is relatively compact.
Similarly, the set {F3y : y ∈ Bη∗} is relatively compact. As a result, the set
{Fy : y ∈ Bη∗} is relatively compact. In view of steps 1-3, we conclude that
F is continuous and completely continuous.
Step 4. A priori bounds.
Now it remains to show that the set

E(F ) = {y ∈ C(J,X) : y = λ∗Fy, for some λ∗ ∈ [0, 1]}

is bounded.
Let y ∈ E(F ), then y = λ∗Fy for some λ∗ ∈ [0, 1]. Thus, for each t ∈ J , we
have

y(t) = λ∗
(

1

Γ(α)

∫ t

0

(t− s)α−1f(s, yn(s), (Gyn)(s), (Syn)(s))ds

− tn−1

(n− 1)!Γ(α− n+ 1)

∫ T

0

(T − s)α−nf(s, yn(s), (Gyn)(s), (Syn)(s))ds

+ y0 + y10t+
y20
2!
t2 + · · ·+ yn−20

(n− 2)!
tn−2 +

yT
(n− 1)!

tn−1
)
.

For each t ∈ J , we have

‖y(t)‖ ≤ ‖(Fy)(t)‖

≤ N(1 + γ0‖y‖λ + γ1‖y‖λ)

Γ(α)

∫ t

0

(t− s)α−1)ds

+
N(1 + γ0‖y‖λ + γ1‖y‖λ)Tn−1

(n− 1)!Γ(α− n+ 1)

∫ T

0

(T − s)α−nds

+‖y0‖+ ‖y10‖T +
‖y20‖

2!
T 2 + · · ·+ ‖y

n−2
0 ‖

(n− 2)!
Tn−2 +

‖yT ‖
(n− 1)!

Tn−1

≤ N(1 + γ0‖y‖λ + γ1‖y‖λ)Tα
( 1

Γ(α+ 1)
+

1

(n− 1)!Γ(α− n+ 1)

)
+‖y0‖+ ‖y10‖T +

‖y20‖
2!

T 2 + · · ·+ ‖y
n−2
0 ‖

(n− 2)!
Tn−2 +

‖yT ‖
(n− 1)!

Tn−1

= M∗(say).

Thus, for every t ∈ J , we have

‖y‖∞ ≤M∗.

This shows that the set E(F ) is bounded. Hence, Theorem 2.8 applies and F
has a fixed point which is a solution of the problem (1).



Existence results for boundary value problems of arbitrary order 169

Example 3.1. Let us define X = {y = (y1, y2, ..., yp, ...) : yp → 0} with
the norm ‖y‖ = supp |yp| and consider the following fractional boundary value
problem 

cD15/4yp(t) =
t|yp|

3p(1 + |yp|)
+

1

2p

∫ t

0

e−(s−t)yp(s)ds

+
1

p

∫ t

0

e−(s−t)/2yp(s)ds,

yp(0) = 0, y′p(0) = 0, y′′p (0) = 0, yp(1) = 0.

(5)

where t ∈ [0, 1], f = (f1, f2, ..., fp, ...) with

fp =
t|yp|

3p(1 + |yp|)
+

1

2p

∫ t

0

e−(s−t)yp(s)ds+
1

p

∫ t

0

e−(s−t)/2yp(s)ds,

Gpy(t) =
1

2p

∫ t

0

e−(s−t)yp(s)ds, Spy(t) =
1

p

∫ t

0

e−(s−t)/2yp(s)ds,

k1(t, s) = e−(s−t), k2(t, s) = e−(s−t)/2, α1 = (0, 15/4). Moreover,

‖f(t, xp(t), (Gxp)(t), (Sxp)(t))− f(t, yp(t), (Gyp)(t), (Syp)(t))‖
≤ m1(t)‖xp − yp‖+m2(t)‖Gxp −Gyp‖+m3(t)‖Sxp − Syp‖,

m1(t) = t/3, m2(t) = 1/2, m1(t) = 1, γ0 = max
∫ t
0
k1(t, s)ds = e − 1, γ1 =

max
∫ t
0
k2(t, s)ds = 2(

√
e− 1). Clearly

‖f(t, x(t), (Gx)(t), (Sx)(t))− f(t, y(t), (Gy)(t), (Sy)(t))‖
≤ m1(t)‖x− y‖+m2(t)‖Gx−Gy‖+m3(t)‖Sx− Sy‖.

Furthermore, with α1 = 1/2, α = 15/4, n = 4, T = 1, we have

M = ‖m1 + γ0m2 + γ1m3‖
L

1
α1 ([0,1],X)

' 2.325242,

Ωα,T,n =
M

Γ(α)

Tα−α1

(α−α1

1−α1
)1−α1

+
M

(n− 1)!Γ(α− n+ 1)

Tα−α1

(α−α1−n+1
1−α1

)1−α1

' 0.653451 < 1,

Thus, all the assumptions of Theorem 3.1 are satisfied. Therefore, the conclu-
sion of Theorem 3.1 applies to the problem (5).
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