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λ-statistical convergence in n-normed spaces

Bipan Hazarika1∗ and Ekrem Savaş2

Abstract

In this paper, we introduce the concept of λ-statistical convergence in
n-normed spaces. Some inclusion relations between the sets of statisti-
cally convergent and λ-statistically convergent sequences are established.
We find its relations to statistical convergence, (C,1)-summability and
strong (V, λ)-summability in n-normed spaces.

1 Introduction

The notion of statistical convergence was introduced by Fast [8] and Schoen-
berg [28] independently. Over the years and under different names statistical
convergence has been discussed in the theory of Fourier analysis, ergodic the-
ory and number theory. Later on it was further investigated from various
points of view. For example, statistical convergence has been investigated in
summability theory by ( Fridy [10], S̆alát [26]), topological groups (Çakalli [1],
[2]), topological spaces (Di Maio and Koc̆inac[20]), function spaces (Caserta
and Koc̆inac [3], Caserta, Di Maio and Koc̆inac [4]), locally convex spaces
(Maddox[19]), measure theory (Cheng et al., [5], Connor and Swardson [6],
Millar[21]) , fuzzy mathematics (Nuray and Savaş [24], Savaş [27]). In the re-
cent years, generalization of statistical convergence have appeared in the study
of strong integral summability and the structure of ideals of bounded continu-
ous functions [6]. Mursaleen [23], introduced the λ-statistical convergence for
real sequences. In this article, we consider only sequences of real numbers, so
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that ”a sequence” means ”a sequence of real numbers”.

The notion of statistical convergence depends on the (natural or asymp-
totic) density of subsets of N. A subset of N is said to have natural density
δ (E) if

δ (E) = lim
n→∞

1

n

n∑
k=1

χE (k) exists.

Definition 1.1. A sequence x = (xk) is said to be statistically convergent
to ` if for every ε > 0

δ ({k ∈ N : |xk − `| ≥ ε}) = 0.

In this case, we write S − limx = ` or (xk)
S−→ ` and S denotes the set of all

statistically convergent sequences.
Let λ = (λm) be a non-decreasing sequence of positive numbers tending to

∞ such that
λm+1 ≤ λm + 1, λ1 = 1.

The collection of such sequences λ will be denoted by ∆.

The generalized de la Vallée-Poussin mean is defined by

tm(x) =
1

λm

∑
k∈Im

xk,

where Im = [m− λm + 1,m].

Definition 1.2.[17] A sequence x = (xk) is said to be (V, λ)-summable to
a number ` if

tm(x)→ `, as m→∞.
If λm = m, then (V, λ)-summability reduces to (C, 1)-summability. We

write

[C, λ] =

{
x = (xk) : ∃ ` ∈ R, lim

m→∞

1

m

m∑
k=1

|xk − `| = 0

}
and

[V, λ] =

{
x = (xk) : ∃ ` ∈ R, lim

m→∞

1

λm

∑
k∈Im

|xk − `| = 0

}
for the sets of sequences x = (xk) which are strongly Cesàro summable (see [9])

and strongly (V, λ)-summable to `, i.e. (xk)
[C,1]−→ ` and (xk)

[V,λ]−→ `, respectively.
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Definition 1.3. [23] A sequence x = (xk) is said to be λ-satistically
convergent or Sλ-convergent to ` if for every ε > 0

lim
m→∞

1

λm
|{k ∈ Im : |xk − `| ≥ ε}| = 0.

In this case we write Sλ − limx = ` or (xk)
Sλ−→ ` and

Sλ = {x = (xk) : ∃ ` ∈ R, Sλ − limx = `}.

It is clear that if λm = m, then Sλ is same as S.

The concept of 2-normed space was initially introduced by Gähler[12], in
the mid of 1960’s, while that of n-normed spaces can be found in Misiak [22].
Since then, many others authors have studied this concept and obtained vari-
ous results (see, for instance, Gunawan[14] ,Gähler[11], Gunawan and Mashadi
([13], [15]), Lewandowska[18], Dutta [7]).

2 Definitions and Preliminaries

Let n be a non negative integer and X be a real vector space of dimension
d ≥ n (d may be infinite). A real-valued function ||., ..., .|| from Xn into R
satisfying the following conditions:

(1) ||x1, x2, ..., xn|| = 0 if and only if x1, x2, ..., xn are linearly dependent,
(2) ||x1, x2, ..., xn|| is invariant under permutation,
(3) ||αx1, x2, ..., xn|| = |α|||x1, x2, ..., xn||, for any α ∈ R,
(4) ||x+ x, x2, ..., xn|| ≤ ||x, x2, ..., xn||+ ||x, x2, ..., xn||
is called an n-norm onX and the pair (X, ||., ..., .||) is called an n-normed space.

A trivial example of an n-normed space is X = Rn, equipped with the
Euclidean n-norm ||x1, x2, ..., xn||E = the volume of the n-dimensional paral-
lelepiped spanned by the vectors x1, x2, ..., xn which may be given expicitly by
the formula

||x1, x2, ..., xn||E = |det(xij)| = abs (det(< xi, xj >)) ,

where xi = (xi1, xi2, ..., xin) ∈ Rn for each i = 1, 2, 3..., n.

Let (X, ||., ..., .||) be an n-normed space of dimension d ≥ n ≥ 2 and
{a1, a2, ..., an} be a linearly independent set in X. Then the function ||., ..., .||∞
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from Xn−1 into R defined by

||x1, x2, ..., xn−1||∞ = max
1≤i≤n

{||x1, x2, ..., xn−1, ai||}

defines an (n− 1)-norm on X with respect to {a1, a2, ...an} and this is known
as the derived (n− 1)-norm (for details see [13]).

The standard n-norm on a real inner product space of dimension d ≥ n is
as follows:

||x1, x2, ..., xn||S = [det(< xi, xj >)]
1
2 ,

where <,> denotes the inner product on X. If we take X = Rn then this n-
norm is exactly the same as the Euclidean n-norm ||x1, x2, ..., xn||E mentioned
earlier. For n = 1 this n-norm is the usual norm ||x1|| =

√
< x1, x1 >(for fur-

ther details see [13]).

Definition 2.1. A sequence (xk) in an n-normed space (X, ||., ..., .||) is
said to be convergent to ` ∈ X with respect to the n-norm if for each ε > 0
there exists an positive integer n0 such that ||xk − `, z1, z2, ..., zn−1|| < ε, for
all k ≥ n0 and for every z1, z2, ..., zn−1 ∈ X.

Definition 2.2. A sequence (xk) in an n-normed space (X, ||., ...., .||) is
said to be Cauchy with respect to the n-norm if for each ε > 0 there exists
a positive integer n0 = n0(ε) such that ||xk − xm, z1, z2, ..., zn−1|| < ε, for all
k,m ≥ n0 and for every z1, z2, ..., zn−1 ∈ X.

If every Cauchy sequence in X converges to some ` ∈ X, then X is said
to be complete with respect to the n-norm. Any complete n-normed space is
said to be an n-Banach space.

Definition 2.3. A sequence (xk) in an n-normed space (X, ||., ...., .||) is
said to be statistically-convergent to some ` ∈ X with respect to the n-norm
if for each ε > 0 the set {k ∈ N : ||xk − `, z1, z2, ..., zn−1|| ≥ ε} has natural
density zero, for every z1, z2, ..., zn−1 ∈ X.

In other words the sequence (xk) statistical converges to ` an n-normed
space X if

lim
m→∞

1

m
|{k ∈ N : ||xk − `, z1, z2, ..., zn−1|| ≥ ε}| = 0,

for each z1, z2, ..., zn−1 ∈ X. Let SnN (X) denotes the set of all statistically
convergent sequences in n-normed space X.
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Recently, Gürdal and Pehlivan [16] studied statistical convergence in 2-
normed spaces. B.S. Reddy [25] extended this idea to n-normed space and
studied some properties.

In the present paper we study λ-statistical convergence in n-normed spaces.
We show that some properties of λ-statistical convergence of real numbers
also hold for sequences in n-normed spaces. We find some relations related to
statistical convergent, λ-statistical convergent sequences, (C,1)-summability
and strong (V, λ)-summability in n-normed spaces.

3 λ-statistical convergent sequences in n-normed space
X

In this section we define λ-statistically convergent sequences in n-normed linear
space X. Also, we obtained some basic properties of this notion in n-normed
spaces.

Definition 3.1. A sequence x = (xk) in an n-normed space (X, ||., ..., .||)
is said to be λ-satistically convergent or Sλ-convergent to ` ∈ X with respect
to the n-norm if for every ε > 0

lim
m→∞

1

λm
|{k ∈ Im : ||xk − `, z1, z2, ..., zn−1|| ≥ ε}| = 0,

for each z1, z2, ..., zn−1 ∈ X. In this case we write SnNλ −limx = ` or (xk)
SnNλ−→ `

and

SnNλ (X) = {x = (xk) : ∃ ` ∈ R, SnNλ − limx = `}.

Let SnNλ (X) denotes the set of all λ-statistically convergent sequences in the
n-normed space X.

Definition 3.2. A sequence x = (xk) in an n-normed space (X, ||., ..., .||)
is said to be (V, λ)-summable to ` ∈ X with respect to the n-norm if

tm(x)→ `, as m→∞.

If λm = m, then (V, λ)-summability reduces to (C, 1)-summability with respect
to the n-norm. We write

[C, λ]nN (X) =

{
x = (xk) : ∃ ` ∈ R, lim

m→∞

1

m

m∑
k=1

||xk − `, z1, ..., zn−1|| = 0

}
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and

[V, λ]nN (X) =

{
x = (xk) : ∃ ` ∈ R, lim

m→∞

1

λm

∑
k∈Im

||xk − `, z1, ..., zn−1|| = 0

}

for the sets of X-valued sequences x = (xk) which are strongly Cesàro
summable and strongly (V, λ)-summable to ` with respect to the n-norm, i.e.,

(xk)
[C,1]nN−→ ` and (xk)

[V,λ]nN−→ `, respectively.

Theorem 3.1. Let X be an n−normed space and λ = (λn) ∈ ∆. If (xk)
is a sequence in X such that SnNλ − limxk = ` exists, then it is unique.

Proof. Suppose that there exist elements `1, `2 (`1 6= `2) in X such that

SnNλ − lim
k→∞

xk = `1;SnNλ − lim
k→∞

xk = `2.

Since `1 6= `2, then `1− `2 6= 0, so there exist z1, z2, ..., zn−1 ∈ X such that
`1 − `2 and z1, z2, ..., zn−1 are linearly independent. Therefore,

||`1 − `2, z1, z2, ...zn−1|| = 2ε > 0.

Since SnNλ − limk→∞ xk = `1 and SnNλ − limk→∞ xk = `2 it follows that

lim
m→∞

1

λm
|{k ∈ Im : ||xk − `1, z1, z1, ...zn−1|| ≥ ε}| = 0

and

lim
m→∞

1

λm
|{k ∈ Im : ||xk − `2, z1, z2, ...zn−1|| ≥ ε}| = 0.

There is k ∈ Im such that

||xk − `1, z1, z1, ...zn−1|| < ε and ||xk − `2, z1, z1, ...zn−1|| < ε.

Further, for this k we have

||`1−`2, z1, z1, ...zn−1|| ≤ ||xk−`1, z1, z1, ...zn−1||+||xk−`2, z1, z1, ...zn−1|| < 2ε

which is a contradiction. This completes the proof.

The next theorem gives the algebraic characterization of λ-statistical con-
vergence on n-normed spaces.
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Theorem 3.2. Let X be an n-normed space, λ = (λn) ∈ ∆, x = (xk) and
y = (yk) be two sequences in X.
(a) If SnNλ − limk→∞ xk = ` and c(6= 0) ∈ R, then SnNλ − limk→∞ cxk = c`.
(b) If SnNλ − limk→∞ xk = `1 and SnNλ − limk→∞ yk = `2, then SnNλ −
limk→∞(xk + yk) = `1 + `2.

Proof of the theorem is straightforward, thus omitted.

Theorem 3.3. SnNλ (X) ∩ `∞(X) is a closed subset of `∞(X), if X is an
n-Banach space.

Proof. Suppose that (xi)i∈N, x
i = (xik)k∈N, is a convergent sequence

in SnNλ (X) ∩ `∞(X) converging to x = (xk) ∈ `∞(X). We need to prove

that x ∈ SnNλ (X) ∩ `∞(X). Assume that (xik)k
SnNλ→ `i, for all i ∈ N. Take

a positive decreasing convergent sequence (εi)i∈N, where εi = ε
2i , for a given

ε > 0. Clearly (εi)i∈N converges to 0. Choose a positive integer i such that
||x− xi, z1, z2, ..., zn−1||∞ < εi

4 , for every z1, z2, ..., zn−1 ∈ X. Then we have

lim
m→∞

1

λm
|{k ∈ Im : ||xik − `i, z1, z2, ..., zn−1|| ≥

εi
4
}| = 0

and

lim
m→∞

1

λm
|{k ∈ Im : ||xi+1

k − `i+1, z1, z2, ..., zn−1|| ≥
εi+1

4
}| = 0.

Since,

1

λm

∣∣∣{k ∈ Im : ||xik − `i, z1, z2, ..., zn−1|| ≥
εi
4
∨

||xi+1
k − `i+1, z1, z2, ..., zn−1|| ≥

εi+1

4

}∣∣∣ < 1

and for m ∈ N

{
k ∈ Im : ||xik − `i, z1, z2, ..., zn−1|| ≥

εi
4

}
∩{

k ∈ Im : ||xi+1
k − `i+1, z1, z2, ..., zn−1|| ≥

εi+1

4

}
is infinite. Hence there must exists a k ∈ Im for which we have simultaneously,

||xik − `i, z1, z2, ..., zn−1|| <
εi
4

and ||xi+1
k − `i+1, z1, z2, ..., zn−1|| <

εi+1

4
.
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Then it follows that

||`i − `i+1, z1, z2, ..., zn−1||

≤ ||`i − xik, z1, z2, ...zn−1||+ ||xik − xi+1
k , z1, z2, ...zn−1||+

+||xi+1
k − `i+1, z1, z2, ...zn−1||

≤ ||xik − `i, z1, z2, ...zn−1||+ ||xi+1
k − `i+1, z1, z2, ...zn−1||

+||x− xi, z1, z2, ...zn−1||∞ + ||x− xi+1, z1, z2, ...zn−1||∞

<
εi
4

+
εi+1

4
+
εi
4

+
εi+1

4
< εi.

This implies that (`i) is a Cauchy sequence in X and there is an element ` ∈ X

such that `i → ` as i→∞. We need to prove that (xk)
SnNλ−→ `.

For any ε > 0, choose i ∈ N such that εi <
ε
4 ,

||xk − xik, z1, z2, ..., zn−1||∞ <
ε

4
, ||`i − `, z1, z2, ..., zn−1|| <

ε

4
.

Then
1

λm
|{k ∈ Im : ||xk − `, z1, z2, ..., zn−1|| ≥ ε}|

≤ 1

λm
|{k ∈ Im : ||xik − `i, z1, z2, ..., zn−1||

+||xk − xik, z1, z2, ..., zn−1||∞ + ||`i − `, z1, z2, ..., zn−1|| ≥ ε}|

≤ 1

λm
|{k ∈ Im : ||xik − `i, z1, z2, ..., zn−1||+

ε

4
+
ε

4
≥ ε}|

≤ 1

λm
|{k ∈ Im : ||xik − `i, z1, z2, ..., zn−1|| ≥

ε

2
}| → 0 as m→∞.

This gives that (xk)
SnNλ−→ `, which completes the proof.

Theorem 3.4. Let X be an n-normed space and let λ = (λm) ∈ ∆. Then

(i) (xk)
[V,λ]nN−→ `⇒ (xk)

SnNλ−→ `,
(ii) [V, λ]nN (X) is a proper subset of SnNλ (X),

(iii) x ∈ `∞(X) and (xk)
SnNλ−→ `, then (xk)

[V,λ]nN−→ ` and hence (xk)
[C,1]nN−→ `,

provided x = (xk) is not eventually constant,
(iv)SnNλ (X) ∩ `∞(X) = [V, λ]nN (X) ∩ `∞(X).

Proof. (i) If ε > 0 and (xk)
[V,λ]nN−→ `, we can write
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∑
k∈Im

||xk − `, z1, z2, ..., zn−1|| ≥

≥
∑

k∈Im,||xk−`,z1,z2,...,zn−1||≥ε

||xk − `, z1, z2, ..., zn−1|| ≥

≥ ε|{k ∈ Im : ||xk − `, z1, z2, ...zn−1|| ≥ ε}|

and so

1

ελm

∑
k∈Im

||xk − `, z1, z2, ..., zn−1|| ≥

1

λm
|{k ∈ Im : ||xk − `, z1, z2, ..., zn−1|| ≥ ε}|.

This proves the result.
(ii) In order to establish that the inclusion [V, λ]nN (X) ⊂ SnNλ (X) is

proper, we define a sequence x = (xk) by

xk =

{
k, if m− [

√
λm] + 1 ≤ k ≤ m;

0, otherwise.

Then x /∈ `∞ and for every ε > 0(0 < ε < 1),

1

λm

∑
k∈Im

||xk − 0, z1, z2, ..., zn−1|| ≤
[
√
λm]

λm
→ 0, as m→∞,

i.e. (xk)
SnNλ−→ 0. On the other hand,

1

λm
| {k ∈ Im : ||xk − 0, z1, z2, ..., zn−1|| ≥ ε} | → ∞, as m→∞,

i.e. (xk) does not converge to 0 in [V, λ]nN (X).

(iii) Suppose that (xk)
SnNλ−→ ` and (xk) ∈ `∞(X). Then there exists a M > 0

such that ||xk − `, z1, z2, ...zn−1|| ≤M for all k ∈ N. Given ε > 0, we have

1

λm

∑
k∈Im

||xk − `, z1, z2, ..., zn−1|| =

1

λm

∑
k∈Im,||xk−`,z1,z2,...,zn−1||≥ ε2

||xk − `, z1, z2, ..., zn−1||
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+
1

λm

∑
k∈Im,||xk−`,z1,z2,...,zn−1||< ε

2

||xk − `, z1, z2, ..., zn−1||

≤ M

λm
|{k ∈ Im : ||xk − `, z1, z2, ..., zn−1|| ≥

ε

2
}|+ ε

2
,

This shows that (xk)
[V,λ]nN−→ `.

Again, we have

1

m

m∑
k=1

||xk − `, z1, z2, ..., zn−1||

≤ 1

m

m−λm∑
k=1

||xk − `, z1, z2, ..., zn−1||+
1

m

∑
k∈Im

||xk − `, z1, z2, ..., zn−1||

≤ 1

λm

m−λm∑
k=1

||xk − `, z1, z2, ..., zn−1||+
1

λm

∑
k∈Im

||xk − `, z1, z2, ..., zn−1||

≤ 2

λm

∑
k∈Im

||xk − `, z1, z2, ..., zn−1||.

Hence (xk)
[C,1]nN−→ `, because (xk)

[V,λ]nN−→ `.
(iv) This is an immediate consequence of (i), (ii) and (iii).

Theorem 3.5. Let X be an n-normed space and let λ = (λm) ∈ ∆. Then
SnN (X) ⊂ SnNλ (X) if and only if lim infm

λm
m > 0.

Proof. Suppose first that lim infm
λm
m > 0. Then a given ε > 0, we have

1

m
|{k ≤ m : ||xk − `, z1, z2, ..., zn−1|| ≥ ε}| ≥

1

m
|{k ∈ Im : ||xk − `, z1, z2, ..., zn−1|| ≥ ε}| ≥

λm
m
.

1

λm
|{k ∈ Im : ||xk − `, z1, z2, ..., zn−1|| ≥ ε}|.

It follows that (xk)
SnN−→ `⇒ (xk)

SnNλ−→ `. Hence SnN (X) ⊂ SnNλ (X).
Conversely, suppose that lim infm

λm
m = 0. Then we can select a subse-

quence (m(j))∞j=1 such that
λm(j)

m(j)
<

1

j
.
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We define a sequence x = (xk) as follows:

xk =

{
1, if k ∈ Im(j), j = 1, 2, 3, ...;
0, otherwise.

Then x is statistically convergent, so x ∈ SnN (X). But x /∈ [V, λ]nN (X).
Theorem 3.4(iii) implies that x /∈ SnNλ (X). This completes the proof.

Theorem 3.6. Let X be an n-normed space and let λ = (λm) ∈ ∆ such
that limm

λm
m = 1. Then SnNλ (X) ⊂ SnN (X).

Proof. Since limm
λm
m = 1, then for ε > 0, we observe that

1

m
|{k ≤ m : ||xk − `, z1, z2, ..., zn−1|| ≥ ε}|

≤ 1

m
|{k ≤ m− λm : ||xk − `, z1, z2, ..., zn−1|| ≥ ε}|

+
1

m
|{k ∈ Im : ||xk − `, z1, z2, ..., zn−1|| ≥ ε}|

≤ m− λm
m

+
1

m
|{k ∈ Im : ||xk − `, z1, z2, ..., zn−1|| ≥ ε}|

=
m− λm
m

+
λm
m

1

λm
|{k ∈ Im : ||xk − `, z1, z2, ..., zn−1|| ≥ ε}|.

This implies that (xk) is statistically convergent, if (xk) is λ-statistically
convergent. Hence SnNλ (X) ⊂ SnN (X).

Remark: We do not know whether the condition limm
λm
m = 1 in the

Theorem 3.6 is necessary and leave it as an open problem.

Acknowledgements: The authors thank the referees for their comments
which improved the presentation of the paper.

References
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