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M-statistical convergence in n-normed spaces

Bipan Hazarika'* and Ekrem Savag®

Abstract

In this paper, we introduce the concept of A-statistical convergence in
n-normed spaces. Some inclusion relations between the sets of statisti-
cally convergent and A-statistically convergent sequences are established.
We find its relations to statistical convergence, (C,1)-summability and
strong (V, A\)-summability in n-normed spaces.

1 Introduction

The notion of statistical convergence was introduced by Fast [8] and Schoen-
berg [28] independently. Over the years and under different names statistical
convergence has been discussed in the theory of Fourier analysis, ergodic the-
ory and number theory. Later on it was further investigated from various
points of view. For example, statistical convergence has been investigated in
summability theory by ( Fridy [10], Salat [26]), topological groups (Cakalli [1],
[2]), topological spaces (Di Maio and Ko¢inac[20]), function spaces (Caserta
and Kodéinac [3], Caserta, Di Maio and Kocinac [4]), locally convex spaces
(Maddox[19]), measure theory (Cheng et al., [5], Connor and Swardson [6],
Millar[21]) , fuzzy mathematics (Nuray and Savas [24], Savas [27]). In the re-
cent years, generalization of statistical convergence have appeared in the study
of strong integral summability and the structure of ideals of bounded continu-
ous functions [6]. Mursaleen [23], introduced the A-statistical convergence for
real sequences. In this article, we consider only sequences of real numbers, so
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that ”a sequence” means ”a sequence of real numbers”.

The notion of statistical convergence depends on the (natural or asymp-
totic) density of subsets of N. A subset of N is said to have natural density
0 (F) if

1 n
J(F) = nhﬁn;o - Z xE (k) exists.
k=1

Definition 1.1. A sequence x = (xy) is said to be statistically convergent
to ¢ if for every € > 0

S({k €N : oy — € >e}) =0.

In this case, we write S — limx = £ or (zy) -5, ¢ and S denotes the set of all
statistically convergent sequences.
Let A = (\,,) be a non-decreasing sequence of positive numbers tending to
oo such that
Amt1 S Am + 1,0 =1

The collection of such sequences A will be denoted by A.

The generalized de la Vallée-Poussin mean is defined by

tm(z) = /\L Z Tk,

kel

where I, = [m — A, + 1,m].

Definition 1.2.[17] A sequence x = (zy) is said to be (V, A)-summable to
a number / if
tm(z) = €, as m — oo.
If A\, = m, then (V, A)-summability reduces to (C,1)-summability. We
write
1l
[C,\] = {x_ (xk).EKER,W}gnOQE;Mk—E\ _o}
and
. 1
V,\ = {m:(xk):EIEGR,W}EnOOM > ok -4 :o}
k€l
for the sets of sequences x = (z,) which are strongly Cesaro summable (see [9])

and strongly (V, X)-summable to ¢, i.e. (xy) A ¢ and (k) WA £, respectively.
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Definition 1.3. [23] A sequence & = (z) is said to be A-satistically
convergent or Sy-convergent to £ if for every € > 0

1
lim —|{k €L, :|zx—¢ >c}|=0.

m—r o0 m

In this case we write Sy — limx = £ or (zy) S5 fand
Sy={z=(x):FLeR,S\ —limz = {}.
It is clear that if A\,, = m, then S) is same as S.

The concept of 2-normed space was initially introduced by Gé&hler[12], in
the mid of 1960’s, while that of n-normed spaces can be found in Misiak [22].
Since then, many others authors have studied this concept and obtained vari-
ous results (see, for instance, Gunawan[14] ,Gahler[11], Gunawan and Mashadi
([13], [15]), Lewandowska[18], Dutta [7]).

2 Definitions and Preliminaries

Let n be a non negative integer and X be a real vector space of dimension
d > n (d may be infinite). A real-valued function ||.,...,.|| from X" into R
satisfying the following conditions:

(1) ||z1, 22, ..., zn|| = 0 if and only if x4, xa, ..., z, are linearly dependent,

(2) ||z1, 22, ..., x| is invariant under permutation,

(3) |laxr, w2, ..., p || = |e||z1, T2, ..y 2y ]|, for any a € R,

(4) ||l + T, 22, ..., Tal| < |2y 22, ooty X0 || + ||T, T2, -y T ]

is called an n-norm on X and the pair (X, ||., ..., .]|) is called an n-normed space.

A trivial example of an n-normed space is X = R", equipped with the
Euclidean n-norm ||z1, za, ..., ,||g = the volume of the n-dimensional paral-
lelepiped spanned by the vectors x1, x2, ..., , which may be given expicitly by
the formula

||{E1,.’E2, 7xn||E = Idet(‘rlj” = abs (dEt(< Li, T >))7

where z; = (41, X2, .., Ty ) € R™ for each i = 1,2,3...,n.

Let (X,]||.,...,.]|]) be an n-normed space of dimension d > n > 2 and
{a1,as, ..., a,} be alinearly independent set in X. Then the function ||., ..., .||co
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from X™~! into R defined by

|21, X2y ooy Tn—1]]oo = 11;1?5(71{“351,332, oy T, @3]}
defines an (n — 1)-norm on X with respect to {a1, as,...a,} and this is known
as the derived (n — 1)-norm (for details see [13]).
The standard n-norm on a real inner product space of dimension d > n is
as follows:
|21, T2, ooy 2|5 = [det(< 24,25 >)]2,

where <, > denotes the inner product on X. If we take X = R"™ then this n-
norm is exactly the same as the Euclidean n-norm ||x1, z2, ..., £, || g mentioned
earlier. For n =1 this n-norm is the usual norm ||z1|| = /< x1, 1 > (for fur-
ther details see [13]).

Definition 2.1. A sequence (xj) in an n-normed space (X, ||.,...,.||) is
said to be convergent to £ € X with respect to the n-norm if for each € > 0
there exists an positive integer ng such that ||zg — £, 21, 22, ..., 2n—1|| < &, for
all k > ng and for every z1, 29, ..., 2,1 € X.

Definition 2.2. A sequence (z) in an n-normed space (X, ||.,....,.]|) is
said to be Cauchy with respect to the n-norm if for each ¢ > 0 there exists
a positive integer ng = ng(e) such that ||zx — zm, 21, 22, ..., 2n—1|| < &, for all
k,m > ng and for every 21,29, ..., 2,1 € X.

If every Cauchy sequence in X converges to some ¢ € X, then X is said
to be complete with respect to the n-norm. Any complete n-normed space is
said to be an n-Banach space.

Definition 2.3. A sequence () in an n-normed space (X,||.,....,.||) is
said to be statistically-convergent to some ¢ € X with respect to the n-norm
if for each € > 0 the set {k € N : ||xx — £, 21, 22, ..., 2n—1]| > €} has natural
density zero, for every z1, 2o, ..., 2,1 € X.

In other words the sequence (zy) statistical converges to £ an n-normed
space X if

1
lim —{k e N:||zx — 4, 21,22, .0, 2n_1]| > €}| =0,
m—oo m

for each 21,22,..., 2,1 € X. Let S™(X) denotes the set of all statistically
convergent sequences in n-normed space X.



A-STATISTICAL CONVERGENCE IN n-NORMED SPACES 145

Recently, Giirdal and Pehlivan [16] studied statistical convergence in 2-
normed spaces. B.S. Reddy [25] extended this idea to m-normed space and
studied some properties.

In the present paper we study A-statistical convergence in n-normed spaces.
We show that some properties of A-statistical convergence of real numbers
also hold for sequences in n-normed spaces. We find some relations related to
statistical convergent, A-statistical convergent sequences, (C,1)-summability
and strong (V, A)-summability in n-normed spaces.

3 A-statistical convergent sequences in n-normed space
X

In this section we define A-statistically convergent sequences in n-normed linear
space X. Also, we obtained some basic properties of this notion in n-normed
spaces.

Definition 3.1. A sequence z = () in an n-normed space (X, ||., ..., .||)
is said to be A-satistically convergent or Sy-convergent to ¢ € X with respect
to the n-norm if for every e > 0

1
li

im
m—oo A\,

{k € L : [lx — £, 21, 22, oo 201 > €} =0,

. . . SN
for each z1, 29, ..., zn—1 € X. In this case we write ST —limz = £ or (z3) = ¢
) PREIEY] A

and
SIN(X)={x = (1) : ILER, SN —limz = (}.

Let STV (X) denotes the set of all A-statistically convergent sequences in the
n-normed space X.

Definition 3.2. A sequence z = (z}) in an n-normed space (X, ||.,...,.||)
is said to be (V, \)-summable to £ € X with respect to the n-norm if

tm(z) = €, as m — oo.

If A, = m, then (V, A)-summability reduces to (C, 1)-summability with respect
to the n-norm. We write

1 m
[C, )\]RN(X) = {J} = ($k) :dle R’n}E;noo E Z ka - K, 21, ...,Zn_1|| = 0}
k=1
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and

1
[V, A" (X) = {x = (z):3LER, lim — > Mk =421, e 2na|] = o}

™ k€l
for the sets of X-valued sequences x = (xj) which are strongly Cesaro
summable and strongly (V, \)-summable to £ with respect to the n-norm, i.e.,

nN nN
(zk) [Ci> ¢ and (zy) [Vi £, respectively.

Theorem 3.1. Let X be an n—normed space and X\ = (\,) € A. If (xx)
s a sequence in X such that S;\‘N — limxy, = £ exists, then it is unique.

Proof. Suppose that there exist elements ¢1,¢5 (¢1 # £5) in X such that
Sf\LN — lim xy :Kl;Sf\LN — lim xp = 4s.
k—o0 k—o0

Since £1 # £, then ¢1 — £5 # 0, so there exist 21, 29, ..., 2,1 € X such that
ly — 0y and 21, 29, ..., 2,1 are linearly independent. Therefore,

HZI — €272’1,2’2, ...Zn_1|| =2e>0.

Since Sf\LN —limy_yoo 1, = ¢1 and S}}N — limy_, oo x = #5 it follows that
li 71 |{k || -4 ||>7 }|—0
im el :|lx y 21y R1y e RBm— €
\ k 1,21, %1 1

and )
W}gnooﬂ\{k € It ||k — la, 21, 22, ..2n—1]| > €} = 0.

There is k € I, such that

llzk — €1, 21, 21, o 2n—1|| < € and ||z — la, 21, 21, ... 2n—1|] < &.
Further, for this k we have
[[61—0Ca, 21, 21, 21| < ||Tp—01, 21, 21, - 2n—1]||FH||xp—C2, 21, 21, o 2n—1]| < 2¢
which is a contradiction. This completes the proof.

The next theorem gives the algebraic characterization of A-statistical con-
vergence on n-normed spaces.
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Theorem 3.2. Let X be an n-normed space, A = (\,) € A, x = (x1) and
y = (yr) be two sequences in X.
(a) If SN —limg—yo0o zx = £ and c(# 0) € R, then S — limy o0 cxy, = L.
() If SN —limgseoxr = €1 and SN — limgoo yp = Lo, then SPY —
limg o0 (2k + yr) = €1 + Lo,

Proof of the theorem is straightforward, thus omitted.

Theorem 3.3. SV(X) Nl (X) is a closed subset of loo(X), if X is an
n-Banach space.

Proof. Suppose that (z%)en, ' = (mi)k N, 1S a convergent sequence
in SPV(X) Nl (X) converging to z = () € € ( ). We need to prove

that z € SPN(X) N £oo(X). Assume that (%) 2N ¢;, for all i € N. Take
a positive decreasing convergent sequence (g;);en, where £; = 57, for a given
e > 0. Clearly (g;);en converges to 0. Choose a positive integer 7 such that
|z — 2%, 21, 225 ooy Zn—1]|oo < &, for every 21, 22, ..., 2,1 € X. Then we have

"}gnoo*\{k € L« [|x), = Lis 21, 22, ooy 2 || > }| =0
and
s
lim —|{k el, ||ac”r1 — L1, 21522, cey Zn—1]|| = l+1}| =0.
m—oo 4
Since,
1 . .
7‘{/@‘617” : ||x2—€i,21722,...,zn_1\|2—1 V
Am 4
) s
||$7i€+1 _67;-1,-172'1,22,.-.,2’”_1” > %1}‘ <1

and for m € N

) £
{kEImI||$}C—€i721,22,...,2n,1||EZZ} n

is infinite. Hence there must exists a k € I,,, for which we have simultaneously,

51+1
4

szf&,zl,z%...,zn_lﬂ<ZZ and Hx’g‘—l*gi_‘_l,Zl,ZQ, s Zn—1]| <
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Then it follows that
||£Z - Ei-‘rl? 21522y eeey Z’VL—1||
i+1

< ||€’L - 132,2’1,22, "'ZTL—1H =+ ||1‘;€ -z y 15 22, ---Zn—1||+

+||£CZ+1 — Ei-{-la 21,22, ~-~Zn—1H

S HJZ;C — éi,Zl,Zg, --~Zn—1|| + H.Z‘;:rl - €i+1,21,22, ---Zn—1||

+1

o = ', 21, 22, o 2n—1l|oe + |2 — 2", 21, 22, 21 oo

i, Citl € Eitl
STt Tit
This implies that (¢;) is a Cauchy sequence in X and there is an element £ € X

< gj.

S'n.N
such that ¢; — ¢ as i — co. We need to prove that (zy) = .

For any ¢ > 0, choose 7 € N such that ¢; < ,

3 9

[|zk —xi,zl,z%...,zn,lﬂoo < 7 [1€: — €, 21, 22, ooy Zn—1]| < T
Then

1
1R € T sl = 21, 22 s 2 [ 2 €}
m

1 )
< )\7|{k} S Im : Hx}c — &‘,Zl,Zg,...,Zn,1||
m

+||£L'k - xfmzl;ZQ? "'7ZTL—1HOO + HE’L - 67 21522, "',Zn—1|| 2 6}'

1 .
< MR € Tt llok = 21,220zl 4 3 + 5 2 )

1 ; €
< —WEkeln:||lo), —li, 21,22, 2n—1]] = =} = 0 as m — 0.
Am 2

STLN
This gives that (2;) = ¢, which completes the proof.

Theorem 3.4. Let X be an n-normed space and let A = (A\y,) € A. Then

@) (@) "2 0= () B g

(ii) [V, \"N(X) is a proper subset of SV (X),

nN nN nN
(iil) & € £oo(X) and (xx) LN L, then (xy) VA ¢ and hence (k) ey l,

provided x = (xy,) is not eventually constant,

(V) STV (X) N loo(X) = [V, A" M (X) N Lo (X).

. AN .
Proof. (i) If ¢ > 0 and (z) = ¢, we can write
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Z ||fEk _€7zlaz27"'72n71” >

kel,,
= E ||zk‘_£7zlaz27"'7zn—1” >
k€L, ||z —€,21,22,....2n—-1]| 2€

> 5|{k €1y : ka — 4, 21, 22, -~-Zn—1|| > 5}|

and so

1
57 kafga'zl)ZQv'“azn—l” Z
™ kel

1
)\—|{k €y ||lwk — 4,21, 22, ooy 2n—1|| = €}
m
This proves the result.

(ii) In order to establish that the inclusion [V,A\]"V(X) c SPN(X) is
proper, we define a sequence x = (zy) by

vy — k, ifm—[VAn]+1<k<m;
7 o, otherwise.

Then z ¢ ¢, and for every ¢ > 0(0 < ¢ < 1),

1 Vm
A Z ||xk_07217227"'72n71||S[Ai"l}_)o, as m — 00,
™ el m

nN
ie. (xg) %5 0. On the other hand,

1
T|{k € Im : ||zk 707217223"'3'3%—1” > €}|*> o0, as m — 00,
m

i.e. (1) does not converge to 0 in [V, A\]"V(X).

nN
(iii) Suppose that (zy) %, ¢ and (2k) € £o(X). Then there exists a M > 0
such that ||z — ¢, 21, 22, ...2n—1]| < M for all k € N. Given ¢ > 0, we have

1
oW Z llzk — €, 21, 22, 0 21| =
™ kel

1
A Z ||xk_£721,227.,,72n71”

m
k€L, ||k —£,21,22,....2n—1||>§
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1
+ Z Hwk*gazlaz%'“azn—lH
M k€L || —L,21,22, 20— 1]|< 5

M € €
S EHk S I’m : ||1‘k _gazlyzfév'“vzn—l” Z §}| + 57

nN
This shows that (x) WART

Again, we have

1 m
E Z ||£Ck - & 215225 ey Zn71||
k=1

1 m—Am 1
< — Z ka_€7217227"‘72n71||+* Z ||xk_é721,2«'2,...,2n,1||
k= ™ et

1
ka - €7 21, %2, "'7Zn71|| + )\7 Z ||$k - 67 21,22, 'sznle
k=1 M kel

2
< 5 D ek =z, 22 2|
m
k€l

nN nN
Hence (xx) 1 £, because (zy) VAR

(iv) This is an immediate consequence of (i), (i) and (iii).

Theorem 3.5. Let X be an n-normed space and let A\ = (A\,) € A. Then
SPN(X) C SEN(X) if and only if liminf,, 2= > 0.

m

Proof. Suppose first that liminf,, )‘—T > 0. Then a given € > 0, we have

™m

1
El{k <m:|lzk — ¥, 21,22, Zn-1]] > €}

1
EHk € Ly i ||z — 4, 21, 22, ooy Zn—1]|| > €} >

%

Am 1
HTHk € It ||wk — 4,21, 22, oy 21| > €.

nN nN
It follows that (xy) ERNYEN (k) %, 0. Hence SN(X) c SIN(X).
Conversely, suppose that liminf,, % = 0. Then we can select a subse-
quence (m(j))32; such that
Am@) 1

m(j) J
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We define a sequence = = (z3,) as follows:

. 1, ikaIm(j),j:1,2,3,...;
=900, otherwise.

Then =z is statistically convergent, so x € S™V(X). But = ¢ [V, \]"V(X).
Theorem 3.4(iii) implies that ¢ StV (X). This completes the proof.

Theorem 3.6. Let X be an n-normed space and let X = (Ay,) € A such
that lim,, 2= = 1. Then SFM(X) C S"N(X).

Am

Proof. Since lim,, £ = 1, then for ¢ > 0, we observe that

1
EHk <m:|lzk — ¥, 21,22, Zn-1]] = €}

1
< E‘{k <m— Ayt |oe — 4,21, 20, 00y Zn 1] > €}
1
+E‘{k € Im : ||.’Ek 767 213227"'72n—1|| > 5}|
m— A\ 1
< — 4+ —Wk€ly:|lox—4 21,22, s 2n-1]|| > €}
m m
m— A\ Am 1
e LS ﬁﬂ“k € Lyt |zk — 4, 21, 22, ooy Zn—1]| = €}-

This implies that (z) is statistically convergent, if () is A-statistically
convergent. Hence STV (X) c S"V(X).

Remark: We do not know whether the condition lim,, %ﬂ = 1 in the
Theorem 3.6 is necessary and leave it as an open problem.

Acknowledgements: The authors thank the referees for their comments
which improved the presentation of the paper.
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