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General actions of hyperstructures and some
applications

Jan Chvalina, Šárka Hošková-Mayerová and A. D. Nezhad

Abstract

The aim of this paper is to investigate useful generalizations of the
classical concept of a quasi-automaton without outputs or a discrete
dynamical system, which are also called actions of semigroups or groups
on given phase sets. The paper contains also certain applications of
presented concepts and examples from various areas of mathematics.

1 Introduction

The paper is devoted to investigation of a certain generalization of quasi-
automata (called also automata without outputs), which are in fact discrete
dynamical systems and to some of their applications. In section 2 and 3 we give
some basic definitions and then, we consider three types of actions. In section 4
we present some applications. Moreover in section 5 there are described some
applications of formerly investigated hyperstructures and corrected certain
mistake from [11]. In connection with non-deterministic automata, or with
multifunctions (relations) on algebraic structures and topological spaces seems
to be natural to investigate actions of multistructures on sets of various objects.
Some motivating factors come from the general system theory [8, 18]; one
illustrating example below is based on the concept of a general time system. In
this connection in [5, 6] there are investigated various types of binary relations
and hyperstructures.
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2 Preliminaries

We use [4, 7, 12] for terminology and notations which are not defined here. We
suppose that the reader is familiar with some useful notation in hyperstructure
theory and other related concepts. What follows now are some definitions and
propositions in the theory of hyperstructure which we need for formulation of
our results and in the proofs of our main results.
For an arbitrary x from an ordered set H we denote by [x)≤ = {y ∈ H | x ≤ y}
the upper end generated by x.

The following lemma is called Ends Lemma.

Lemma 2.1. [2, 19] Let (H, ◦,≤) be an ordered semigroup. Let a⋆b = [a◦b)≤
for any a, b ∈ H. The following conditions are equivalent:

1) For any pair a, b ∈ H there exists a pair c, d ∈ H such that b ◦ c ≤ a,
c ◦ d ≤ a.

2) The hypergroupoid (H, ⋆) associated with (H, ◦,≤) satisfies the associa-
tivity law and the reproduction axioms, i.e., (H, ⋆) is a hypergroup.

Dually we can define the Beginnings Lemma:

Lemma 2.2. [2] Let (H, ◦,≤) be an ordered semigroup. Let a ⋆ b = (a ◦ b]≤
for any a, b ∈ H. The following conditions are equivalent:

1) For any pair a, b ∈ H there exists a pair c, d ∈ H such that b ◦ c ≥ a,
c ◦ d ≥ a.

2) The hypergroupoid (H, ⋆) associated with (H, ◦,≤) satisfies the associa-
tivity law and the reproduction axioms, i.e., (H, ⋆) is a hypergroup.

Quasi-order hypergroups have been introduced and studied by J. Chvalina.
The following definition can be found e.g. in [4, 19, 20].

Definition 2.3. A hypergroup (H, ⋆) such that the following conditions are
satisfied:

1) a ∈ a2 = a3 for any a ∈ H,

2) a ⋆ b = a2 ∪ b2 for any pair a, b ∈ H is called a quasi-order hypergroup.
If moreover the unique square root condition:

3) a, b ∈ H, a2 = b2 implies a = b

is satisfied then (H, ⋆) is called an order hypergroup.
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Definition 2.4. [16] A hypergroup (G, ⋆) is called a transposition hypergroup
if it satisfies the transposition axiom: For all a, b, c, d ∈ G the relation b \ a ∩
c/d ̸= ∅ implies a ⋆ d∩ b ⋆ c ̸= ∅. The sets b \ a = {x ∈ G|a ∈ b ⋆ x}, c/d = {x ∈
G|c ∈ x ⋆ d} are called left and right extensions, respectively.

Definition 2.5. [12, 13, 14] Let X be a set, (G, •) be a (semi)hypergroup and
π : X ×G→ X a mapping such that

π(π(x, t), s) ∈ π(x, t • s), where π(x, t • s) = {π(x, u);u ∈ t • s)} (2.1)

for each x ∈ X, s, t ∈ G. Then (X,G, π) is called a discrete transformation
(semi)hypergroup or an action of the (semi)hypergroup G on the phase set X.
The mapping π is usually said to be simply an action. The condition (2.1) is
called Generalized Mixed Associativity Condition, shortly GMAC.

3 General hyperstructures

Throughout this paper, the symbolX,Y will denote two non-empty sets, where
P ∗(X ∪ Y ) denotes the set of all non-empty subsets of X ∪ Y .

A general hyperstructure is formed by two non-empty sets X,Y together
with a hyperoperation,

∗ : X × Y −→ P ∗(X ∪ Y ), (x, y) 7→ x ∗ y ⊆ (X ∪ Y )r ∅.

Remark. A general hyperoperation ∗ : X × Y −→ P ∗(X ∪ Y ) yields
a map of powersets determined by this hyperoperation. Thus the map ⊗ :
P ∗(X)× P ∗(Y ) −→ P ∗(X ∪ Y ) is defined by A⊗B =

∪
a∈A,b∈B

a ∗ b.

Conversely an general hyperoperation on P ∗(X)× P ∗(Y ) yields a general
hyperoperation on X × Y , defined by x ∗ y = {x} ⊗ {y}.

In the above definition if A ⊆ X, B ⊆ Y, x ∈ X, y ∈ Y, then we define,

A ∗ y = A ∗ {y} =
∪
a∈A

a ∗ y, x ∗B = {x} ∗B =
∪
b∈B

x ∗ b,

A⊗B =
∪

a∈A,b∈B

a ∗ b.

If X = Y = H, then we obtain the classical hyperstructure theory.
The concept of general hyperstructure with a hyperoperation which is a

mapping ∗ : X × Y −→ P ∗(X ∪ Y ) mentioned above (used by A. Dehghan
Nezhad and R. S. Hashemi, see [9]) allows straightforward generalization onto
case of “hyperoperation of an arbitrary finite arity” in the following way:
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Definition 3.1. Let n ∈ N be an arbitrary positive integer, n ≥ 1. Let
{Xk ; k = 1, . . . , n} be a system of non-empty sets. By a general n-hyper-
structure we mean the pair ({Xk ; k = 1, . . . , n}, ∗n), where

∗n :
n∏
k=1

Xk → P∗
( n∪
k=1

Xk

)

is a mapping assigning to any n-tuple (x1, . . . , xn) ∈
n∏
k=1

Xk a non-empty

subset ∗n(x1, . . . , xn) ⊂
n∪
k=1

Xk .

Similarly as above, with this hyperoperation there is associated a map-

ping of power sets ⊗n :
n∏
k=1

P∗(Xk ) → P∗
( n∪
k=1

Xk

)
defined by ⊗n(A1, . . . , An)

=
∪{

∗n(x1, . . . , xn); (x1, . . . , xn) ∈
n∏
k=1

Ak

}
. This construction is based on an

idea of Nezhad and Hashemi [9] for n = 2. Hyperstructures with n-ary hyper-
operations are investigated among others in [21].

The results presented below are in a close connections with [7].

Example 3.2. Let J ⊂ R be an open interval, Cn(J) be the ring (with
respect to usual addition and multiplication of functions) of all real functions
f : J → R with continuous derivatives up to the order n ≥ 0 including. Denote

L(p0 , p1, . . . , pn−1) : Cn(J) → Cn(J)

the linear differential operator defined by

L(p0 , p1, . . . , pn−1)(y) =
dny(x)

dxn
+

n−1∑
s=0

ps(x)
dsy(x)

dxs

where y ∈ Cn(J) and ps ∈ Cn(J), s = 0, 1, . . . , n − 1. In accordance with [1]
we put

LAn(J) = {L(p0 , . . . , pn−1); pk ∈ Cn(J)}.

Instead of L(p1,0, p1,1, . . . , p1,n−1) we write L(p⃗1). We put L(p⃗1) ≤ L(p⃗2)
whenever
L(p⃗j) = L(pj,0, . . . , pj,n−1), j = 1, 2, p1,s(x) ≤ p2,s(x), s = 0, 1, . . . , n − 1,
x ∈ J and p1,0(x) ≡ p2,0(x). Defining

∗n
(
L(p⃗1), L(p⃗2), . . . , L(p⃗n)

)
=

n∪
k=1

{L(p⃗) ∈ LAk (J);L(p⃗k ) ≤ L(p⃗)}
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for any n-tuple
(
L(p⃗1), L(p⃗2), . . . , L(p⃗n)

)
∈

n∏
k=1

LAk (J) we obtain that

L(n) =
(
{LAk (J); k = 1, 2, . . . , n}, ∗n

)
is a general n-hyperstructure.

Of course, LA1(J) is the set of all first-order linear differential operators
of the form L(p0)(y) = y′(x) + p0(x)y, where p0 ∈ C(J) and y ∈ C1(J).
Evidently LAj(J) ∩ LAk (J) = ∅ whenever j ̸= k.

It is to be noted that if k,m ∈ {1, 2, . . . , n} are fixed different integers then
setting X = LAk (J), Y = LAm(J) we obtain from the above construction an
example of a general hyperstructure in sense of Nezhad and Hashemi [9]. If,
moreover X = Y = LAn(J) then the resulting general hyperstructure is an
order hypergroup of linear differential n-order operators in the sense of e.g. [1].

Definition 3.3. Let G1(n) =
(
{Xk ; k = 1, . . . , n}, ∗n

)
, G2(n) =

(
{Yk ; k =

1, . . . , n}, •n
)
, be a pair of general n-hyperstructures. By a good homomor-

phism H : G1(n) → G2(n) we mean any system of mappings H = {hk : Xk →
Yk} such that the following diagram is commutative:

∏
Xk

∗n−−−−→ P∗( n∪
k=1

Xk

)
n∏

k=1

hk

y yφ♯∏
Yk

•n−−−−→ P∗( n∪
k=1

Yk )

(D1)

Here
n∏
k=1

hk (x1, x2 , . . . , xn) =
(
h1(x1), h2(x2), . . . , hn(xn)

)
for any n-tuple

(x1, x2 , . . . , xn) ∈
n∏
k=1

Xk and φ♯ : P∗( n∪
k=1

Xk ) → P∗( n∪
k=1

Yk ) is the lifting

of a mapping φ :
n∪
k=1

Xk →
n∪
k=1

Yk defined by the induction. For x ∈ X1 we

put φ(x) = h1(x). Suppose φ :
k∪
j=1

Xj →
k∪
j=1

Yj is well-defined. Then for any

x ∈ Xk+1\
k∪
j=1

Xj we put φ(x) = hk+1(x).

As a certain generalization of the general n-hyperstructure from Exam-
ple 3.2 we will construct the following structure:

Example 3.4. Consider a system of pairwise disjoint ordered sets (Xk ,≤k ),
k = 1, 2, . . . , n, (where n is a given positive integer) and for x ∈ Xk let us
denote [x)k = {y ∈ Xk ;x ≤k y}, i.e. [x)k is the principal end generated by
the element x within the ordered set (Xk ,≤k ). Further, put
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∗n(x1, x2 , . . . , xn) =
n∪
k=1

[xk )k

for any n-tupple ∗n(x1, x2 , . . . , xn) ∈
n∏
k=1

Xk . Then ∗(x1, x2 , . . . , xn) ⊆
n∪
k=1

Xk ,

thus G(n) =
(
{Xk ; k = 1, . . . , n}, ∗

)
is a general n-hyperstructure in the sense

of the above definition. If H(n) =
(
{Yk ; k = 1, . . . , n}, •n

)
is a general n-

hyperstructure such that (Yk ,≼k ), k = 1, . . . , n are pairwise disjoint ordered
sets and

•n(y1, y2 , . . . , yn) =
n∪
k=1

[yk )k ⊆
n∪
k=1

Yk

for any n-tuple (y1, y2 , . . . , yn) ∈
n∏
k=1

Yk we consider a system hk : (Xk ,≤k )

→ (Yk ,≼k ), k = 1, . . . , n, of strongly isotone mappings, i.e. for any x ∈
Xk there holds hk

(
[xk )k

)
=

[
hk (xk )

)
k
, k = 1, . . . , n. Then denoting H =

{hk : Xk → Yk ; k = 1, . . . , n} we obtain that H is a good homomorphism
of the general n-hyperstructure G(n) into the general n-hyperstructure H(n).

Indeed, consider an arbitrary n-tuple (x1, x2 , . . . , xk ) ∈
n∏
k=1

Xn . As above

denote by φ : P∗
( n∪
k=1

Xk

)
→ P∗

( n∪
k=1

Yk

)
the lifting of the mapping φ :

n∪
k=1

Xk

→
n∪
k=1

Yk induced by the system {hk : Xk → Yk ; k = 1, . . . , n}—here in such

a way that φ|Xk = hk . Then for any n-tupple (x1, x2 , . . . , xn) ∈
n∏
k=1

Xk we

have

φ
(
∗n(x1, x2 , . . . , xn)

)
= φ

( n∪
k=1

[xk )k

)
=

n∪
k=1

φ
(
[xk )k

)
=

n∪
k=1

hk
(
[xk )k

)
=

n∪
k=1

[
hk (xk )k

)
= •n

(
h1(x1), . . . , hn(xn)

)
= •n

(( n∏
k=1

hk
)
(x1, x2 , . . . , xn)

)
,

i.e. φ ◦ ∗n = •n ◦
n∏
k=1

hk , thus the diagram D2 is commutative.
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∏
Xk

∗n−−−−→ P∗( n∪
k=1

Xk

)
n∏

k=1

hk

y yφ♯∏
Yk

•n−−−−→ P∗( n∪
k=1

Yk )

(D2)

From the above example there follows immediately the following assertion.

Proposition 3.5. Let (Xk,≤k), k = 1, . . . , n, (Yk,≼k), k = 1, . . . , n, be two
collections of pairwise disjoint ordered sets and G(n), H(n) be corresponding
n-general hyperstructures. Suppose (Xk ,≤k ) ∼= (Yk ,≼k ) for each k = 1, . . . , n
and hk : (Xk ,≤k ) → (Yk ,≼k ) are corresponding order-isomorphisms. Then
we have G(n) ∼= H(n).

The following text is a generalization of e.g. [3]. Suppose u1, . . . , un ∈
Cn(J) is a linearly independent system of functions. Denote by V (u1, . . . , un)
the n-dimensional vector space generated by the base u1, . . . , un , i.e.

V (u1, . . . , un) =
{ n∑
k=1

ckuk ; ck ∈ R, k = 1, . . . , n
}
.

The system u1, . . . , un can be considered as a fundamental system of solutions
of a differential equation

y(n)(x) +

n−1∑
k=0

pk (x)y
(k)(x) = 0 (3.1)

where

pk (x) =
Dk [u1, . . . , un ]

W [u1, . . . , un ]
, k = 1, . . . , n− 1.

Here, W [u1, . . . , un ] is the Wronski determinant of the system and
Dk [u1, . . . , un ] are corresponding subdeterminants of the determinant

W [y1, . . . , yn ] =

∣∣∣∣∣∣∣∣∣
u1 u2 . . . un y
u′1 u′2 . . . u′n y′

...
...

...

u
(n)
1 u

(n)
2 . . . u

(n)
n y(n)

∣∣∣∣∣∣∣∣∣ .
It has been mentioned in papers contained in References that one of sig-

nificant result of the general theory of linear differential homogeneous equa-
tions is the fact that there is one-to-one correspondence between the sys-
tem LAn(J) of all linear ordinary differential operators of the form (3.1) and



66 Jan Chvalina, Šárka Hošková-Mayerová and A. D. Nezhad

the system VAn(J) of solution spaces of corresponding differential equations
L(p0 , . . . , pn−1)y = 0, L(p0 , . . . , pn−1) ∈ LAn(J). So, in what follows we will
suppose that LAk(J) is the system of n-th order linear ordinary differential
operators L(p0 , . . . , pk−1), with p0(x) > 0 for all x ∈ J , k = 1, 2, . . . , n and
VAn(J) is the corresponding system of solution spaces of differential equations
L(p0 , . . . , pk−1)y = 0. Using the following specification of the binary opera-
tion considered in papers [1] and elsewhere we turn out the system VAn(J),
k = 1, 2, . . . , n into a noncommutative group. In detail, for L(p0 , . . . , pk−1),
L(q0 , . . . , qk−1) ∈ LAk(J) we define for x ∈ J , j = 1, 2, . . . , k − 1

L(p0 , . . . , pk−1) · L(q0 , . . . , qk−1) = L(φ0 , . . . , φk−1),

where φ0(x) = p0(x)q0(x), φj(x) = p0(x)qj(x) + pj(x). Then we obtain that
VAn(J) is a noncommutative group for k = 1, 2, . . . , n.

Now using the just defined operation we can endow the system VAn(J) by
corresponding binary operation in this way:

For an arbitrary pair of spaces V (u1, . . . , uk ), V (v1, . . . , vk ) ∈ VAn(J),
there are uniquely determined operators

L(p0 , . . . , pk−1) = Φ−1
k

(
V (u1, . . . , uk )

)
, L(q0 , . . . , qk−1) = Φ−1

k

(
V (v1, . . . , vk )

)
,

k = 1, 2, . . . , n, where Φk : LAk(J) → VAk(J) are the above mentioned bijec-
tions. Defining

V (u1, . . . , uk ) · V (v1, . . . , vk ) = Φk
(
L(p0 , . . . , pk−1) · L(q0 , . . . , qk−1)

)
,

we obtain VAk(J) is a noncommutative group, thus Φk : LAk(J) → VAk(J)
is a group-isomorphism, k = 1, 2, . . . , n. Notice, that for any pair of different
integers k,m ∈ N we have VAk(J)∩VAm(J) ̸= ∅ as well as LAk(J)∩LAm(J) ̸=
∅.

Definition 3.6. Let G(n) =
( n∏
k=1

Xk , ∗n ,P∗( n∪
k=1

Xk

))
, H(n)

=
( n∏
k=1

Yk , •n ,P∗( n∪
k=1

Xk

))
be general n-hyperstructures, F = {fk : Xk →

Yk ; k = 1, 2, . . . , n} be the system of mappings satisfying the conditions

•n(y1, . . . , yn) = φ
(
∗n

(
f−1
1 (y1), . . . , f

−1
n (y1)

))
⊆

n∪
k=1

Yk ,

where φ is determined by F (i.e. φ(x) = f1(x) for x ∈ X1 and supposing

φ(x) is defined for x ∈ Xj then φ(x) = fj+1(x) for x ∈ Xj+1\
j∪

m=1
Xm). Then

the hyperoperation •n is termed as the hyperoperation associated with the
hyperoperation ∗n .
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Theorem 3.7. Let n ∈ N be a positive integer, J ⊆ R be an open interval. If

L(J ;n) =
( n∏
k=1

LAk (J), ∗n ,P∗( n∪
k=1

LAk (J)
))

is the general n-hyperstructure of ordinary linear differential operators and

S(J ;n) =
( n∏
k=1

VAk (J), •n ,P∗( n∪
k=1

VAk (J)
))

is the general n-hyperstructure of solution spaces of linear ordinary homoge-
neous differential equations associated with L(J ;n), then we have

L(J ;n) ∼= S(J ;n),

i.e. in the commutative diagram

n∏
k=1

LAk (J)
∗n−−−−→ P∗

( n∪
k=1

LAk (J)
)

n∏
k=1

Φk

y yφ♯

n∏
k=1

VAk (J)
•n−−−−→ P∗

( n∪
k=1

VAk (J)
) (D3)

arrows
n∏
k=1

Φk , φ
♯ are bijections.

Proof. By [1] we have Φk : LAk (J) → VAk (J) is a group-isomorphism for

any k = 1, 2, . . . , n thus
n∏
k=1

Φk :
n∏
k=1

LAk (J) →
n∏
k=1

VAk (J) is a bijection.

Since {LAk (J); k = 1, 2, . . . , n}, {VAk (J); k = 1, 2, . . . , n} are pairwise disjoint
families we have that the mapping φ :

n∪
k=1

LAk (J) →
n∪
k=1

VAk (J) such that

φ|LAk (J) = Φk is a well-defined bijection hence the bijection P∗
( n∪
k=1

LAk (J)
)
→

P∗
( n∪
k=1

VAk (J)
)
is also well-defined.

Now, for an arbitrary n-tuple (L1, · · · , Ln) ∈
n∏
k=1

LAk (J) we obtain that

•n
(( n∏

k=1

Φk
)
(L1 , · · · , Ln)

)
= •n

(
Φ1(L1), · · · ,Φn(Ln)

)
= •n(V1 , · · · , Vn) =

= φ
(
∗n

(
Φ−1

1 (V1), · · · ,Φ−1
n (Vn)

))
= φ♯

(
∗n(L1 , · · · , Ln)

)
,
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since the hyperoperation “•n” is associated with the hyperoperation “∗n” .
Therefore the diagram D3 in Theorem 3.7 is commutative.

Let
{
(Sk , ·,≤k ); k = 1, 2, · · · , n

}
be a system of quasi-ordered semigroups.

Define a mapping ⊙n :
n∏
k=1

Sk → P∗
( n∪
k=1

Sk

)
by the rule

⊙n(x1 , . . . , xn) =
n∪
k=1

[x2k )≤k

for any n-tuple (x1 , . . . , xn) ∈
n∏
k=1

Sk . Then the general n-hyperstructure is

called the general n-hyperstructure determined by the Ends Lemma or shortly
EL-determined general n-hyperstructure.

Corollary of Theorem 3.7 Let n ∈ N be an integer, J ⊆ R be an

open interval. Let LEL(J ;n) =
( n∏
k=1

LAk (J), ∗n ,P∗( n∪
k=1

LAk (J)
))

be the

EL-determined general n-hyperstructure of all linear ordinary differential op-
erators of all orders k = 1, 2, · · · , n.
Let SEL(J ;n) =

( n∏
k=1

VAk (J), ∗n ,P∗( n∪
k=1

VAk (J)
))

be the EL-determined

general n-hyperstructure of solutions of homogeneous linear ordinary differen-

tial equations Ly = 0, L ∈
n∪
k=1

LAk (J). Then LEL(J ;n) ∼= SEL(J ;n).

In the above construction we can use a finite sequence of positive inte-
gers {m1,m2, . . . ,mn} and then define the n-hyperoperation⊙n(x1 , . . . , xn) =
n∪
k=1

[xmk

k )≤k
for any n-tuple (x1 , . . . , xn) ∈

n∏
k=1

Sk.

4 General R-hyperstructures (or L-hyperstruc-
tures)

Definition 4.1. A general Right hyperstructure (or Left hyperstructure) is
the quadruple (X,Y,P∗(X), ∗R) or (X,Y,P∗(X), ∗L), shortly general R-hyper-
structure or general L-hyperstructure, where X,Y ̸= ∅ and

∗R : X × Y −→ P ∗(X) or ∗L : X × Y −→ P ∗(Y )

(x, y) 7→ x ∗R y ⊆ X, (x, y) 7→ x ∗L y ⊆ Y.

The set of points YRx = {x ∗R y : y ∈ Y } that can be reached from a given
point x ∈ X by the R-hyperoperation of two non-empty sets X,Y , is called
the R-hyperorbit of x.
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Example 4.2. Let X ̸= ∅ be an arbitrary set, f : X → X be a mapping, i.e.
the pair (X, f) is a monounary algebra. Put Y = N (the set of all positive in-

tegers) and define ∗fR : X×Y → P∗(X) by the rule x∗fRn = {fk(x); k ∈ N, n ≤
k}. Then the quadruple (X,Y,P∗(X), ∗fR) is a general Right hyperstructure,
i.e. R-hyperstructure. (Here, fk is the k-th iteration of f).

Example 4.3. Let T be a linearly ordered set (i.e. a chain) with the least
element. Then T is called a time scale or time axis. Suppose A ̸= ∅ ̸= B are
arbitrary sets and S is a binary relation between sets of mappings (impulses)
AT , BT , i.e. S ⊂ AT × BT . Then the triad (AT , BT , S) is called a general
time system with input space AT , the output space BT and with input-output
relation (or the transition relation) S—cf.[18]. Now, denote X = AT , Y = BT

and define ∗SL : X × Y → P∗(Y ) by x ∗SL y = S(x) = {u ∈ Y ;xS u} for any
pair of time-impulses x : T → A, y : T → B. Then we obtain the quadruple
(X,Y,P∗(X), ∗SL) which is a general Left hyperstructure, i.e. a general L-
hyperstructure.

4.1 L-hyperaction (or R-hyperaction) of a hyperstructure on a
non-empty set

In this section, we give two new definitions. Let us make our point clear with
an example.

Definition 4.4. Let (G, ⋆) be a hyperstructure and X be a non-empty set.
A generalized L-hyperaction of G on X is a L-hyperoperation ψ : G ×X −→
P∗(X) such that the following axioms are satisfied:

1) For all g, h ∈ G and x ∈ X, ψ(g ⋆ h, x) ⊆ ψ(g, ψ(h, x)),

2) For all g ∈ G, ψ(g,X) = X.

For any g ∈ G and A ⊆ X, ψ(g,A) =
∪
x∈A

ψ(g, x), also for any x ∈ X and B ⊆

G, ψ(B, x) =
∪
b∈B

ψ(b, x). If in the axiom 1) of definition the equality holds,

the corresponding generalized L-hyperaction is called strong. The generalized
R-hyperaction (eventually strong) is defined dually.

Example 4.5. Consider the set of n×n symmetric, positive definite matrices,
SPD(n). The group GL(n) = GL(n,R) hyperacts on SPD(n) as follows; for
all A ∈ GL(n) and all S ∈ SPD(n), A ∗ S = {ASAT , ATSA}.

It is easily checked that ASAT is in SPD(n) if S is in SPD(n). For every
SPD matrix S, can be written as S = AAT , for some invertible matrix A.
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Proposition 4.6. The map ψ is a generalized action of Syme(G) on G.

Proof. We have; ψ
(
s, ψ(r, g)

)
= ψ

(
s, r(< g >))

)
=

∪
i∈Z

ψ
(
s, r(gi)

)
=

∪
i∈Z

s(< r(gi) >) =
{
s
(
(r(gi))j

)
| i, j ∈ Z

}
and ψ(sr, g) = sr(< g >) ={

sr(gi) | i ∈ Z
}
=
{
s
(
r(gi)

)
| i ∈ Z

}
. This shows that ψ(sr, g) ⊆ ψ

(
s, ψ(r, g)

)
.

On the other hand, for all r ∈ Syme(G), we have

ψ(r,G) =
∪
g∈G

ψ(r, g) =
∪
g∈G

r(< g >) = G,

which completes the proof.

In the following proposition we will consider the classical interval binary
hyperoperation on a linearly ordered group, see [15]. In detail if (G, ·,≤) is a
linearly ordered group then we define a binary hyperoperation ∗ : G × G →
P∗(G) by

a ∗ b =
[
min{a, b}

)
≤ ∩

(
max{a, b}

]
≤ =

[
min{a, b},max{a, b}

]
≤

=
{
x ∈ G;min{a, b} ≤ x ≤ max{a, b}

}
(which is a closed interval) where min{a, b}, max{a, b} is the least element,
the greatest element of the set {a, b}, respectively. It is easy to verify that the
obtained hypergroupoid (G, ∗) is an extensive commutative hypergroup. This
hypergroup we obtain even in the case if we restrict ourselves onto the set G+

of all positive elements of the linearly ordered group (G, ·,≤), (cf. the proof
of Proposition 4.7).

Proposition 4.7. Let (G, ·,≤) be a linearly ordered group, G+ be its subset of
all positive elements (i.e. the positive cone) endowed with the interval binary
hyperoperation “∗L”. Define a mapping ψG : G+ ×G→ P∗(G) by

ψG(a, b) = (a+ b]≤ = {x ∈ G;x ≤ a+ b}

for all pairs (a, b) ∈ G+ × G. Then the quadruple
(
G+, G,P

∗(G), ψG
)
is the

generalized L-hyperoperation of the commutative extensive hypergroup (G, ∗L)
on the group (G,+,≤).

Proof. For any pair (a, b) ∈ G+ ×G+ we have

{a, b} ⊆
[
min{a, b},max{a, b}

]
≤ = a ∗L b = b ∗L a,
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thus (G+, ∗L) is a commutative extensive hypergroupoid. Further, consider an
arbitrary triad a, b, c ∈ G+. Without loss of generality we can suppose a ≤ b.
If a = c or b = c then evidently

(a ∗L b) ∗L c = [a, b]≤ = a ∗L (b ∗L c)

so, suppose a < b, a ̸= c ̸= b. Three cases are possible: (i) c < a, (ii) a <
c < b, (iii) b < c. In the first case (i) we have

(a ∗L b) ∗L c = [a, b]≤ ∗L c =
∪

x∈[a,b]≤

x ∗L c =
∪

x∈[a,b]≤

[c, x]≤ = [c, b]≤

= [c, a]≤ ∪ [a, b]≤ =
∪

x∈[c,b]≤

a ∗L x = a ∗L [c, b]≤ = a ∗L (b ∗L c).

In the case (ii) we have

(a ∗L b) ∗L c =
∪

x∈[a,b]≤

[x, c]≤ = [a, b]≤ =
∪

x∈[c,b]≤

[a, x]≤ = a ∗L (b ∗L c).

In the case (iii) we obtain

(a∗Lb)∗Lc =
∪

x∈[a,b]≤

[x, c]≤ = [a, c] =
∪

x∈[b,c]≤

[a, x]≤ = a∗L [b, c]≤ = a∗L(b∗Lc),

hence the hypergroupoid (G, ∗L) is associative, thus it is a semihypergroup.
Since

a ∗L G+ =
∪

x∈G+

(a ∗L x) =
∪

x∈G+

[a, x]≤ = G+

we have (G, ∗L) is an extensive commutative hypergroup. It remains to show
that conditions 1), 2) from Definition 4.4 are satisfied. So, let g, h ∈ G+ be
elements such that g < h, x ∈ G. Then

ψG(g ∗L h, x) = ψG
(
[g, h]≤, x

)
=

∪
t∈[g,h]≤

ψG(t, x) =
∪

t∈[g,h]≤

(t+ x]≤ = (h+ x]≤,

ψG
(
g, ψ(h, x)

)
= ψG

(
g, (h+ x]≤

)
=

∪
u∈(h+x]≤

ψG(g, u) = [g + h+ x)≤.

Since 0 ≤ g we have h+ x ≤ g + h+ x and

ψG(g ∗L h, x) = (h+ x]≤ ⊆ [g + h+ x)≤ = ψG
(
g, ψ(h, x)

)
.

Further for any g ∈ G+ there holds ψG(g,G) =
∪
x∈G

ψG(g, x) =
∪
x∈G

(g+ x]≤ =

G. Therefore conditions 1), 2) are satisfied, thus the proof is complete.
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Definition 4.8. Let X be a set, (G, ⋆) be a semihypergroup and ψ : G×X −→
P∗(X) be a mapping such that

ψ
(
h, ψ(g, x)

)
⊆ ψ(g ⋆ h, x) where ψ(g ⋆ h, x) = {ψ(t, x)|t ∈ g ⋆ h}

for each x ∈ X, g, h ∈ G then (X,G,ψ) is called a generalized transformation
semihypergroup.

This structure type is a generalization considered in [10, 11, 13].

4.1.1 Homomorphism of transformation semihypergroups

Definition 4.9. Let (X,G,ψ), (Y,H, ω) be two generalized transformation
semihypergroups (GTS). A pair of mappings Φ = [µ, φ] such that µ : G → H
is a homomorphism of semihypergroups and φ : X → Y is a mapping, is said
to be a homomorphism of GTS (X,G,ψ) into GTS (Y,H, ω) if for any pair
[g, x] ∈ G×X the equality

ω
(
µ(g), φ(x)

)
= φ

(
ψ(g, x)

)
is satisfied, i.e. the diagram, where φ∗ : P∗(X) → P∗(Y ) is the corresponding
liftation of the mapping φ : X → Y ,

G×X
ψ−−−−→ P∗(X)

µ×φ
y yφ∗

H × Y
ω−−−−→ P∗(Y )

(D4)

commutes.

Example 4.10. Let X,Y be equivalent non-empty sets and f : X → X,
h : Y → Y be mappings such that mono-unary algebras (X, f) ∼= (Y, h). De-
note G = {fn;n ∈ N0}, H = {hn, n ∈ N0} and define binary hyperoperations
⋆ : G×G→ P∗(G), and • : H ×H → P∗(H), by

fn ⋆ fm = {fk; k ∈ N0 ,m+ n ≤ k} and hn • hm = {hk; k ∈ N0 ,m+ n ≤ k}.

Define mappings ψ : G × X → P∗(X), ω : H × Y → P∗(Y ), by the same
rule ψ(fn, x) =

{
fk(x); k ∈ {0, n, n + 1, n + 2, . . . }

}
, ω(hn, y) =

{
hk(y); k ∈

{0, n, n + 1, n + 2, . . . }
}
. Suppose ξ : (X, f) → (Y, h) is an isomorphism and

φ : (X, f) → (Y, h) a homomorphism of the mono-unary algebra (X, f) onto
the mono-unary algebra (Y, h). Denote Φ = [µ, φ] the pair of mappings such
that µ(fn) = ξ ◦ fn ◦ ξ−1. Then Φ is a homomorphism of the generalized
transformation semihypergroup (X,G,ψ) into the GTS (Y,H, ω).
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Indeed, for an arbitrary pair [fn, x] ∈ G×X we have

φ
(
ψ(fn, x)

)
= φ

{
x, fn(x), fn+1(x), . . .

}
=

{
φ(x), φ

(
fn(x)

)
, φ

(
fn+1(x)

)
, . . .

}
=

{
φ(x), φ

(
hn(x)

)
, φ

(
hn+1(x)

)
, . . .

}
= ω

(
hn, φ(x)

)
= ω

(
ξ ◦ fn ◦ ξ−1, φ(x)

)
= ω

(
µ(fn), φ(x)

)
= ω

(
µ× φ)[fn, x]

)
.

The following example of generalized transformation hypergroup is based
on consideration published in [1].

Example 4.11. Let J ⊂ R be an open interval and denote C∞(J) the ring
of all infinitely differentiable functions on J. Let us consider the set LAn(J),
n ∈ N, of linear differential operators of the n-th order in the form

L(p0 , . . . , pn−1) =
dn

dxn
+
n−1∑
k=0

pk (x)
dk

dxk
.

Where pk ∈ C∞(J), k = 0, 1, . . . , n− 1; L(p0 , . . . , pn−1) : C
∞(J) −→ C∞(J),

thus

L(p0 , . . . , pn−1)(f) = f (n)(x)+pn−1(x)f
(n−1)(x)+· · ·+p0(x)f(x), f ∈ C∞(J).

Let δij stand for the Kronecker symbol δ.For any but fixedm ∈{0, 1, . . . , n− 1}
we denote by

LAn(J)m =
{
L(p0 , . . . , pn−1)|pk ∈ C∞(J), pm > 0

}
.

Shortly we put p = (p0(x), . . . , pn−1(x)), x ∈ J and on the set LAn(J)m we
define a binary operation “◦m” and a binary relation ≤m in this way:

L(p) ◦m L(q) = L(u)

where uk (x) = pm(x)qk (x) + (1− δkm)pk (x), x ∈ J, 0 ≤ k ≤ n− 1, and

L(p) ≤m L(q)

whenever pk (x) ≤ qk (x), k ̸= m, k ∈ {0, 1, . . . , n− 1}, pm(x) = qm(x), x ∈ J.
It is easy to verify that (, ◦m,≤m) is an ordered noncommutative group

with the neutral element D(w), where D(w) = (w0, . . . , wn−1), wk (x) = δkm.

An inverse to any D(q) is D−1(q) =
(

−q0
qm

, . . . , 1
qm
, . . . , −qn−1

qm

)
.

Let (Z,+,≤) be the additive group of all integers with the usual ordering
“≤”. Then by Lemma 2.1 the structure (Z, ⋆), where ⋆ : Z×Z −→ P∗(Z) was
defined by k ⋆ l = [k + l)≤ is a hypergroup.
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For fixed D(q) ∈ LAn(J)m we define an action ψq : Z × LAn(J)m −→
P∗(LAn(J)m) as follows,

ψq(k, L(p)) = {Lt(q) ◦m L(p)|t ≤ k}.

So (LAn(J)m,Z, φq) is a generalized transformation hypergroup.

4.2 L-hyperaction of a non-empty set on a hyperstructure

Let us define another type of action of a set on a hyperstructure (a new
definition).

Definition 4.12. Let (G, ⋆) be a hyperstructure and X be a non-empty set.
A generalized action of X on G is a map ψ : X × G −→ P∗(G) defined by
ψ(g ⋆ h, x) = ψ(g, x) ⋆ ψ(h, x).

Example 4.13. Let X be a set and P be a polygroup. Then X is a set of
hyperoperators on P and P is a X-polygroup (polygroup with hyperoperators)
if there is a map ψ : X × P −→ P∗(P ) denoted by (x, g) −→ xg, such that
x(gh) = (xg)(xh) for all x ∈ X and g, h ∈ P .

For more details we refer to [7].

Proposition 4.14. A hypergroupoid (H, ⋆) is a quasi-order hypergroup if and
only if there exist quasi-order relation ρ on the set H such that for all (a, b) ∈
H ×H there is a ⋆ b = ρ(a) ∪ ρ(b) where ρ(a) = {x ∈ H|aρx}.

For the proof see e.g. [4], pages 96–97.

5 Some applications

In fact, we shall generalize some results of [6,7] by considering our definitions.
All the objects considered are assumed to be of class C∞ and differential forms
will take their values in the field of complex numbers.

A Fredholm-Volterra integral operator, where J = (a, b), can be written as
follows:

F (λ, µ,K,L, f) : C
(
J × [0,+∞)

)
−→ C

(
J × [0,+∞)

)
,

F
(
λ, µ,K(x, t, s), L(x, t, τ), f(x, t)

)(
φ(x, t)

)
= λ

∫ b

a

K(x, t, s)φ(s, t)ds

+ µ

∫ t

0

L(x, t, τ)φ(x, τ)dτ + f(x, t)
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Kernels K(x, t, s) ∈ C
(
J × [0,+∞)×J

)
and L(x, t, τ) ∈ C(J × [0,+∞), [0, t]),

are real or complex valued functions (mostly positive real functions). f(x, t) ∈
C
(
J,×[0,+∞)

)
and λ, µ are two real numerical parameters.

Usually there are considered Fredholm-Volterra integral equations with a
nondegenerate Lebesgue square integrable kernels K(x, t, s) and L(x, t, τ). In
this contribution we will construct hyperstructures on the set of operators
F
(
λ, µ,K(x, t, s), L(x, t, τ), f(x, t)

)
with continuous functions K,L, f and two

nonzero parameters λ, µ. For our purposes we will consider continuous positive
functions only, in order to avoid some obstacles with integrability of functions
in the form of fractions.

Let us denote by FV =
{
F
(
λ, µ,K(x, t, s), L(x, t, τ), f(x, t)

)
| λ, µ ∈ R,

λ2+µ2 ̸= 0, K(x, t, s) ∈ C(J×[0,+∞)×J), L(x, t, τ) ∈ C(J×[0,+∞), [0, t]),

f(x, t) ∈ C
(
J,×[0,+∞)

)}
.

For any pairs of operators F (λ1 , µ1 ,K1 , L1 , f1), F (λ2 , µ2 ,K2 , L2 , f2) in
FV let us define a binary operation “◦”

F (λ1 , µ1 ,K1 , L1 , f1) ◦ F (λ2 , µ2 ,K2 , L2 , f2) =

F (λ1λ2 , µ1µ2 ,K2f1 +K1 , L2f1 + L1 , f1f2)

and a binary relation “≤”

F (λ1 , µ1 ,K1 , L1 , f1) ≤ F (λ2 , µ2 ,K2 , L2 , f2)
if and only if

λ1 = λ2 , µ1 = µ2 , f1(x, t) ≡ f2(x, t)

for any (x, t) ∈ (J × [0,∞)),K1(x, t, s) ≤ K2(x, t, s), for any (x, t, s) ∈ (J ×
[0,+∞)×J) and L1(x, t, τ) ≤ L2(x, t, τ) for any (x, t, τ) ∈ (J× [0,+∞), [0, t]).
From the previous it is clear that the following proposition holds.

Proposition 5.1. The triple (FV, ◦,≤) is a noncommutative ordered group.

Now we apply the simple construction of a hypergroup from Lemma 2.1
onto this considered concrete case of integral operators.
For an arbitrary pair of operators F (λ1 , µ1 ,K1 , L1 , f1), F (λ2 , µ2 ,K2 , L2 , f2) ∈
FV we define a hyperoperation ⋆ : FV × FV −→ P∗(FV ) as follows:

F (λ1 , µ1 ,K1 , L1 , f1) ⋆ F (λ2 , µ2 ,K2 , L2 , f2)

= {F (λ, µ,K,L, f) ∈ FV |F (λ1 , µ1 ,K1 , L1 , f1) ◦ F (λ2 , µ2 ,K2 , L2 , f2)

≤ F (λ, µ,K,L, f)}
= {F (λ, µ,K,L, f) ∈ FV |λ = λ1λ2 , µ = µ1µ2 , f = f1f2 ,

K2f1 +K1 ≤ K, L2f1 + L1 ≤ L}.

In a similar way as in [11] we obtain the following assertion.
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Proposition 5.2. The pair (FV, ⋆) is a noncommutative transposition hyper-
group.

If in the Fredholm-Volterra operators µ = 0, L = 0 then Fredholm-Volterra
operators coincide to Fredholm operators (see [10]) and hypergroup (FV, ⋆)
denote by (F, ⋆). By a centralizer of an element a of the group G we mean
as usual its subgroup CG(a) = {x ∈ G|ax = xa}. A centralizer of an element
F (λ,K, f) ∈ F is a subgroup CF(F (λ,K, f)) = {F (µ,L, g) ∈ F|F (µ,L, g) ◦
F (λ,K, f) = F (λ,K, f) ◦ F (µ,L, g)} for any pair (x, s) ∈ J × J .

Let CF(F (λ0 ,K0 , f0)) = CF the centralizer of the operator F (λ0 ,K0 , f0)
within the group (F, ◦). Let us define a hyperoperation ~ : CF × CF −→
P∗(CF) as follows:

F (λ1 ,K1 , f1)~ F (λ2 ,K2 , f2) =

= {Fn(λ0 ,K0 , f0) ◦ F (λ2 ,K2 , f2) ◦ F (λ1 ,K1 , f1)|n ∈ N0}.

Š. Hošková and J. Chvalina in Proposition 3.5 of [11] affirmed that the
system

M(F (λ0 ,K0 , f0)) =
(
C(J), (CF, ⋆), δ

)
where the mapping δ : CF × C(J) −→ C(J) is defined by

δ
(
F (λ,K, f), φ

)
=

(
F (λ,K, f) ◦ F (λ,K, f))(φ(x)

)
is a transformation semihypergroup with the phase set C(J) and the phase
semihypergroup (CF, ⋆).

In the following counterexample we show that GMAC is not valid.

Example 5.3. Let F (λ0 ,K0 , f0) = F (1, x, 2) ∈ CF and F (λ1 ,K1 , f1) =
F (1, x3, x2 + 1), F (λ2 ,K2 , f2) = F (1, x2, x + 1) arbitrary element in CF and
φ(x) = x. It is easy to see that

δ(F (1, x2, x+1), δ(F (1, x3, x2+1), x)) /∈ δ(F (1, x3, x2+1)~F (1, x2, x+1), x).

Therefore, it is easy to see that the condition (GMAC) in Proposition 3.5
of [11] is not valid.

But, if we put T = F×C(J) and M
(
F (λ0 ,K0 , f0)

)
=

(
T, (CF, ⋆), π

)
such

that π : CF × T −→ P∗(T ) is defined by

π
(
F (λ1 ,K1 , f1), (F (λ,K, f), φ)

)
=

=
(
F (λ0 ,K0 , f0) ◦ F (λ1 ,K1 , f1) ◦ F (λ,K, f), φ

)
.

So the GMAG is satisfied and we have:
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Proposition 5.4. The system M(F (λ0 ,K0 , f0)) is a discrete transformation
hypergroup with the phase set T and phase semihypergroup (CF, ⋆).

Proof. Suppose F1 , F2 ∈ CF , F ∈ F and φ ∈ C(J). Then π
(
F1 , π(F2 , [F,φ])

)
= π

(
F1 , [F0 ◦ F2 ◦ F,φ]

)
= [F0 ◦ F1 ◦ F0 ◦ F2 ◦ F,φ] = [F 2

0 ◦ F1 ◦ F2 ◦ F,φ].
Denote by ψ = F0 ◦ F1 ◦ F2 . Since ψ ∈ {Fn0 ◦ F1 ◦ F2 ;n ∈ N}, we have

[F 2
0 ◦F1 ◦F2 ◦F,φ] = [F0 ◦ψ ◦F,φ] = π

(
ψ, [F,φ]

)
∈
{
π
(
Φ, [F,φ]

)}
; Φ ∈ {Fn0 ◦

F1◦F2 ;n ∈ N} =
{
π
(
Φ, [F,φ]

)
; Φ ∈ F1⋆F2

}
= π

(
F1⋆F2 , [F,φ]

)
, consequently

π
(
F1 , π

(
F2 , [F,φ]

))
∈ π

(
F1 ⋆ F2 , [F,φ]

)
, hence GMAC is satisfied.

Let us calculate the counterexample 5.3 in more details.

F0 = F (λ0 ,K0 , F0) = F (1, x, 2),

F1 = F (λ1 ,K1 , F1) = F (1, x3, x2 + 1),

F2 = F (λ2 ,K2 , F2) = F (1, x2, x+ 1).

Let < a, b >=< 0, 1 > and φ(x) = x so, for the left hand side of the relation

δ
(
δ(φ,F1), F2

)
∈ δ(φ, F1 ⋆ F2) (5.1)

we get:

δ(φ,F1) = F (λ0λ1 ,K1f0 +K0 , f0f1)
(
φ(x)

)
=

∫ 1

0

(2x3 + x)sds+ 2x2 + 2

= x3 + 2x2 +
x

2
+ 2 = ψ(x). So, we have

δ
(
δ(φ,F1), F2

)
= F (λ0λ2 ,K2f0 +K0 , f0f2)

(
ψ(x)

)
=

∫ 1

0

(2x2 + x)(s3 + 2s2 +
s

2
+ 2)ds+ 2x+ 2

=
19

6
(2x2 + x) + 2x+ 2 =

19

3
x2 +

31

6
x+ 2 = q(x).

To calculate the right hand side of the relation (5.1) we need at first:
F1 ⋆ F2 = {Fn0 · F2 · F1 ;n ∈ N0},
F1 · F2 = F (λ1λ2 ,K2f1 +K1 , f1f2),
F2 · F1 = F (λ1λ2 ,K1f2 +K2 , f1f2),
F0 · F0 = F (λ20 ,K0f0 +K0 , f

2
0 ) = F (λ20 ,K0(f0 + 1), f20 ) = F 2

0 ,
F 3
0 = F 2

0 ·F0 = F
(
λ30 ,K0f

2
0 +K0(f0+1), f30

)
= F

(
λ30 ,K0(f

2
0 +f0+1), f30

)
,
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Fn0 = F
(
λn0 ,K0(f

n−1
0 + fn−2

0 + · · ·+ f0 +1), fn0
)
= F

(
λn0 ,K0

fn
0 −1
f0−1 , f

n
0

)
, if

f0 ̸= 1. For functions chosen in the counterexample we get:

Fn0 = F
(
1, (2n − 1)x, 2n

)
.

F2 · F1 = F
(
1, x3(x+ 1), (x2 + 1)(x+ 1),

Fn0 · F2 · F1 = F
(
1, 2n · x3(x+ 1) + (2n − 1)x, 2n(x2 + 1)(x+ 1)

)
= F

(
1, 2nx4 + 2nx3 + (2n − 1)x, 2nx3 + 2nx+ 2nx2 + 2n

)
.

Thus,

(φ, Fn0 · F2 · F1) = (F0 · Fn0 · F2 · F1)
(
φ(x)

)
(Fn+1

0 · F2 · F1)
(
φ(x)

)
= F

(
1, 2n+1x4 + 2n+1x3 + (2n+1− 1)x, 2n+1x3 + 2n+1x+ 2n+1x2 + 2n+1

)
=

∫ 1

0

[
2n+1(x4 + x3 + x)− x

]
sds+ 2n+1x3 + 2n+1x+ 2n+1x2 + 2n+1

= 2nx4 + 3 · 2nx3 + (3 · 2n − 1

2
)x+ 2n+1x2 + 2n+1 = Pn(x).

So for the right hand side of the relation (5.1) we get δ(φ,F1⋆F2) = {Pn(x);n ∈
N0}. Denote by stP the power of a polynomial P , stPn(x) = 4 for any n ∈ N0 ,
whereas st q(x) = 2, hence q ̸= δ(φ, F1 ⋆ F2).

The Proposition 5.4 is not the only chance how to correct the mistake done
in Proposition 3.5 in [11]. Š. Hošková and J. Chvalina have already published
one way how to correct it in [12]. For the availability and reader’s convenience
we present here the most important part of it. We shall consider smooth
functions, i.e., u ∈ C∞(Ω). Let P(a1 , . . . , an , p) : C

∞(Ω) → C∞(Ω) be a fixed
chosen operator,

P(a1 , . . . , an , p)u =
n∑
k=1

ak (x1 , . . . , xn)
∂u

∂xk
+ p(x1 , . . . , xn)u(x1 , . . . , xn).

Denote by Ct(P) the set of all differential operators D ∈ L1D(Ω) commut-
ing with the operator P, i.e.,

Ct(P) = {D ∈ L1D(Ω); P ·D = D ·P}.

Since the identity operator Id belongs to Ct(P), this set endowed with the
unique operation “·” is a monoid which is called the centralizer of the operator
P within the group (L1D(Ω), ·).

Lemma 5.5. ([12]) Operators D1 = D(a1, . . . , an, p), D2 = D(b1, . . . , bn, q)
from the group L1D(Ω) are commuting if and if for any k = 1, 2, . . . , n and
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any point [x1 , . . . , xn ] ∈ Ω there holds∣∣∣∣ 1− p(x1, . . . , xn) 1− q(x1, . . . , xn)
ak (x1, . . . , xn) bk (x1, . . . , xn)

∣∣∣∣ = 0.

Now, for any pair Dα,Dβ ∈ Ct(P) define a hyperoperation “⊙” as follows:

⊙ : Ct(P)× Ct(P) → P∗(Ct(P))
by

Dα⊙Dβ = {Pn ·Dβ ·Dα;n ∈ N}.

Consider the binary relation ρP ⊂ Ct(P)× Ct(P) defined by

Dα ρP Dβ if and only if Dβ = Pn ·Dα

for some n ∈ N0 . We get without any effort (see [12]) that
(
Ct(P), ·, ρP

)
is a

quasi-ordered monoid.
Further, Dα⊙Dβ = ρP(Dβ ·Dα) = [Dβ ·Dα)ρP and by 2.1 we obtain that(

Ct(P),⊙) is a hypergroup (noncommutative, in general).

As usually
(
Ct(P)

)+
with the operation of concatenation means the free

semigroup of finite non-empty words formed by operators from the set Ct(P).

Denote SP =
{
(P ·D1 · · · · · Dn)(f); f ∈ C∞(Ω),D1 · · · · · Dn ∈

(
Ct(P)

)+}
and M(SP) the triple

(
SP, (Ct(P),⊙), δP

)
, where the action or transition func-

tion δP : SP × Ct(P) → SP is defined by the rule

δP
(
(P ·D1 · · · · ·Dn)(f),Dα

)
= (P ·Dα ·D1 · · · · ·Dn)(f)

for any function f ∈ C∞(Ω) and any operator Dα ∈ Ct(P). The transition
function δP satisfies the Generalized Mixed Associativity Condition.

Indeed, suppose f ∈ C∞(Ω), Dα,Dβ ,D1 ,D2 ∈ Ct(P) are arbitrary ele-
ments. We have

δP

(
δP

(
(P ·D1 · · · · ·Dn)(f),Dα

)
,Dβ

)
= δP

(
(P ·Dα ·D1 · · · · ·Dn)(f),Dβ

)
=
(
(P ·Dβ ·Dα ·D1 · · · · ·Dn)(f)

)
∈
{
(Pn+1 ·Dβ ·Dα ·D1 · · · · ·Dn)(f), n ∈ N0

}
= δP

(
(P ·D1 · · · · ·Dn)(f),Pn ·Dα ·Dβ

)
= δP

(
(P ·D1 · · · · ·Dn)(f),Dα⊙Dβ

)
,

so GMAC is satisfied, i.e., the triple M(SP) =
(
SP, (Ct(P),⊙), δP

)
is a multi-

automaton.

Using the above considerations concerning the centralizer hypergroup of
partial differential operators we obtain the second possible correction of the
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wrong Proposition 3.5 of [11]. So, consider the above described centralizer hy-
pergroup (CF ,~) of Fredholm integral operators (defined above- after Propo-
sition 5.2. Denote by C+

F the free semigroup of finite non-empty words formed
by operators from the set CF with binary operation of concatenation. We
denote

SF =
{
(F ◦ F1 ◦ · · · ◦ Fn)(φ);φ ∈ C(J), Fk ∈ C+

F , k = 1, 2 . . . , n
}
.

Define a function δF : SF × CF → SF by the rule

δF
(
F ◦ F1 ◦ · · · ◦ Fn)(φ), G

)
= (F ◦G ◦ F1 ◦ · · · ◦ Fn)(φ)

for any function φ ∈ C(J) and any integral operator G ∈ CF . In the same
way as above we obtain that the triad

(
SF , (CF ,~), δF

)
is a multiautomaton,

i.e. the action of the phase hypergroup (CF ,~) on the state (phase) set SF .

6 Conclusion

More than 75 years have elapsed since Marty’s pioneer paper [17] when the
hyperstructure theory was born. During this period the field has experienced
an enormous growth. There are applications to geometry, hypergraphs, bi-
nary relations, lattices, fuzzy sets and rough sets, automata, cryptography,
combinatoric, codes, artificial intelligence, and probability.

Thus, the framework of the hyperstructure theory allows various general-
izations of the above mentioned concepts and theories.

In particular, it seems to be interesting to analyse properties of hyper-
groups of second-order linear differential operators of the Jacobi form creating
subhypergroups of hypergroups of more general linear differential operators
considered above, or to use hyperstructures for modelling two or more para-
metrical systems of non-periodic time impulses produced e.g. by foton or
neutron illumination generated by disintegration of the Californium 252.
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