Some properties of multivalent analytic functions associated with an integral operator

Yi-Hui Xu and Cai-Mei Yan

Abstract

Let $A(p)$ denote the class of functions of the form $f(z)=z^{p}+$ $\sum_{k=p+1}^{\infty} a_{k} z^{k}(p \in N=\{1,2,3, \cdots\})$ which are analytic in the open unit disk $U=\{z: z \in C$ and $|z|<1\}$. By making use of the Noor integral operator, we obtain some interesting properties of multivalent analytic functions.

1 Introduction

Let $A(p)$ be the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k} \quad(p \in N=\{1,2,3, \cdots\}), \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z: z \in C$ and $|z|<1\}$.
For $f \in A(p)$, we denote by $D^{n+p-1}: A(p) \rightarrow A(p)$ the operator defined by

$$
\begin{equation*}
D^{n+p-1} f(z)=\frac{z^{p}}{(1-z)^{n+p}} * f(z) \quad(n>-p) \tag{2}
\end{equation*}
$$

or, equivalently, by

$$
D^{n+p-1} f(z)=\frac{z^{p}\left(z^{n-1} f(z)\right)^{(n+p-1)}}{(n+p-1)!}
$$

[^0]where n is any integer greater than $-p$ and the symbol $(*)$ stands for the Hadamard product (or convolution). If $f(z)$ is given by (1.1), then from (1.2) it follows that
$$
D^{n+p-1} f(z)=z^{p}+\sum_{k=p+1}^{\infty}\binom{n+k-1}{k-p} a_{k} z^{k} \quad(p \in N ; n>-p)
$$

The symbol D^{n+p-1} when $p=1$ was introduced by Ruscheweyh [12] and the symbol D^{n+p-1} was introduced by Goel and Sohi [2].

Recently, analogous to D^{n+p-1}, Liu and Noor [4] introduced an integral operator $I_{n, p}: A(p) \rightarrow A(p)$ as following.

Let $f_{n, p}(z)=z^{p} /(1-z)^{n+p}(n>-p)$, and let $f_{n, p}^{(+)}(z)$ be defined such that

$$
\begin{equation*}
f_{n, p}(z) * f_{n, p}^{(+)}(z)=\frac{z^{p}}{(1-z)^{p+1}} \tag{3}
\end{equation*}
$$

Then

$$
\begin{align*}
I_{n, p} f(z) & =f_{n, p}^{(+)}(z) * f(z) \\
& =z^{p}+\sum_{k=p+1}^{\infty} \frac{(p+1)(p+2) \cdots k}{(n+p)(n+p+1) \cdots(n+k-1)} a_{k} z^{k} \tag{4}
\end{align*}
$$

It follows from (1.4) that

$$
\begin{equation*}
z\left(I_{n+1, p} f(z)\right)^{\prime}=(n+p) I_{n, p} f(z)-n I_{n+1, p} f(z) \tag{5}
\end{equation*}
$$

We also note that $I_{0, p} f(z)=z f^{\prime}(z) / p$ and $I_{1, p} f(z)=f(z)$. Moreover, the operator $I_{n, p} f(z)$ defined by (1.4) is called as the Noor integral operator of $(n+p-1)$ th order of $f[4]$. For $p=1$, the operator $I_{n, 1} f(z) \equiv I_{n} f$ was introduced by Noor [7] and Noor and Noor [9]. Many interesting subclasses of analytic functions, associated with the Noor integral operator $I_{n, p}$ and its many special cases, were investigated recently by Cho [1], Liu [3], Liu and Noor $[4,5]$, Noor $[7,8]$, Noor and Noor $[9,10]$ and others. In the present sequel to these earlier works, we shall derive certain interesting properties of the Noor integral operator.

2 Main results

In order to give our theorems, we need the following lemma.
Lemma. (see [6]). Let Ω be a set in the complex plane C and let b be a complex number such that Reb >0. Suppose that the function $\psi: C^{2} \times U \longrightarrow$ C satisfies the condition

$$
\psi(i x, y ; z) \notin \Omega
$$

for all real $x, y \leq-|b-i x|^{2} /(2$ Reb $)$ and all $z \in U$. If the function $p(z)$ defined by $p(z)=b+b_{1} z+b_{2} z^{2}+\cdots$ is analytic in U and if

$$
\psi\left(p(z), z p^{\prime}(z) ; z\right) \in \Omega
$$

then $\operatorname{Rep}(z)>0$ in U.
We now prove our first result given by Theorem 1 below.
Theorem 1. Let $n>-p+1, \lambda \geq 0$ and $\gamma>1$. Suppose that $f(z) \in A(p)$, then

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\lambda) \frac{I_{n, p} f(z)}{I_{n+1, p} f(z)}+\lambda \frac{I_{n-1, p} f(z)}{I_{n, p} f(z)}\right\}<\gamma \quad(z \in U) \tag{6}
\end{equation*}
$$

implies

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{I_{n, p} f(z)}{I_{n+1, p} f(z)}\right\}<\beta \quad(z \in U) \tag{7}
\end{equation*}
$$

where $\beta \in(1,+\infty)$ is the positive root of the equation

$$
\begin{equation*}
2(n+p+\lambda-1) x^{2}-[\lambda+2 \gamma(n+p-1)] x-\lambda=0 \tag{8}
\end{equation*}
$$

Proof. Let

$$
\begin{equation*}
p(z)=\frac{1}{\beta-1}\left[\beta-\frac{I_{n, p} f(z)}{I_{n+1, p} f(z)}\right], \tag{9}
\end{equation*}
$$

then $p(z)$ is analytic in U and $p(0)=1$. Differentiating (2.4) and using (1.5), we obtain

$$
\begin{aligned}
& (1-\lambda) \frac{I_{n, p} f(z)}{I_{n+1, p} f(z)}+\lambda \frac{I_{n-1, p} f(z)}{I_{n, p} f(z)} \\
& =\beta+\frac{\lambda(\beta-1)}{n+p-1}-\frac{(\beta-1)(n+p+\lambda-1)}{n+p-1} p(z)-\frac{\lambda(\beta-1)}{n+p-1} \cdot \frac{z p^{\prime}(z)}{\beta-(\beta-1) p(z)} \\
& =\psi\left(p(z), z p^{\prime}(z)\right),
\end{aligned}
$$

where
$\psi(r, s)=\beta+\frac{\lambda(\beta-1)}{n+p-1}-\frac{(\beta-1)(n+p+\lambda-1)}{n+p-1} r-\frac{\lambda(\beta-1)}{n+p-1} \cdot \frac{s}{\beta-(\beta-1) r}$.
Using (2.2) and (2.5), we have

$$
\left\{\psi\left(p(z), z p^{\prime}(z)\right): z \in U\right\} \subset \Omega=\{w \in C: \text { Rew }<\gamma\}
$$

Now for all real $x, y \leq-\left(1+x^{2}\right) / 2$, we have

$$
\begin{aligned}
\operatorname{Re}\{\psi(i x, y)\} & =\beta+\frac{\lambda(\beta-1)}{n+p-1}-\frac{\lambda(\beta-1)}{n+p-1} \cdot \frac{\beta y}{\beta^{2}+(\beta-1)^{2} x^{2}} \\
& \geq \beta+\frac{\lambda(\beta-1)}{n+p-1}+\frac{\lambda \beta(\beta-1)}{2(n+p-1)} \cdot \frac{1+x^{2}}{\beta^{2}+(\beta-1)^{2} x^{2}} \\
& \geq \beta+\frac{\lambda(\beta-1)}{n+p-1}+\frac{\lambda(\beta-1)}{2 \beta(n+p-1)} \\
& =\beta+\frac{\lambda(\beta-1)(2 \beta+1)}{2 \beta(n+p-1)}=\gamma
\end{aligned}
$$

where β is the positive root of the equation (2.3).
Note that $n>-p+1, \lambda \geq 0, \gamma>1$ and let

$$
g(x)=2(n+p+\lambda-1) x^{2}-[\lambda+2 \gamma(n+p-1)] x-\lambda,
$$

then $g(0)=-\lambda \leq 0$ and $g(1)=-2(n+p-1)(\gamma-1)<0$. This shows $\beta \in$ $(1,+\infty)$. Hence for each $z \in U, \psi(i x, y) \notin \Omega$. By Lemma, we get $\operatorname{Rep}(z)>0$. This proves (2.2).

Theorem 2. Let $\lambda \geq 0, \gamma>1$ and $0 \leq \delta<1$. Let $g(z) \in A(p)$ satisfy

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{I_{n+1, p} g(z)}{I_{n, p} g(z)}\right\}>\delta \quad(z \in U) \tag{11}
\end{equation*}
$$

If $f(z) \in A(p)$ satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\lambda) \frac{I_{n+1, p} f(z)}{I_{n+1, p} g(z)}+\lambda \frac{I_{n, p} f(z)}{I_{n, p} g(z)}\right\}<\gamma \quad(z \in U) \tag{12}
\end{equation*}
$$

then

$$
\begin{equation*}
R e\left\{\frac{I_{n+1, p} f(z)}{I_{n+1, p} g(z)}\right\}<\frac{2 \gamma(n+p)+\lambda \delta}{2(n+p)+\lambda \delta} \quad(z \in U) \tag{13}
\end{equation*}
$$

Proof. Let $\beta=\frac{2 \gamma(n+p)+\lambda \delta}{2(n+p)+\lambda \delta}(\beta>1)$ and consider the function

$$
\begin{equation*}
p(z)=\frac{1}{\beta-1}\left[\beta-\frac{I_{n+1, p} f(z)}{I_{n+1, p} g(z)}\right] \tag{14}
\end{equation*}
$$

The function $p(z)$ is analytic in U and $p(0)=1$. Set

$$
B(z)=\frac{I_{n+1, p} g(z)}{I_{n, p} g(z)}
$$

then $\operatorname{Re}\{B(z)\}>\delta(z \in U)$. Differentiating (2.9) and using (1.5), we have

$$
\begin{aligned}
& (1-\lambda) \frac{I_{n+1, p} f(z)}{I_{n+1, p} g(z)}+\lambda \frac{I_{n, p} f(z)}{I_{n, p} g(z)} \\
& =\beta-(\beta-1) p(z)-\frac{\lambda(\beta-1)}{n+p} B(z) \cdot z p^{\prime}(z)
\end{aligned}
$$

Let

$$
\psi(r, s)=\beta-(\beta-1) r-\frac{\lambda(\beta-1)}{n+p} B(z) \cdot s
$$

then from (2.7), we deduce that

$$
\left\{\psi\left(p(z), z p^{\prime}(z)\right): z \in U\right\} \subset \Omega=\{w \in C: \text { Rew }<\gamma\}
$$

Now for all real $x, y \leq-\left(1+x^{2}\right) / 2$ we have

$$
\begin{aligned}
\operatorname{Re}\{\psi(i x, y)\} & =\beta-\frac{\lambda(\beta-1) y}{n+p} \operatorname{Re}\{B(z)\} \\
& \geq \beta+\frac{\lambda \delta(\beta-1)}{2(n+p)}\left(1+x^{2}\right) \\
& \geq \beta+\frac{\lambda \delta(\beta-1)}{2(n+p)}=\gamma .
\end{aligned}
$$

Hence for each $z \in U, \psi(i x, y) \notin \Omega$. Thus by Lemma, $\operatorname{Rep}(z)>0$ in U. The proof of the theorem is complete.

Finally, we prove the following result.
Theorem 3.Let $\beta \geq 1$ and $\gamma>0$. Let $f(z) \in A(p)$, then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{I_{n, p} f(z)}{I_{n+1, p} f(z)}\right\}<\frac{n+p+\gamma}{n+p} \quad(z \in U) \tag{15}
\end{equation*}
$$

implies

$$
\begin{equation*}
\operatorname{Re}\left\{\left(\frac{I_{n+1, p} f(z)}{z^{p}}\right)^{-1 / 2 \beta \gamma}\right\}>2^{-1 / \beta} \quad(z \in U) \tag{16}
\end{equation*}
$$

The bound $2^{-1 / \beta}$ is best possible.
Proof. From (1.5) and (2.10), we have

$$
\operatorname{Re}\left\{\frac{z\left(I_{n+1, p} f(z)\right)^{\prime}}{I_{n+1, p} f(z)}\right\}<p+\gamma \quad(z \in U)
$$

That is,

$$
\begin{equation*}
\frac{1}{2 \gamma}\left(\frac{z\left(I_{n+1, p} f(z)\right)^{\prime}}{I_{n+1, p} f(z)}-p\right) \prec \frac{z}{1+z} \tag{17}
\end{equation*}
$$

Let

$$
p(z)=\left(\frac{I_{n+1, p} f(z)}{z^{p}}\right)^{-1 / 2 \gamma}
$$

then (2.12) may be written as

$$
\begin{equation*}
z(\log p(z))^{\prime} \prec z\left(\log \frac{1}{1+z}\right)^{\prime} \tag{18}
\end{equation*}
$$

By using a well-known result [13] to (2.13), we obtain that

$$
p(z) \prec \frac{1}{1+z},
$$

that is, that

$$
\begin{equation*}
\left(\frac{I_{n+1, p} f(z)}{z^{p}}\right)^{-1 / 2 \beta \gamma}=\left(\frac{1}{1+w(z)}\right)^{1 / \beta} \tag{19}
\end{equation*}
$$

where $w(z)$ is analytic in $U, w(0)=0$ and $|w(z)|<1$ for $z \in U$.
According to $\operatorname{Re}\left(t^{1 / \beta}\right) \geq(\operatorname{Ret})^{1 / \beta}$ for $\operatorname{Ret}>0$ and $\beta \geq 1$, (2.14) yields

$$
\begin{aligned}
\operatorname{Re}\left\{\left(\frac{I_{n+1, p} f(z)}{z^{p}}\right)^{-1 / 2 \beta \gamma}\right\} & \geq\left(\operatorname{Re}\left(\frac{1}{1+w(z)}\right)\right)^{1 / \beta} \\
& >2^{-1 / \beta} \quad(z \in U)
\end{aligned}
$$

To see that the bound $2^{-1 / \beta}$ cannot be increased, we consider the function

$$
g(z)=z^{p}+\sum_{k=p+1}^{\infty} \frac{(n+p+1) \cdots(n+k)}{(p+1)(p+2) \cdots k} \cdot \frac{2 \gamma(2 \gamma-1) \cdots(2 \gamma-k+p+1)}{(k-p)!} z^{k}
$$

Since $g(z)$ satisfies

$$
\frac{I_{n+1, p} g(z)}{z^{p}}=(1+z)^{2 \gamma}
$$

we easily have that $g(z)$ satisfies (2.10) and

$$
\operatorname{Re}\left\{\left(\frac{I_{n+1, p} g(z)}{z^{p}}\right)^{-1 / 2 \beta \gamma}\right\} \rightarrow 2^{-1 / \beta}
$$

as $z=\operatorname{Re} z \rightarrow 1^{-}$. The proof of the theorem is complete.

References

[1] N.E. Cho, The Noor integral operator and strongly close-to-convex functions, J. Math. Anal. Appl. 283(2003), 202-212.
[2] R.M. Goel and N.S. Sohi, A new criterion for p-valent functions, Proc. Amer. Math. Soc. 78(1980), 353-357.
[3] J.-L. Liu, The Noor integral and strongly starlike functions, J. Math. Anal. Appl. 261(2001), 441-447.
[4] J.-L. Liu and K.I. Noor, Some properties of Noor integral operator, J. Natur. Geom. 21(2002), 81-90.
[5] J.-L. Liu and K.I. Noor, On subordinations for certain analytic functions associated with the Noor integral operator, Appl. Math. Comput. 187(2007), 1453-1460.
[6] S.S. Miller and P.T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28(1981), 157-171.
[7] K.I. Noor, On new classes of integral operators, J Natur. Geom. 16(1999),71-80.
[8] K.I. Noor, Some classes of p-valent analytic functions defined by certain integral operator, Appl. Math. Comput.157(2004), 835-840.
[9] K.I. Noor and M.A. Noor, On integral operators, J. Math. Anal. Appl. 238(1999), 341-352.
[10] K.I. Noor and M.A. Noor, On certain classes of analytic functions defined by Noor integral operator, J. Math. Anal. Appl. 281(2003), 244-252.
[11] J. Patel and S. Rout, Properties of certain analytic functions involving Ruscheweyh derivatives, Math. Japonica 39(1994), 509-518.
[12] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49(1975), 109-115.
[13] T.J. Suffridge, Some remarks on convex maps of the unit disk, Duke Math. J. 37(1970), 775-777.
[14] H.M. Srivastava and S. Owa(Eds.), Current Topics in Analytic Function Theory, World Scientific, Singapore, 1992.

Yi-Hui Xu,
Department of Mathematics,
Suqian College,
Jiangsu 223800, People's Republic of China.
Email: yuanziqixu@126.com
Cai-Mei Yan,
Information Engineering College,
Yangzhou University,
Jiangsu 225009, People's Republic of China.
*Corresponding author. Email: cmyan@yzu.edu.cn

[^0]: Key Words: Analytic function; Multivalent function; Hadamard product (or convolution); The Noor integral operator.

 2010 Mathematics Subject Classification: 30C45.
 Received: August, 2011.
 Accepted: April, 2012.

