

RAD -SUPPLEMENTED MODULES

Ergül Türkmen

Abstract

In this paper we provide various properties of Rad- \oplus -supplemented modules. In particular, we prove that a projective module M is Rad- \oplus -supplemented if and only if M is \oplus -supplemented, and then we show that a commutative ring R is an artinian serial ring if and only if every left R-module is Rad- \oplus -supplemented. Moreover, every left R-module has the property (P^*) if and only if R is an artinian serial ring and $J^2=0$, where J is the Jacobson radical of R. Finally, we show that every Rad-supplemented module is Rad- \oplus -supplemented over dedekind domains.

1 Introduction

Throughout this paper, it is assumed that R is an associative ring with identity and all modules are unital left R-modules. A submodule N of an R-module M will be denoted by $N \leq M$. A submodule $L \leq M$ is said to be essential in M, denoted as $L \subseteq M$, if $L \cap N \neq 0$ for every nonzero submodule $N \leq M$. Dually, a submodule N of M is called small (in M) and denoted by N << M, if $N + L \neq M$ for every proper submodule L of M. The Jacobson radical of M will be denoted by Rad(M). Equivalently, Rad(M) is the sum of all small submodules of M.

A nonzero module M is said to be *hollow* if every proper submodule is small in M, and it is said to be *local* if it is hollow and is finitely generated. M is local if and only if it is finitely generated and Rad(M) is maximal (see

Key Words: Rad-supplement, Rad- \oplus -supplemented module, Artinian serial ring. 2010 Mathematics Subject Classification: Primary 16D10; Secondary 16N80.

Received: March, 2012. Revised: May, 2012. Accepted: June, 2012.

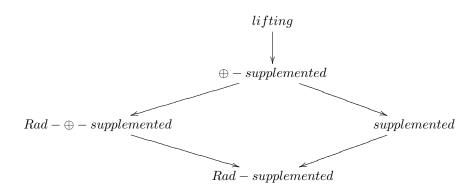
[6, 2.12§2.15]). A ring R is said to be local if J is maximal, where J is the Jacobson radical of R.

For any ring R, an R-module M is called *supplemented* if every submodule N of M has a *supplement*, that is a submodule K minimal with respect to N+K=M. K is a supplement of N in M if and only if N+K=M and $N\cap K\ll K$ [17]. Every direct summand of a module M is a supplement submodule of M, and supplemented modules are a proper generalization of artinian modules.

Mohamed and Müller [12] call a module $M \oplus -supplemented$ if every submodule N of M has a supplement that is a direct summand of M [12]. Clearly every \oplus -supplemented module is supplemented, but a supplemented module need not be \oplus -supplemented in general (see [12, Lemma A.4 (2)]). It is shown in [12, Proposition A.7 and Proposition A.8] that if R is a dedekind domain, every supplemented R-module is \oplus -supplemented. Hollow modules are \oplus -supplemented modules are extensively studied by many authors. We specifically mention [8, 10, 12, 17, 19] among papers concerning supplemented and \oplus -supplemented modules.

A module M is lifting if every submodule N of M contains a direct summand L of M such that $M=L\oplus K$ and $N\cap K<< K$ (see [6]). Every projective module over a left artinian ring is lifting, and lifting modules are \oplus -supplemented. In addition, every π -projective supplemented module is lifting (see [17, 41.15]). Here a module M over an arbitrary ring is called π -projective if for every two submodules U,V of M such that U+V=M, there exists an endomorphism f of M with $f(M)\leq U$ and $(1-f)(M)\leq V$ [17]. For example, projective modules are π -projective.

Let M be a module. Weakening the "supplement" condition, one calls a submodule K of M Rad-supplement of N in M (in [18], generalized supplement) if M=N+K and $N\cap K \leq Rad(K)$ [6, pp. 100]. Adapting the concept of supplemented modules, we say that M is Rad-supplemented if every submodule has a Rad-supplement in M, and M is Rad- \oplus -supplemented if every submodule has a Rad-supplement that is a direct summand of M [4, 7]. Under given definitions, we clearly have the following implication on modules:



Let $f: P \longrightarrow M$ be an epimorphism. Xue [18] calls f a (generalized) cover if $(Ker(f) \le Rad(P))$ Ker(f) << P, and calls a (generalized) cover f a (generalized) projective cover if P is a projective module. In the spirit of [18], a module M is said to be (generalized) semiperfect if every factor module of M has a (generalized) projective cover. Every (generalized) semiperfect module is (Rad-) supplemented.

In this paper, we study the properties of Rad- \oplus -supplemented modules. We prove that a projective module M is Rad- \oplus -supplemented if and only if it is \oplus -supplemented. It follows that a ring R is left perfect if and only if every projective left R-module is Rad- \oplus -supplemented. Every π -projective Rad- \oplus -supplemented module M has the property (P^*) , i.e., for every submodule $N \leq M$, there exists a decomposition $M = K \oplus L$ such that $K \leq N$ and $N \cap L \leq Rad(L)$. We prove that every left R-module has the property (P^*) if and only if R is an artinian serial ring and $J^2 = 0$, where J is the Jacobson radical of R. We show that the class of weakly distributive Rad- \oplus -supplemented modules is closed under factor modules, and we prove that a commutative ring R is an artinian serial ring if and only if every left R-module is Rad- \oplus -supplemented. We also prove that over dedekind domains every Rad-supplemented module is Rad- \oplus -supplemented. Finally, we completely determine the structure of Rad- \oplus -supplemented modules over local dedekind domains.

2 Rad-⊕-Supplemented Modules

Every \oplus -supplemented module is Rad- \oplus -supplemented; however, the converse is not always true (see [9, Example 3.11]). Now we prove that every projective Rad- \oplus -supplemented module is \oplus -supplemented. We start with the following key Lemma.

Lemma 2.1. Let M be a projective module. If M is Rad op op supplemented, then Rad(M) << M.

Proof. Let M = Rad(M) + N for some submodule N of M. Since M is Rad-supplemented, there exists a direct summand V of M such that M = N + V and $V \cap N \leq Rad(V)$. Then, it follows from [11, Theorem 5.3.4 (b)] that V is projective. Now, for all $v \in V$,

$$\alpha: V \longrightarrow \frac{M}{N}$$
, defined by $\alpha(v) := v + N$

is an epimorphism and $Ker(\alpha) = N \cap V$. That is, α is a generalized cover since $Ker(\alpha) = N \cap V \leq Rad(V)$. From M = Rad(M) + N, it follows immediately that $Rad(\frac{M}{N}) = \frac{M}{N}$. Then, since $\frac{M}{N}$ has a generalized projective cover, it is easy to see that $\frac{M}{N} = 0$. That is, M = N. Hence we obtain that Rad(M) << M.

Theorem 2.2. Let M be a projective module. M is Rad- \oplus -supplemented if and only if it is \oplus -supplemented.

Proof. Suppose that M is Rad- \oplus -supplemented. Since M is projective, it follows from Lemma 2.1 that Rad(M) << M. Then, by [7, Proposition 2.1], M is \oplus -supplemented. The converse is clear.

A ring R is called *left perfect* if every left R-module has a projective cover [17, 43.9]. It is well known that R is left perfect if and only if every projective left R-module is \oplus -supplemented. Using this fact along with the above Theorem we obtain the following:

Corollary 2.3. Let R be a ring. R is left perfect if and only if every projective left R-module is Rad- \oplus -supplemented.

Recall that a module M is called radical if M has no maximal submodules, that is, M = Rad(M). We denote by P(M) the sum of all radical submodules of M. It is easy to see that P(M) is the largest radical submodule of M. If P(M) = 0, M is called reduced. Note that $\frac{M}{P(M)}$ is reduced for every left R-module M.

Proposition 2.4. Let M be a module. If M is Rad- \oplus -supplemented, then the factor module $\frac{M}{P(M)}$ of M is \oplus -supplemented.

Proof. Firstly, we have $f(Rad(P(M))) \leq Rad(P(M))$ for each $f \in End_R(M)$ by $[6, 2.8 \ (1) \ (2)]$. Note that P(M) = Rad(P(M)). Thus $f(P(M)) \leq P(M)$ for each $f \in End_R(M)$. Since M is Rad- \oplus -supplemented, it follows from [9, Proposition 3.5.(1)] that $\frac{M}{P(M)}$ is Rad- \oplus -supplemented. Let $P(M) \leq U \leq M$.

Then there exists a direct summand $\frac{V}{P(M)}$ of $\frac{M}{P(M)}$ such that $\frac{M}{P(M)} = \frac{U}{P(M)} + \frac{V}{P(M)}$ and $\frac{U \cap V}{P(M)} \leq Rad(\frac{V}{P(M)})$. Since $\frac{M}{P(M)}$ is reduced, it follows from [4, Theorem 4.6] that $\frac{M}{P(M)}$ is coatomic, so $Rad(\frac{M}{P(M)}) << \frac{M}{P(M)}$. Thus $\frac{U \cap V}{P(M)} << \frac{M}{P(M)}$ and therefore $\frac{U \cap V}{P(M)} << \frac{V}{P(M)}$ by [17, 19.3.(5)]. This means that $\frac{V}{P(M)}$ is a supplement of $\frac{U}{P(M)}$ in $\frac{M}{P(M)}$. Hence $\frac{M}{P(M)}$ is \oplus -supplemented.

We say that a module M is completely $Rad - \oplus -supplemented$ if every direct summand of M is $Rad - \oplus -supplemented$ as in [15].

Corollary 2.5. P(M) is completely Rad- \oplus -supplemented for every R-module M.

Proof. Let M be a module and let N be a direct summand of P(M). Note that every radical module is Rad-⊕-supplemented. Therefore it suffices to show that N is radical. Since N is a direct summand of P(M), we can write $P(M) = N \oplus L$ for some submodule L of P(M). By [17, 21.6.(5)], we have $P(M) = Rad(P(M)) = Rad(N \oplus L) = Rad(N) \oplus Rad(L)$. By the modular law, $N = N \cap P(M) = N \cap (Rad(N) \oplus Rad(L)) = Rad(N) \oplus Rad(L) \cap N = Rad(N)$, i.e., N is radical. Hence P(M) is completely Rad-⊕-supplemented.

Proposition 2.6. Let M be a Rad- \oplus -supplemented module. If every Rad-supplement in M is a direct summand of M, then M is completely Rad- \oplus -supplemented.

Proof. Let N be a direct summand of M. Then we can write $M=N\oplus L$ for some submodule L of M. Since M is Rad- \oplus -supplemented, it is Rad-supplemented and therefore N is Rad-supplemented by $[2, 2.2 \ (2)]$. Let $U \leq N$, then U has a Rad-supplement V in N. Now we argue that V is a direct summand of N. Note that

$$M = N \oplus L = (U+V) + L = (U+L) + V,$$

and

$$(U+L) \cap V \le (U+V) \cap L + (L+V) \cap U = (L+V) \cap U \le U$$
.

Then $(U+L)\cap V \leq U\cap V \leq Rad(V)$. This means that V is a Rad-supplement of (U+L) in M. By our assumption, we can write $M=V\oplus V^{'}$ for some submodule $V^{'}$ of M. It follows by the modular law that $N=V\oplus V^{'}\cap N$. This completes the proof.

Let M be a module. M is said to have the property (P^*) if for every submodule $N \leq M$ there exists a direct summand K of M such that $K \leq N$ and $\frac{N}{K} \leq Rad(\frac{M}{K})$ [1]. Equivalently, for every submodule $N \leq M$ there exists a decomposition $M = K \oplus L$ such that $K \leq N$ and $N \cap L \leq Rad(L)$.

Proposition 2.7. Let M be a module. If M has the property (P^*) , then M is completely Rad- \oplus -supplemented.

Proof. Let N be a direct summand of M and let $U \leq N$. Since M has the property (P^*) , there exists a submodule X of U such that $M = X \oplus X'$ and $U \cap X' \leq Rad(X')$ for some submodule X' of M. By the modular law, we can write $N = X \oplus N \cap X'$. This means that $N \cap X'$ is a direct summand of N. Therefore $N = U + N \cap X'$.

Next, we prove that $U \cap (N \cap X') = U \cap X' \leq Rad(N \cap X')$. Let m be any element of $U \cap X'$. Since $U \cap X' \leq Rad(X')$, by [11, 9.1.3.(a)], we get Rm << X' so that Rm << M. Applying [17, 19.3.(5)] twice, we first obtain Rm << N and then $Rm << N \cap X'$. By [11, 9.1.3.(a)], we have $U \cap X' \leq Rad(N \cap X')$.

Recall that a π -projective module M is \oplus -supplemented if and only if the module is lifting [17, 41.15]. Now we shall prove analogous characterization for Rad- \oplus -supplemented modules.

Theorem 2.8. A π -projective module M is Rad- \oplus -supplemented if and only if M has the property (P^*) .

Proof. (\Longrightarrow) Let U be a submodule of M. Then, we have the sum M=U+V, where V is a direct summand of M. Since M is a π -projective module, we can write $M=X\oplus V$ for some submodule X of M by [6, 4.14.(1)]. It follows that, for $U\leq M$, there exists a decomposition $M=X\oplus V$ such that $X\leq U$ and $U\cap V\leq Rad(V)$. This means that M has the property (P^*) .

$(\Leftarrow$	e) By Proposition 2.7.				

Clearly lifting modules has the property (P^*) , but the converse is not true in general. For example, the left \mathbb{Z} -module \mathbb{Q} has the property (P^*) but it is not lifting. If a module M is projective, then we have the following fact.

Proposition 2.9. Let M be a module. If M is projective and has the property (P^*) , then M is lifting.

Proof. By Proposition 2.7, M is Rad- \oplus -supplemented. Applying Theorem 2.2, we obtain that M is \oplus -supplemented. Since M is projective, it is π -projective and thus M is lifting by [17, 41.15].

Before giving the following corollary which summarizes the combined results of Theorem 2.2, Theorem 2.8 and Proposition 2.9, we recall some known definitions. For a module M, consider the following conditions:

 (D_2) If N is a submodule of M such that $\frac{M}{N}$ is isomorphic to a direct summand of M, then N is a direct summand of M.

(D_3) For every direct summands K and L of M with M = K + L, $K \cap L$ is a direct summand of M.

In [12], a module M is called discrete if M is lifting and satisfies the property (D_2) . This is equivalent to M is supplemented, π -projective and direct projective (see [6, 27.1]). The module M is called quasi-discrete if it is lifting and satisfies the property (D_3) . We know that M is quasi-discrete if and only if it is supplemented and π -projective (see [6, 26.6]).

Corollary 2.10. For a projective module M, the following conditions are equivalent.

- 1. M is supplemented.
- 2. M is \oplus -supplemented.
- 3. M is Rad- \oplus -supplemented.
- 4. M has the property (P^*) .
- 5. M is lifting.
- 6. M is (quasi-) discrete.

Proof. $(1) \Longrightarrow (2)$ It is obvious according to [17, 41.15].

- $(2) \Longrightarrow (3)$ By Theorem 2.2.
- $(3) \Longrightarrow (4)$ It follows from Theorem 2.8.
- $(4) \Longrightarrow (5)$ It is proven in Proposition 2.9.
- (5) \Longrightarrow (6) Clear since projective modules are direct projective and π -projective.

$$(6) \Longrightarrow (1)$$
 Trivial.

Now, we shall characterize the rings whose modules have the property (P^*) in the following Corollary.

Corollary 2.11. The following statements are equivalent for a ring R.

- 1. Every left R-module has the property (P^*) .
- 2. Every left R-module is lifting.
- 3. R is an artinian serial ring and $J^2 = 0$, where J is the Jacobson radical of R.

Proof. (1) \Longrightarrow (2) Observe first that R is a left perfect ring. Let F be any projective R-module. By the hypothesis, F has the property (P^*) . Since F is projective, it is π -projective and so F is Rad- \oplus -supplemented by Theorem 2.8. It follows from Corollary 2.3 that R is left perfect.

For any module M, let $U \leq M$. By assumption, there exists a decomposition $M = U \oplus V$ such that $K \leq U$ and $U \cap V \leq Rad(V)$. Since R is left perfect, we have that $U \cap V << V$. This means that M is lifting.

 $(2) \iff (3) \text{ See } [6, 29.10].$

$$(2) \Longrightarrow (1)$$
 Clear.

A module M is called weakly distributive if every submodule N of M is weak distributive, i.e., $N = U \cap N + V \cap N$ whenever M = U + V (see [5]). It follows from [7, Example 4.1] that factor modules of a Rad- \oplus -supplemented module need not be Rad- \oplus -supplemented, in general. For weakly distributive modules we have the following fact:

Theorem 2.12. Every factor module of a weakly distributive Rad- \oplus -supplemented module is Rad- \oplus -supplemented.

Proof. Suppose that a module M is weakly distributive Rad- \oplus -supplemented. Let $N \leq U \leq M$. Then there exist submodules V and L of M such that M = U + V, $U \cap V \leq Rad(V)$ and $M = V \oplus L$. By [9, Lemma 3.4], $\frac{V+N}{N}$ is a Rad-supplement of $\frac{U}{N}$ of $\frac{M}{N}$. Since M is a weakly distributive module, we conclude that $N = V \cap N + L \cap N$. It follows that

$$(\tfrac{V+N}{N})\cap(\tfrac{L+N}{N})=\tfrac{(V+N)\cap L+N}{N}=\tfrac{(V+L\cap N)\cap L+N}{N}=\tfrac{V\cap L+L\cap N+N}{N}=0.$$

Hence $\frac{V+N}{N}$ is a direct summand of $\frac{M}{N}$. This means that $\frac{M}{N}$ is Rad- \oplus -supplemented.

It is proven in [9, Theorem 3.3] that every finite direct sum of Rad- \oplus -supplemented modules is Rad- \oplus -supplemented. The following example shows that the class of Rad- \oplus -supplemented is not closed under infinite direct sums.

Example 2.13. Let R be a local dedekind domain (i.e. DVR) with quotient $K \neq R$ (e.g. the ring $\mathbb{Z}_{(p)}$ containing all rational numbers of the form $\frac{a}{b}$ with $p \nmid b$ for any prime p in \mathbb{Z}). Since R is local, it follows that R is \oplus -supplemented and therefore R is Rad- \oplus -supplemented. On the other hand, by Corollary 2.3, there exists a projective R-module which is not Rad- \oplus -supplemented because R is not field.

A module M is said to be a *duo module* if every submodule N of M is fully invariant [13]. Now we prove that direct sums of Rad- \oplus -supplemented modules is Rad- \oplus -supplemented, under a certain condition: namely, when M

is a duo module. The proof of the next result is taken from [16, Theorem 1], but is given for the sake of completeness.

Proposition 2.14. Let M_i $(i \in I)$ be any infinite collection of Rad- \oplus -supplemented modules and let $M = \bigoplus_{i \in I} M_i$. If M is a duo module, then M is Rad- \oplus -supplemented.

Proof. Let $U \leq M$. Since M is a duo module, by [13, Lemma 2.1], $U = \bigoplus_{i \in I} (M_i \cap U)$. By the hypothesis, there exists a submodule V_i of M_i such that $M_i = M_i \cap U + V_i$ and $(M_i \cap U) \cap V_i = U \cap V_i \leq Rad(V_i)$ for every $i \in I$. Let $V = \bigoplus_{i \in I} V_i$. Note that V is a direct summand of M. Then

$$M = U + V$$

and

$$U \cap V = (\bigoplus_{i \in I} (M_i \cap U)) \cap (\bigoplus_{i \in I} V_i) \le \bigoplus_{i \in I} Rad(V_i) = Rad(V)$$

by [17, 21.6.(5)]. It follows that V is a Rad-supplement of U in M. Thus M is Rad- \oplus -supplemented. \square

It is shown in [10, Theorem 1.1] that a commutative ring R is an artinian serial ring if and only if every left R-module is \oplus -supplemented. Now we generalize this fact in the next Corollary, characterizing the commutative rings in which modules are Rad- \oplus -supplemented.

Corollary 2.15. Let R be any commutative ring. Then R is an artinian serial ring if and only if every left R-module is Rad- \oplus -supplemented.

Proof. Suppose that every left R-module is Rad- \oplus -supplemented. Then every projective left R-module is Rad- \oplus -supplemented and so, by Corollary 2.3, R is left perfect. It follows that any module has a small radical. Therefore a Rad- \oplus -supplemented module over the ring is \oplus -supplemented. So every module is \oplus -supplemented. Thus, the proof follows from [10, Theorem 1.1].

Recall that a module M is called w-local if M has a unique maximal submodule. It is clear that M is w-local if and only if Rad(M) is maximal. Every local module is w-local. However, a w-local module is not necessarily local (see [3]). It is clear that if a w-local module M is finitely generated, then it is local.

Lemma 2.16. Let R be a local commutative ring and let M be a uniform R-module. Suppose that every submodule of M is Rad- \oplus -supplemented. Then M is uniserial.

Proof. By [14, Lemma 6.2], it suffices to show that every finitely generated submodule of M is local. Let K be any finitely generated submodule of M. Then K contains a maximal submodule L. By the assumption, L has a Rad-supplement V in K such that $V \oplus V' = K$ for some submodule V' of K. Note that $V' \subseteq M$. It follows from [3, Lemma 3.3] that V has a unique maximal submodule, i.e., V is w-local as in [3]. Therefore V is local. Since M is uniform and L is maximal, we have V' = 0. In conclusion V = K.

Corollary 2.17. Let R be a local commutative ring with a maximal ideal J. Suppose that every submodule of $E(\frac{R}{J})$ is Rad- \oplus -supplemented, where $E(\frac{R}{J})$ is the injective hull of the simple module $\frac{R}{J}$. Then R is a uniserial noetherian ring.

Proof. Since $E(\frac{R}{J})$ is uniform, it follows from Lemma 2.16 and [14, Lemma 6.2 (Corollary)] that R is uniserial. Therefore R is a uniserial noetherian ring by [14, Lemma 6.3].

A ring R is called *semilocal* if $\frac{R}{J}$ is semisimple, where J is the Jacobson radical of R. We know that a semilocal ring R is left perfect if and only if R is a left max ring (i.e. every left R-module has a maximal submodule).

Proposition 2.18. The following conditions on a semilocal ring R are equivalent:

- 1. Every w-local module is semiperfect.
- 2. Every w-local module is generalized semiperfect.
- 3. R is left perfect.

Proof. Clearly, we have $(3) \Longrightarrow (1) \Longrightarrow (2)$. Finally, it remains to prove the implication $(2) \Longrightarrow (3)$. Let M be any w-local module. Assume that, for $N \leq M$, Rad(M) + N = M. Then $Rad(\frac{M}{N})$ has no maximal submodules. It follows from proof of Lemma 2.1 that Rad(M) << M. So M is local. By [3, Lemma 3.1], R is left perfect.

3 Rad-⊕-Supplemented Modules Over Commutative Domains

Throughout this section, we consider only commutative domains. Our aim is to prove that a Rad-supplemented module is Rad- \oplus -supplemented over dedekind domains. To this aim, we need the following key Lemma:

Lemma 3.1. Let M be a module over a dedekind domain. The following are equivalent:

- 1. M is Rad- \oplus -supplemented.
- 2. $\frac{M}{P(M)}$ is Rad- \oplus -supplemented.
- 3. $\frac{M}{P(M)}$ is \oplus -supplemented.

Proof. (1) \Longrightarrow (3) It follows from Proposition 2.4.

- $(3) \Longrightarrow (2)$ Clear.
- $(2)\Longrightarrow (1)$ Since every radical module over a dedekind domain is injective, the submodule P(M) of M is injective. Therefore, there exists a submodule N of M such that $M=P(M)\oplus N$. From (2), N is Rad- \oplus -supplemented. By Corollary 2.5 and [9, Theorem 3.3], M is Rad- \oplus -supplemented. \square

Note that Lemma 3.1 is not true for \oplus -supplemented modules, in general (see [9, Example 3.11].

Theorem 3.2. Let R be a dedekind domain. Then every Rad-supplemented R-module is Rad- \oplus -supplemented.

Proof. Let M be any Rad-supplemented module over the domain R. Then, by $[2,\ 2.2.(2)],\ \frac{M}{P(M)}$ is Rad-supplemented. Applying $[4,\ Proposition\ 7.3],$ we conclude that $\frac{M}{P(M)}$ is supplemented. Therefore $\frac{M}{P(M)}$ is \oplus -supplemented according to $[12,\ Proposition\ A.7$ and $Proposition\ A.8]$. Hence M is Rad- \oplus -supplemented by Lemma 3.1.

The structure of *Rad*-supplemented modules over local dedekind domains is completely determined in [4, Theorem 7.2]. Using this Theorem along with Theorem 3.2 we obtain:

Corollary 3.3. Let R be a local dedekind domain with a quotient field K and let M be an R-module. Then M is Rad- \oplus -supplemented if and only if $M \cong R^n \oplus K^{(I)} \oplus (\frac{K}{R})^{(J)} \oplus N$ for some bounded R-module N. Here n is a nonnegative integer, and I and J are any index sets.

Proof. This equivalence follows from Theorem 3.2 and [4, Theorem 7.2].

Zöschinger proved in [19, Theorem 3.1 (Folgerung)] that every supplemented module over a dedekind domain is the direct sum of hollow modules. Using this fact we obtain a new characterization of dedekind domains.

Proposition 3.4. Let R be a local noetherian ring. Every Rad-supplemented R-module is the direct sum of hollow modules if and only if R is a dedekind domain.

Proof. Suppose that R is a dedekind domain. Let M be any Rad-supplemented R-module. Then we can write $M = P(M) \oplus N$ for some submodule N of M. Since R is a local dedekind domain, P(M) is the direct sum of hollow radical modules. By Lemma 3.1, N is supplemented and therefore N is the direct sum of hollow modules according to [19, Theorem 3.1 (Folgerung)]. It follows immediately that M is the direct sum of hollow modules. The converse is clear by [19, Lemma 3.2].

Acknowledgement. The author would like to thank the referees for their valuable suggestions and comments.

References

- [1] Al-Khazzi, I., and Smith, P.F., "Modules with chain conditions on superfluous submodules, *Communications in Algebra*, Vol. 19(8), pp. 2331-2351, 1991.
- [2] Al-Takhman, K., Lomp, C., and Wisbauer, R., " τ -complemented and τ -supplemented modules", Algebra Discrete Math., Vol. 3, pp. 1-16, 2006.
- [3] Büyükaşık, E., and Lomp, C., "On a recent generalization of semiperfect rings", Bull. Aust. Math. Soc., Vol. 78(2), pp. 317-325, 2008.
- [4] Büyükaşık, E., Mermut, E., and Özdemir S., "Rad-supplemented modules", Rend. Sem. Mat. Univ. Padova, Vol. 124, pp. 157-177, 2010.
- [5] Büyükaşık, E., and Demirci, Y., "Weakly distributive modules. Applications to supplement submodules", *Proc. Indian Acad. Sci. (Math. Sci.)*, Vol. 120, pp. 525-534, 2010.
- [6] Clark, J., Lomp, C., Vanaja, N., and Wisbauer, R., "Lifting Modules. Supplements and projectivity in module theory", Frontiers in Mathematics, pp. 406, Birkhäuser-Basel, 2006.
- [7] Ecevit, Ş., Koşan M. T., and Tribak, R., "Rad-⊕-supplemented modules and cofinitely Rad-⊕-supplemented modules", Algebra Colloquium (To appear).
- [8] Harmancı, A., Keskin, D., and Smith, P.F., "On ⊕-supplemented modules", *Acta Math. Hungar.*, Vol. 83(1-2), pp. 161-169, 1999.
- [9] Çalışıcı, H., and Türkmen, E., "Generalized ⊕-supplemented modules", *Algebra Discrete Math.*, Vol. 10(2), pp. 10-18, 2010.

- [10] Idelhadj, A., and Tribak, R., "Modules for which every submodule has a supplement that is a direct summand", *The Arabian Journal for Sciences and Engineering*, Vol. 25(2C), pp. 179-189, 2000.
- [11] Kasch, F., "Modules and rings", Academic Press Inc., 1982.
- [12] Mohamed, S.H., and Müller, B.J. "Continuous and discrete modules", London Math. Soc. LNS 147 Cambridge University, pp. 190, Cambridge, 1990.
- [13] Özcan, A. Ç., Harmacı, A., and Smith, P.F., "Duo modules", Glasgow Math. J., Vol. 48, pp. 533-545, 2006.
- [14] Sharpe, D. W., and Vamos, P., Injective modules, Cambridge University Press, Cambridge, 1972.
- [15] Talebi, Y., Hamzekolaei, A.R.M., and Tütüncü, D.K., "On Rad- \oplus -supplemented modules", $Hadronic\ J$., Vol. 32, pp. 505-512, 2010.
- [16] Türkmen, E., and Pancar, A., "Some properties of Rad-supplemented modules", *International Journal of the Physical Sciences*, Vol. 6(35), pp. 7904-7909, 2011.
- [17] Wisbauer, R., "Foundations of modules and rings", Gordon and Breach, 1991.
- [18] Xue, W., "Characterizations of semiperfect and perfect modules", *Publicacions Matematiqes*, Vol. 40(1), pp. 115-125, 1996.
- [19] Zöschinger, H., "Komplementierte moduln über Dedekindringen", J. Algebra, Vol. 29, pp.42–56, 1974.

Ergül Türkmen, Department of Mathematics, Amasya University, Ipekkoy, 05100, Amasya, Turkey. Email: ergulturkmen@hotmail.com