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Abstract
The goal of this note is to give an elementary characterization of the
well-known quaternion group (s by using its subgroup lattice.

1 Introduction

One of the most famous finite groups is the quaternion group Qg. This is
usually defined as the subgroup of the general linear group GL(2, C) generated
by the matrices

(50 () i (5 ().

Using matrix multiplication, we have Qg = {1, +i, 4j, +k} and i® = j =
k? = —1,ij =—ji = k, jk =—kj =i, ki =—ik = j. Moreover, 1 is the identity
of Qs and -1 commutes with all elements of QJs. Remark that i, j, k have
order 4 and that any two of them generate the entire group. In this way, a
presentation of Qg is

Qs = {(a,b | at=1,a*>=0% b tab= a_1>

(take, for instance, i = a, j = b and k = ab). We also observe that the
subgroup lattice L(Qs) consists of Qg itself and of the cyclic subgroups (1),
(1), (i), (§), (k). It is well-known that Qg is a hamiltonian group, i.e. a
non-abelian group all of whose subgroups are normal. More precisely
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Qs is the hamiltonian group with the smallest order.
Other basic properties of the subgroups of QJg are the following:
— excepting Qg, they are cyclic;

— (—1) is a breaking point in the poset of cyclic subgroups of Qs, that is
any cyclic subgroup of Qg either contains (—1) or is contained in (—1);

— (i), (j) and (k) are irredundant, that is no one is contained in the union
of the other two, and they determine a covering of Qg, that is Qg =

() U ) u k).

These properties can be easily extended to some simple but very nice charac-
terizations of Qg (see e.g. [7]), namely

Qs 1s the unique non-abelian p-group all of whose proper subgroups
are cyclic,

Qs is the finite non-cyclic group with the smallest order whose poset
of cyclic subgroups has a unique breaking point

and
Qs is the unique non-abelian group that can be covered by any three
wrredundant proper subgroups,
respectively.

The purpose of this note is to provide a new characterization of Qg by
using another elementary property of L(Qs). We recall first a subgroup lattice
concept introduced by Schmidt [3] (see also [4]). Given a lattice L, a group
G is said to be L-free if L(G) has no sublattice isomorphic to L. Interesting
results about L-free groups have been obtained for several particular lattices
L, as the diamond lattice M5 and the pentagon lattice N5 (recall here only
that a group is Mj5-free if and only if it is locally cyclic, and Ns-free if and
only if it is a modular group).

Clearly, for a finite group G the above concept leads to the more general
problem of counting the number of sublattices of L(G) that are isomorphic to
a certain lattice. Following this direction, our next definition is very natural.

Definition 1.1. Let L be a lattice. A group G is called almost L-free if its
subgroup lattice L(G) contains a unique sublattice isomorphic to L.
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Remark that both the Klein’s group Zs X Zs and Qg are almost Ms-free
(it is well-known that L(Zs X Z2) = My, while for Qg the (unique) diamond is
determined by the subgroups (—1), (i), (j), (k) and Qg). Our main theorem
proves that these two groups exhaust all finite almost Ms5-free groups.

Theorem 1.2. Let G be a finite almost Ms-free group. Then either G =
ZQXZQ OT‘GgQg.

In particular, we infer the following characterization of Q)s.
Corollary 1.3. Qg is the unique finite non-abelian almost Ms-free group.

Finally, we observe that there is no finite almost Nj-free group (indeed, if
G would be such a group, then the subgroups that form the pentagon of L(G)
must be normal; in other words, the normal subgroup lattice of G would not
be modular, a contradiction).

Most of our notation is standard and will usually not be repeated here.
Basic notions and results on groups can be found in [1] and [5]. For subgroup
lattice concepts we refer the reader to [2] and [6].

2 Proof of the main theorem

First of all, we prove our main theorem for p-groups.

Lemma 2.1. Let G be a finite almost Ms-free p-group for some prime p.
Then p = 2 and we have either G = Zy X Zy or G = Qs.

Proof. Let M be a minimal normal subgroup of G.

If there is N € L(G) with | N | =p and N # M, then MN € L(G) and
MN = Z,, x Zy. Obviously, Z, x Z, has more than one diamond for p > 3.
So, we have p = 2 and we easily infer that G = Zy X Zs.

If M is the unique minimal subgroup of G, then by (4.4) of [5], II, G
is a generalized quaternion 2-group, that is there exists an integer n > 3
such that G = Qan. If n > 4, then G contains a subgroup H = @Q9»-1 and
therefore G/®(G) = Zg X Zs = H/®(H). This shows that G has more than
one diamond, a contradiction. Hence n = 3 and G =2 Qg, as desired. n

We are now able to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. We will proceed by induction on | G |. Let H be
the top of the unique diamond of G. We distinguish the following two cases.
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Case 1. H=G.

We infer that every proper subgroup of G is M5-free and therefore cyclic.
Assume that G is not a p-group. Then the Sylow subgroups of G are cyclic.
If all these subgroups would be normal, then G would be the direct product
of its cyclic Sylow subgroups and hence it would be cyclic, a contradiction.
It follows that there is a prime ¢ such that G has more than one Sylow g-
subgroup. Let S,T € Syl,(G) with S # T. Since S and T are cyclic, SAT
is normal in SV T and the quotient SV T/S AT is not cyclic (because it
contains two different Sylow g-subgroups). Hence SV T = G and G/S AT is
almost Ms-free. If S AT # 1, then the inductive hypothesis would imply that
G/S AT would be a 2-group (isomorphic to Zs x Zg or to Qg), contradicting
the fact that it has two different Sylow g-subgroups. Thus S AT = 1. This
shows that Syl,(G) U {1, G} is a sublattice of L(G). Since G is almost Ms-
free, one obtains | Syl,(G) |= 3. By Sylow’s theorem we infer that ¢ = 2
and | G : Ng(S) |=]| Syly(G) |= 3. In this way, we can choose a 3-element
z € G\ Ng(5). It follows that X = (x) operates transitively on Syl,(G).
Then for every Q € Syl,(G), we have Q VX > QV Q® = G and consequently
@V X = G. On the other hand, we obviously have @ A X = 1 because @
and X are of coprime orders. So {1, 5,7, X, G} is a second sublattice of L(G)
isomorphic to Mj, contradicting our hypothesis. Hence G is a p-group and
the conclusion follows from Lemma 2.1.

Case 2. H #G.

By the inductive hypothesis we have either H = Zy X Zo or H = Qs.
We also infer that H is the unique Sylow 2-subgroup of G. Let p be an odd
prime dividing | G | and K be a subgroup of order p of G. Then HK is an
almost Mj5-free subgroup of G, which is not isomorphic to Zs X Zy or to Qs.
This shows that HK = G. Denote by n, the number of Sylow p-subgroups
of G. If n, =1, then either G = Zy X Zo X Zyp or G = Qg X Zy, . It is clear
that the subgroup lattices of these two direct products contain more than one
diamond, contradicting our assumption. If n, # 1, then n, > p+1 > 4 and so
we can choose two distinct Sylow p-subgroups K; and Ky. For H & Zy X Zo
one obtains that L; = {1, H, K1, K5, G} forms a diamond of L(G), which is
different from L(H), a contradiction. For H = Qs the same thing can be
said by applying a similar argument to the quotient G/Hj, where Hy is the
(unique) subgroup of order 2 of G. This completes the proof. [

We end our note by indicating three open problems concerning this topic.

Problem 2.2. Describe the (almost) L-free groups, where L is a lattice
different from My and Ns.
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Problem 2.3 Determine explicitly the number of sublattices isomorphic to
a given lattice that are contained in the subgroup lattices of some important
classes of finite groups.

Problem 2.4. Extend the concepts of L-free group and almost L-free group to
other remarkable posets of subgroups of a group (e.g. what can be said about
a group whose normal subgroup lattice/poset of cyclic subgroups contains a
certain number of sublattices isomorphic to a given lattice ?).

Acknowledgements. The author is grateful to the reviewer for its remarks
which improve the previous version of the paper.
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