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A characterization of the quaternion group
To Professor Mirela Ştefănescu, at her 70th anniversary

Marius Tărnăuceanu

Abstract

The goal of this note is to give an elementary characterization of the
well-known quaternion group Q8 by using its subgroup lattice.

1 Introduction

One of the most famous finite groups is the quaternion group Q8. This is
usually defined as the subgroup of the general linear group GL(2,C) generated
by the matrices

1 =

(
1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 1
−1 0

)
, k =

(
0 i
i 0

)
.

Using matrix multiplication, we have Q8 = {±1, ±i, ±j, ±k} and i2 = j2 =
k2 = −1, ij =−ji = k, jk =−kj = i, ki =−ik = j. Moreover, 1 is the identity
of Q8 and -1 commutes with all elements of Q8. Remark that i, j, k have
order 4 and that any two of them generate the entire group. In this way, a
presentation of Q8 is

Q8 = ⟨a, b | a4 = 1, a2 = b2, b−1ab = a−1⟩

(take, for instance, i = a, j = b and k = ab). We also observe that the
subgroup lattice L(Q8) consists of Q8 itself and of the cyclic subgroups ⟨1⟩,
⟨−1⟩, ⟨i⟩, ⟨j⟩, ⟨k⟩. It is well-known that Q8 is a hamiltonian group, i.e. a
non-abelian group all of whose subgroups are normal. More precisely
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Q8 is the hamiltonian group with the smallest order.

Other basic properties of the subgroups of Q8 are the following:

– excepting Q8, they are cyclic;

– ⟨−1⟩ is a breaking point in the poset of cyclic subgroups of Q8, that is
any cyclic subgroup of Q8 either contains ⟨−1⟩ or is contained in ⟨−1⟩;

– ⟨i⟩, ⟨j⟩ and ⟨k⟩ are irredundant, that is no one is contained in the union
of the other two, and they determine a covering of Q8, that is Q8 =
⟨i⟩ ∪ ⟨j⟩ ∪ ⟨k⟩.

These properties can be easily extended to some simple but very nice charac-
terizations of Q8 (see e.g. [7]), namely

Q8 is the unique non-abelian p-group all of whose proper subgroups
are cyclic,

Q8 is the finite non-cyclic group with the smallest order whose poset
of cyclic subgroups has a unique breaking point

and

Q8 is the unique non-abelian group that can be covered by any three
irredundant proper subgroups,

respectively.

The purpose of this note is to provide a new characterization of Q8 by
using another elementary property of L(Q8). We recall first a subgroup lattice
concept introduced by Schmidt [3] (see also [4]). Given a lattice L, a group
G is said to be L-free if L(G) has no sublattice isomorphic to L. Interesting
results about L-free groups have been obtained for several particular lattices
L, as the diamond lattice M5 and the pentagon lattice N5 (recall here only
that a group is M5-free if and only if it is locally cyclic, and N5-free if and
only if it is a modular group).

Clearly, for a finite group G the above concept leads to the more general
problem of counting the number of sublattices of L(G) that are isomorphic to
a certain lattice. Following this direction, our next definition is very natural.

Definition 1.1. Let L be a lattice. A group G is called almost L-free if its
subgroup lattice L(G) contains a unique sublattice isomorphic to L.
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Remark that both the Klein’s group Z2 × Z2 and Q8 are almost M5-free
(it is well-known that L(Z2×Z2) ∼= M5, while for Q8 the (unique) diamond is
determined by the subgroups ⟨−1⟩, ⟨i⟩, ⟨j⟩, ⟨k⟩ and Q8). Our main theorem
proves that these two groups exhaust all finite almost M5-free groups.

Theorem 1.2. Let G be a finite almost M5-free group. Then either G ∼=
Z2 × Z2 or G ∼= Q8.

In particular, we infer the following characterization of Q8.

Corollary 1.3. Q8 is the unique finite non-abelian almost M5-free group.

Finally, we observe that there is no finite almost N5-free group (indeed, if
G would be such a group, then the subgroups that form the pentagon of L(G)
must be normal; in other words, the normal subgroup lattice of G would not
be modular, a contradiction).

Most of our notation is standard and will usually not be repeated here.
Basic notions and results on groups can be found in [1] and [5]. For subgroup
lattice concepts we refer the reader to [2] and [6].

2 Proof of the main theorem

First of all, we prove our main theorem for p-groups.

Lemma 2.1. Let G be a finite almost M5-free p-group for some prime p.
Then p = 2 and we have either G ∼= Z2 × Z2 or G ∼= Q8.

Proof. Let M be a minimal normal subgroup of G.
If there is N ∈ L(G) with | N | = p and N ̸= M , then MN ∈ L(G) and

MN ∼= Zp × Zp. Obviously, Zp × Zp has more than one diamond for p ≥ 3.
So, we have p = 2 and we easily infer that G ∼= Z2 × Z2.

If M is the unique minimal subgroup of G, then by (4.4) of [5], II, G
is a generalized quaternion 2-group, that is there exists an integer n ≥ 3
such that G ∼= Q2n . If n ≥ 4, then G contains a subgroup H ∼= Q2n−1 and
therefore G/Φ(G) ∼= Z2 × Z2

∼= H/Φ(H). This shows that G has more than
one diamond, a contradiction. Hence n = 3 and G ∼= Q8, as desired.

We are now able to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. We will proceed by induction on | G | . Let H be
the top of the unique diamond of G. We distinguish the following two cases.
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Case 1. H = G.
We infer that every proper subgroup of G is M5-free and therefore cyclic.

Assume that G is not a p-group. Then the Sylow subgroups of G are cyclic.
If all these subgroups would be normal, then G would be the direct product
of its cyclic Sylow subgroups and hence it would be cyclic, a contradiction.
It follows that there is a prime q such that G has more than one Sylow q-
subgroup. Let S, T ∈ Sylq(G) with S ̸= T . Since S and T are cyclic, S ∧ T
is normal in S ∨ T and the quotient S ∨ T/S ∧ T is not cyclic (because it
contains two different Sylow q-subgroups). Hence S ∨ T = G and G/S ∧ T is
almost M5-free. If S ∧ T ̸= 1, then the inductive hypothesis would imply that
G/S ∧ T would be a 2-group (isomorphic to Z2 × Z2 or to Q8), contradicting
the fact that it has two different Sylow q-subgroups. Thus S ∧ T = 1. This
shows that Sylq(G) ∪ {1, G} is a sublattice of L(G). Since G is almost M5-
free, one obtains | Sylq(G) |= 3. By Sylow’s theorem we infer that q = 2
and | G : NG(S) |= | Sylq(G) |= 3. In this way, we can choose a 3-element
x ∈ G \ NG(S). It follows that X = ⟨x⟩ operates transitively on Sylq(G).
Then for every Q ∈ Sylq(G), we have Q∨X ≥ Q∨Qx = G and consequently
Q ∨ X = G. On the other hand, we obviously have Q ∧ X = 1 because Q
and X are of coprime orders. So {1, S, T,X,G} is a second sublattice of L(G)
isomorphic to M5, contradicting our hypothesis. Hence G is a p-group and
the conclusion follows from Lemma 2.1.

Case 2. H ̸= G.
By the inductive hypothesis we have either H ∼= Z2 × Z2 or H ∼= Q8.

We also infer that H is the unique Sylow 2-subgroup of G. Let p be an odd
prime dividing | G | and K be a subgroup of order p of G. Then HK is an
almost M5-free subgroup of G, which is not isomorphic to Z2 × Z2 or to Q8.
This shows that HK = G. Denote by np the number of Sylow p-subgroups
of G. If np = 1, then either G ∼= Z2 × Z2 × Zp or G ∼= Q8 × Zp . It is clear
that the subgroup lattices of these two direct products contain more than one
diamond, contradicting our assumption. If np ̸= 1, then np ≥ p+1 ≥ 4 and so
we can choose two distinct Sylow p-subgroups K1 and K2. For H ∼= Z2 × Z2

one obtains that L1 = {1, H,K1,K2, G} forms a diamond of L(G), which is
different from L(H), a contradiction. For H ∼= Q8 the same thing can be
said by applying a similar argument to the quotient G/H0, where H0 is the
(unique) subgroup of order 2 of G. This completes the proof.

We end our note by indicating three open problems concerning this topic.

Problem 2.2. Describe the (almost) L-free groups, where L is a lattice
different from M5 and N5.
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Problem 2.3 Determine explicitly the number of sublattices isomorphic to
a given lattice that are contained in the subgroup lattices of some important
classes of finite groups.

Problem 2.4. Extend the concepts of L-free group and almost L-free group to
other remarkable posets of subgroups of a group (e.g. what can be said about
a group whose normal subgroup lattice/poset of cyclic subgroups contains a
certain number of sublattices isomorphic to a given lattice ?).

Acknowledgements. The author is grateful to the reviewer for its remarks
which improve the previous version of the paper.
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