

Vol. 21(1), 2013, 201–208

On Rad- D_{12} **Modules**

Yahya Talebi, Ali Reza Moniri Hamzekolaee and Derya Keskin Tütüncü

Abstract

Let M be a right R-module. We call M Rad- D_{12} , if for every submodule N of M, there exist a direct summand K of M and an epimorphism $\alpha : K \to M/N$ such that $Ker\alpha \subseteq \operatorname{Rad}(K)$. We show that a direct summand of a Rad- D_{12} module need not be a Rad- D_{12} module. We investigate completely Rad- D_{12} modules (modules for which every direct summand is a Rad- D_{12} module). We also show that a direct sum of Rad- D_{12} modules need not be a Rad- D_{12} module. Then we deal with some cases of direct sums of Rad- D_{12} modules.

1 Introduction

Throughout this paper, we assume that all rings are associative with identity and all modules are unital right modules. Let M be a module. The symbols, " \leq ", " \ll " and "Rad(M)" will denote a submodule, a small submodule and the Jacobson radical of M, respectively. The module M is said to have (D_{12}) (or is a (D_{12}) -module) if for every submodule N of M, there exist a direct summand K of M and an epimorphism $\alpha : K \longrightarrow M/N$ such that $Ker\alpha \ll K$ (see [7]). In this paper we define Rad- D_{12} modules. The module M is said to have Rad- D_{12} (or is a Rad- D_{12} module) if for every submodule N of M, there exist a direct summand K of M and an epimorphism $\alpha : K \longrightarrow M/N$ such that $Ker\alpha \subseteq Rad(K)$. It is easy to see that every radical module M (i.e.

Key Words: Small submodule, Rad-⊕-supplemented module, Rad-D₁₂ modules, Duo module. 2010 Mathematics Subject Classification: Primary 16D10; Secondary 16P70.

²⁰¹⁰ Mathematics Subject Classification: Primary 16D10; Secondary 16P7 Received: January, 2011. Accepted: February, 2012.

²⁰¹

 $\operatorname{Rad}(M) = M$ is a Rad- D_{12} module. Therefore the \mathbb{Z} -module $\mathbb{Q}_{\mathbb{Z}}$ is Rad- D_{12} , but it is not a (D_{12}) -module.

Let M be a module. A submodule N of M is called a weak Rad-supplement (Rad-supplement) of a submodule L of M if M = N + L and $N \cap L \subseteq \text{Rad}(M)$ $(M = N + L \text{ and } N \cap L \subseteq \text{Rad}(N))$. The module M is called weakly Radsupplemented (Rad-supplemented) if every submodule N of M has a weak Rad-supplement (Rad-supplement). Rad-supplement submodule is defined in [13]. This new concept is also studied in [12] and [3]. According to [5], M is called Rad- \oplus -supplemented if every submodule of M has a Rad-supplement that is a direct summand of M.

In Section 2, we investigate some properties of Rad- D_{12} modules. We prove that the class of Rad- D_{12} modules contains strictly the class of Rad- \oplus -supplemented modules. In Section 3, we will be concerned with direct summands of Rad- D_{12} modules. We provide a characterization of direct summands having Rad- D_{12} . Section 4 deals with direct sums of Rad- D_{12} modules. We show that a direct sum of Rad- D_{12} modules is Rad- D_{12} if the direct sum is a duo module.

2 Rad- D_{12} modules

In this section we will show that the class of $\operatorname{Rad}-D_{12}$ modules contains properly the class of $\operatorname{Rad}-\oplus$ -supplemented modules.

Proposition 2.1. Let M be a Rad- \oplus -supplemented module. Then M is Rad- D_{12} .

Proof. Let N be a submodule of M. Since M is Rad- \oplus -supplemented, then there exist direct summands K and K' of M such that $M = N + K = K \oplus K'$ and $N \cap K \subseteq \operatorname{Rad}(K)$. Now we have the epimorphism g from K to M/Nwhich is defined by $k \mapsto k + N$ with $Kerg = N \cap K \subseteq \operatorname{Rad}(K)$. Hence M is a Rad- D_{12} module.

Example 2.2. [7, Examples 4.5 and 4.6] Let R be a local artinian ring with radical W such that $W^2 = 0$, Q = R/W is commutative, $dim(_QW) = 2$ and $dim(W_Q) = 1$. Consider the indecomposable injective right R-module $U = [(R \oplus R)/D]$ with W = Ru + Rv and $D = \{(ur, -vr) \mid r \in R\}$. By [7, Example 4.5], U is not Rad- D_{12} . Note that U is Rad-supplemented. Now let S = R/W, the simple R-module, and $M = U \oplus S$. By [7, Example 4.6], M is Rad- D_{12} , but not Rad- \oplus -supplemented.

Example 2.3. Let $M = (\mathbb{Z}/p\mathbb{Z}) \oplus (\mathbb{Z}/p^n\mathbb{Z})$ where p is a prime number and n is a nonzero positive integer. By [6, Corollary 1.6] and Proposition 2.1, M is Rad- D_{12} .

A module M is called *hereditary*, if every submodule of M is projective. Recall from [13] that a module M is called *generalized semiperfect* if for every factor module of M, namely M/N, there exist a projective module P and an epimorphism $f: P \longrightarrow M/N$ such that $Kerf \subseteq Rad(P)$. In this case f is a generalized projective cover of M/N.

Theorem 2.4. The following are equivalent for a hereditary module M:

- (1) M is generalized semiperfect;
- (2) M is Rad- D_{12} ;
- (3) M is Rad- \oplus -supplemented;
- (4) M is Rad-supplemented.

Proof. (1) \Rightarrow (4) By [13, Proposition 2.1].

- $(4) \Rightarrow (3)$ It is by [11, Lemma 2.1].
- $(3) \Rightarrow (2)$ By Proposition 2.1.

 $(2) \Rightarrow (1)$ Clear.

Let M be a module and $U \leq M$. Then U is called QSL in M if (A+U)/U is a direct summand of M/U, then there exists a direct summand P of M such that $P \leq A$ and A + U = P + U (see [1]).

Proposition 2.5. Let M be a weakly Rad-supplemented module with Rad(M)QSL in M. Then M is $Rad-D_{12}$.

Proof. Let $N \leq M$. Since M is weakly Rad-supplemented, $(N+\operatorname{Rad}(M))/\operatorname{Rad}(M)$ is a direct summand of $M/\operatorname{Rad}(M)$. Since $\operatorname{Rad}(M)$ is QSL in M, there exists a decomposition $M = K \oplus L$ such that $K \leq N$ and $N + \operatorname{Rad}(M) = K + \operatorname{Rad}(M)$. Now consider the epimorphism $\alpha : L \to M/N$ defined by $\alpha(l) = l + N$ ($l \in L$). It is easy to see that $Ker\alpha \subseteq \operatorname{Rad}(L)$. Hence M is $\operatorname{Rad}-D_{12}$. \Box

Let M be a module. We say that M is *w*-local if M has a unique maximal submodule. Clearly M is w-local if and only if Rad(M) is maximal in M.

Lemma 2.6. Let M be a Rad- D_{12} module. If $Rad(M) \neq M$, then M has a nonzero w-local direct summand.

Proof. Let N be a maximal submodule of M. Then there exist a direct summand K of M and an epimorphism $\alpha : K \longrightarrow M/N$ such that $Ker \alpha \subseteq \operatorname{Rad}(K)$. Clearly, $K \neq 0$ and $Ker \alpha$ is a maximal submodule of K. Therefore $Ker \alpha = \operatorname{Rad}(K)$ and hence K is a nonzero w-local direct summand of M. \Box

Corollary 2.7. If M is a Rad- D_{12} module with $Rad(M) \ll M$, then M contains a local direct summand.

Proof. Since $\operatorname{Rad}(M) \ll M$, M is a (D_{12}) -module. Now apply the proof of Lemma 2.6.

3 Direct summands of Rad- D_{12} modules

The following example exhibits a Rad- D_{12} module that contains a direct summand which is not a Rad- D_{12} module.

Example 3.1. Consider the right *R*-module $M = U \oplus S$ in Example 2.2. The module *M* is Rad- D_{12} , but the submodule *U* is not Rad- D_{12} .

Let M be a module. We will say that M is *completely* Rad- D_{12} if every direct summand of M is Rad- D_{12} .

Recall from [2] that a module M is said to have (P^*) property if for any submodule N of M there exists a direct summand D of M such that $D \subseteq N$ and $N/D \subseteq \operatorname{Rad}(M/D)$, equivalently, for every submodule N of M there exists a decomposition $M = K \oplus K'$ such that $K \subseteq N$ and $N \cap K' \subseteq \operatorname{Rad}(K')$. It is easy to check that every module with (P^*) is Rad - \oplus -supplemented and hence $\operatorname{Rad}-D_{12}$ by Proposition 2.1.

Proposition 3.2. A module with (P^*) property is completely Rad- D_{12} .

Proof. By [2, Lemma 16], every direct summand of a module with (P^*) has (P^*) . Now the result follows from the fact that every module with (P^*) is Rad- D_{12} .

Example 3.3. (i) Let F be a field and R the upper triangular matrix ring $\begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$. For submodules $A = \begin{pmatrix} 0 & F \\ 0 & F \end{pmatrix}$ and $B = \begin{pmatrix} F & F \\ 0 & 0 \end{pmatrix}$, let $M = A \oplus (R/B)$. By [8, Lemma 3], M has (P^*) . So by Proposition 3.2, M is completely Rad- D_{12} .

(ii) Let $M = \mathbb{Z}(p_1^{\infty}) \oplus ... \oplus \mathbb{Z}(p_n^{\infty})$ where p_1, \ldots, p_n are distinct prime integers. By [9, Example 2.16], M has (P^*) . Hence M is completely Rad- D_{12} .

The converse of Proposition 3.2 is not true as we see in following example.

Example 3.4. Let M be the \mathbb{Z} -module $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$. Since M is finitely generated, M does not have (P^*) by [8, Example 10]. By [6, Theorem 1.4], M is \oplus -supplemented and hence Rad- \oplus -supplemented. By [10, Example 2.10], every direct summand of M is \oplus -supplemented and hence Rad- \oplus -supplemented. Therefore by Proposition 2.1, M is completely Rad- D_{12} .

A module M is called *refinable* if for any submodules U, V of M with M = U + V, there exists a direct summand U' of M with $U' \subseteq U$ and M = U' + V (see [4, 11, 26]). It is easy to prove that M is refinable iff every submodule of M is QSL.

Proposition 3.5. Let M be a weakly Rad-supplemented refinable module. Then M is Rad- D_{12} .

Proof. By Proposition 2.5.

Corollary 3.6. Every weakly Rad-supplemented refinable module is completely $Rad-D_{12}$.

Proof. This is a consequence of Proposition 3.5 and the fact that every direct summand of a weakly Rad-supplemented refinable module is weakly Rad-supplemented refinable. \Box

Let M be an R-module. By P(M) we denote the sum of radical submodules of M.

Proposition 3.7. Let M be a Rad- D_{12} module. If P(M) is a direct summand of M, then P(M) is a Rad- D_{12} module.

Proof. Let $M = P(M) \oplus L$ for some submodule L of M. Let X be a submodule of P(M). By hypothesis, there exist a direct summand K of M and an epimorphism $\alpha : K \longrightarrow M/(X \oplus L)$ such that $Ker\alpha \subseteq \operatorname{Rad}(K)$. It is clear that $M/(X \oplus L) \cong P(M)/X$. Thus $\operatorname{Rad}(K/Ker\alpha) = K/Ker\alpha$, and so $\operatorname{Rad}(K) = K$. Therefore $K \subseteq P(M)$. This means that P(M) is $\operatorname{Rad}-D_{12}$. \Box

The following result gives a new characterization of direct summands having Rad- D_{12} .

Theorem 3.8. Let $M = M_1 \oplus M_2$. Then M_2 is a Rad- D_{12} module if and only if for every submodule N of M containing M_1 , there exist a direct summand K of M_2 and an epimorphism $\varphi : M \longrightarrow M/N$ such that K is a direct summand Rad-supplement of Ker φ in M.

Proof. Suppose that M_2 is a Rad- D_{12} module. Let $N \leq M$ with $M_1 \subseteq N$. Consider the submodule $N \cap M_2$ of M_2 . Then there exist a direct summand K of M_2 and an epimorphism $\alpha : K \longrightarrow M_2/(N \cap M_2)$ such that $Ker\alpha \subseteq$ Rad(K). Note that $M = N + M_2$ and K is a direct summand of M. Let $M = K \oplus K'$ for some submodule K' of M. Consider the projection map $\eta : M \longrightarrow K$ and the isomorphism $\beta : M_2/(N \cap M_2) \longrightarrow M/N$ defined by $\beta(x + N \cap M_2) = x + N$. Thus $\beta \alpha \eta : M \longrightarrow M/N$ is an epimorphism. Let $\varphi = \beta \alpha \eta$. Clearly, we have $Ker\varphi = Ker\alpha \oplus K'$. Therefore $M = K + Ker\varphi$. Moreover $K \cap Ker\varphi = Ker\alpha \subseteq \text{Rad}(K)$.

Conversely, suppose that every submodule of M containing M_1 has the stated property. Let H be a submodule of M_2 . Consider the submodule $H \oplus M_1$ of M. By hypothesis, there exist a direct summand K of M_2 and an epimorphism $\varphi : M \longrightarrow M/(H \oplus M_1)$ such that $M = K + Ker\varphi$ and $K \cap Ker\varphi \subseteq \operatorname{Rad}(K)$. Let $f : K \longrightarrow M/(H \oplus M_1)$ be the restriction of φ to K. Consider the isomorphism $\eta : M/(H \oplus M_1) \longrightarrow M_2/H$ defined by $\eta(m_1 + m_2 + (H \oplus M_1)) = m_2 + H$. Therefore $\eta f : K \longrightarrow M_2/H$ is an epimorphism. Let $\alpha = \eta f$. Clearly, $Ker\alpha = Kerf = K \cap Ker\varphi$. Thus $Ker\alpha \subseteq \operatorname{Rad}(K)$. Hence M_2 is a Rad- D_{12} module.

4 Direct sums of Rad-*D*₁₂ modules

We begin this section by giving an example showing that the class of Rad- D_{12} modules is not closed under direct sums.

Example 4.1. Let R be a discrete valuation ring and let K be its quotient field. There exist a free module F and a submodule X of F such that $F/X \cong K$ since every module is a homomorphic image of a free module. Then F is not Rad- \oplus -supplemented by [5, Example 2.15]. Since R is a hereditary ring, then F is hereditary. Therefore F cannot be Rad- D_{12} from Theorem 2.4. Note that since $F \cong \bigoplus_{i \in I} R$ and R is local, F is a direct sum of Rad- D_{12} -modules.

Let M be a module. M is called a *duo module* if every submodule of M is fully invariant. We next give a sufficient condition for arbitrary direct sums of Rad- D_{12} modules to be Rad- D_{12} .

Theorem 4.2. Let $M = \bigoplus_{i \in I} M_i$ be a duo module. If each M_i is Rad- D_{12} , then M is Rad- D_{12} .

Proof. Let L be a submodule of M. Since M is a duo module we have $L = \bigoplus_{i \in I} (L \cap M_i)$. Let $i \in I$. Because M_i is Rad- D_{12} and $L \cap M_i$ is a submodule of M_i , there exist a direct summand K_i of M_i and an epimorphism $\alpha_i : K_i \to \frac{M_i}{L \cap M_i}$ with $Ker\alpha_i \subseteq \text{Rad}(K_i)$. Now we define the homomorphism $\alpha : \bigoplus_{i \in I} K_i \to \bigoplus_{i \in I} [\frac{M_i}{(L \cap M_i)}] \cong \frac{M}{[\bigoplus_{i \in I} (L \cap M_i)]} = \frac{M}{L}$ by $k_{i_1} + \ldots + k_{i_n} \mapsto \alpha_{i_1}(k_{i_1}) + \ldots + \alpha_{i_n}(k_{i_n})$ with $k_{i_j} \in K_{i_j}$ for every $j = 1, \ldots, n$. It is not hard to check that α is an epimorphism with $Ker\alpha \subseteq \text{Rad}(\bigoplus_{i \in I} K_i)$ and $\bigoplus_{i \in I} K_i$ is a direct summand of M. It follows that M is Rad- D_{12} .

Recall that a module M has Summand Intersection Property (SIP), if the intersection of any two direct summands of M is again a direct summand of M. By [10, Page 969], every duo module has SIP.

Remark 4.3. Being duo module in Theorem 4.2 is not necessary. The module $M = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$ in Example 3.4 is not a duo module (*M* doesn't have SIP). Also $\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/8\mathbb{Z}$ and *M* are Rad- D_{12} .

References

- M. Alkan, On τ-lifting and τ-semiperfect modules, Turkish J. Math. 33 (2009) 117–130.
- [2] I. Al-Khazzi and P. F. Smith, Modules with chain condition on superfluous submodules, Comm. Algebra, 19(8) (1991) 2331-2351.
- [3] E. Büyükaşik and C. Lomp, On a recent generalization of semiperfect rings, Bull. Aust. Math. Soc. 78 (2008) 317–325.
- [4] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules. Supplements and Projectivity in Module Theory, Frontiers in Mathematics, Birkhäuser, Basel–Boston–Berlin, 2006.
- [5] Ş. Ecevit, M. T. Koşan and R. Tribak, Rad-⊕-supplemented modules and cofinitely Rad-⊕-supplemented modules, Algebra Colloq. 19(4) (2012) 637–648.
- [6] A. Harmanci, D. Keskin and P. F. Smith, On ⊕-supplemented modules, Acta Math. Hungar. (83)(1-2) (1999) 161–169.

- [7] D. Keskin and W. Xue, Generalizations of lifting modules, Acta Math. Hungar. 91(3) (2001) 253-261.
- [8] D. Keskin, Finite direct sums of (D_1) -modules, Turkish J. Math. 22(1) (1998) 85-91.
- [9] D. Keskin, On lifting modules, Comm. Algebra, 28(7) (2000) 3427– 3440.
- [10] M. T. Koşan and D. Keskin Tütüncü, H-supplemented duo modules, J. Algebra Appl. 6(6) (2007) 965–971.
- [11] E. Türkmen and A. Pancar, On radical supplemented modules, Int. J. Comput. Cognition 7(1) (2009) 62-64.
- [12] Y. Wang and N. Ding, Generalized supplemented modules, Taiwanese J. Math. 10(6) (2006) 1589–1601.
- [13] W. Xue, Characterizations of semiperfect and perfect rings, Publ. Mat. 40 (1996) 115–125.

Yahya Talebi, Ali Reza Moniri Hamzekolaee Department of Mathematics, University of Mazandaran, Babolsar, Iran. Email: talebi@umz.ac.ir a.monirih@umz.ac.ir Derya Keskin Ttnc, Department of Mathematics, University of Hacettepe, 06800 Beytepe, Ankara, Turkey. Email: keskin@hacettepe.edu.tr