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nonexpansive mappings with gauge functions
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Abstract

In this paper, we first prove a path convergence theorem for a nonex-
pansive mapping in a reflexive and strictly convex Banach space which
has a uniformly Géateaux differentiable norm and admits the duality
mapping j,, where ¢ is a gauge function on [0,c0). Using this result,
strong convergence theorems for common fixed points of a countable
family of nonexpansive mappings are established.

1 Introduction

Let K be a nonempty, closed and convex subset of a real Banach space E. Let
T : K — K be a nonlinear mapping. We denote by F(T) the fixed points set
of T, that is, F(T) = {x € K : x =Tx}. A mapping T is called nonexpansive
if

One classical way to study convergence of nonexpansive mappings is to use
path convergence for approximating the fixed point of mappings [3, 18, 27].
For any t € (0,1), we define the mapping T} : K — K as follows:

Tix=tu+ (1—t)Tz, VzeK, (1.1)
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where u € K is fixed. Banach’s contraction principle ensures that 7; has a
unique fixed point x; in K satisfying

xy =tu+ (1 —t)Tzy. (1.2)

Browder [3] first proved that, if F is a real Hilbert space, then {z;} con-
verges strongly to a fixed point of T'. Reich [18] showed that Browder’s results
also valid in a uniformly smooth Banach space. In 2006, Xu [27] proved that
Browder’s result holds in a reflexive Banach space which has a weakly contin-
uous duality mapping.

On the other hand, Gossez-Lami gave in [9] some geometric properties
related to the fixed point theory for nonexpansive mappings. They proved that
a space with a weakly continuous duality mapping satisfies Opial’s condition
[14]. It is also known that all Hilbert spaces and ¢ (1 < p < o0) satisfy
the Opial’s condition. However, the L? (1 < p < oo) spaces do not unless
p = 2. In this connection, we focus our aim to study a path convergence of
(1.2) in a different setting, a real reflexive strictly convex Banach space which
has a uniformly Gateaux differentiable norm concerning a gauge function [4].
We note that our class of Banach spaces includes the spaces LP, P (1 <
p < 00) and the Sobolev spaces W2 (1 < p < oo0). Moreover, the duality
mappings associated with gauge functions also include the generalized and
the normalized duality mappings as special cases.

In 1953, Mann [11] introduced the iterative scheme {z,} as follows:

{xo €K, (1.3)

Tnt1 = QT + (1 —an)Tr,, Vn>0,

where {a,} C (0,1). If T is a nonexpansive mapping with a fixed point and
the control sequence {ay, } is chosen such that >~ °  a,, (1 —a,) = 0o, then the
sequence {x,} defined by (1.3) converges weakly to a fixed point of T' (this is
also valid in a uniformly convex Banach space with the Fréchet differentiable
norm [18]). Since 1953, many authors have constructed and proposed the
modified version of algorithm (1.3) in order to get strong convergence results
(see [5, 6, 10, 13, 16, 24, 26, 29, 30] and the references cited therein). Several
applications related to the Mann iterative scheme can be found in [17].

Kim-Xu [10] introduced the following modified Mann’s iteration as follows:

xg =z € K,
Yn = 5n‘rn + (]- - ﬁn)Txru (14)
Tpt1 = @+ (1 — ap)yn, Yn >0,
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where T is a nonexpansive mapping of K into itself and v € K is fixed. They
proved, in a uniformly smooth Banach space, that the sequence {x,} defined
by (1.4) converges strongly to a fixed point of T if the control sequences {a,,}
and {f,} satisty appropriate conditions.

Recently, Qin et al. [16] introduced the following iteration:

o=z € K,
Tntl = Qnll + (]' - a’n)y?“n vn > 07

where W, is the W-mapping [20] generated by nonexpansive self mappings
T1,T5,--- and y1, 72, - - and u € K is fixed. They proved, in a reflexive strictly
convex Banach space which has a weakly continuous duality mapping j,, that
the sequence {z,} defined by (1.5) converges strongly to a common fixed
point of {T;}52, if the control sequences {a,} and {3,} satisfy appropriate
conditions.

Let K be a nonempty, closed and convex subset of a real Banach space FE
and {T,,}°, : K = K be a sequence of nonexpansive mappings.

Motivated by the works mentioned above, we consider the following mod-
ified Mann-type iteration:

u,r1 € K,

Yn = BnTp + (1 - Bn)Tanm (1.6)
Tpt1 = Qpl + (1 - an)yn7 Vn > 1,

where {a,,} and {f,,} are real sequences in (0,1).

In this paper, we first prove a path convergence for a nonexpansive mapping
in a real reflexive and strictly convex Banach space which has a Gateaux
differentiable norm and admits the duality mapping associated with a gauge
function. Then we discuss strong convergence of the modified Mann-type
iteration process (1.6) for a countable family of nonexpansive mappings. Our
results improve and extend the recent ones announced by many authors.

2 Preliminaries

A Banach space F is said to be strictly conver if w < lforall z,y € E with
lz|l = |lyll = 1 and = # y. A Banach space E is called uniformly convex if,
for any € > 0, there exists § > 0 such that, for any z,y € E with ||z, ||y <1
and ||z —y|| > €, ||z +y| < 2(1 — ) holds. The modulus of convexity of E is
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defined by

e(e) =in {1~ [ S +0)]| + Il Iyl <1, o -yl > ¢}, veeo,2)

It is known that a Banach space E is uniformly convex if dg(0) = 0 and
0g(€) > 0 for all 0 < e < 2 and every uniformly convex Banach space is strictly
convex and reflexive.

Let S(E) = {z € E: ||z|| = 1}. Then the norm of F is said to be Gdteauz
differentiable if
Lzt 1) o]
t—0 t
exists for any z,y € S(F). In this case, F is called smooth. The norm of E is
said to be uniformly Gateauz differentiable if, for any y € S(E), the limit is
attained uniformly for all z € S(E).

Let pg : [0,00) — [0,00) be the modulus of smoothness of E defined by
1
pu(®) =sup {5 (7 +yll + o —yl) = 15 @ € S(B), |yl <t}.

A Banach space F is said to be uniformly smooth if pET(t) —0ast—0
(see [1, 7, 23] for more details).

We recall the following definitions and results which can be found in [1, 4,
7].

Definition 2.1. A continuous strictly increasing function ¢ : [0, 00) — [0, 00)

is called the gauge function if p(0) =0 and lim;_,~ p(t) = oco.

Definition 2.2. Let F be a normed space and ¢ a gauge function. Then the
mapping J, : B — 2" defined by

Jo(@) = {f € E": (z, f") = |zlelz]), Il = e(lzID}, VzeE,

is called the duality mapping with gauge function .

In particular, if ¢(t) = ¢, the duality mapping J, = J is called the normal-
ized duality mapping. If o(t) =t~ for any ¢ > 1, then the duality mapping
J, = Jg is called the generalized duality mapping.

It follows from the definition that J,,(z) = “”?”LEHH) J(z) and Jy(z) = ||z||72J (z)
for any ¢ > 1.
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Remark 2.3. [1] For the gauge function ¢, the function @ : [0, 00) — [0, 00)
defined by

@(t):/o p(s)ds (2.1)

is a continuous convex and strictly increasing function on [0, 00). Therefore,
® has a continuous inverse function ®~1.

Remark 2.4. [1, 7] For any « in a Banach space E, J,(z) = 0®(||z|), where
0 denotes the sub-differential.

We know the following subdifferential inequality:

Oz +yl) < @(lzll) + (v, oz + ), Viplx+y) € Jo(z+y). (2:2)

We also know the following facts (see [1]):

(1) J, is a nonempty, closed and convex set in E* for any x € E.
(2) J, is a function when E* is strictly convex.

(3) If J,, is single-valued, then

and

(@ =y Jo(@) = Jo()) = (elllz]) = e(lyD) (Il = llyll), Yo,y € E.

If F is a smooth Banach space, then J, is single-valued and also denoted
by j,.
Remark 2.5. [8] Suppose E has a uniformly Gateaux differentiable norm
and admits the duality mapping j,. Then j, is uniformly continuous from the

norm topology of E to the weak™ topology of E* on each bounded subset of
E.

We next give the definition of Banach limit.

Definition 2.6. Let u be a continuous linear functional on £*° and let (ag, aq, - - -

£°. We write uy,(a,,) instead of p((ag, a1,---)). We call u a Banach limit when
w satisfies ||p]| = pn (1) = 1 and py,(ayn) = pin(any1) for each (ag,ar,---) € £°°.

For a Banach limit x4, we know that

liminf a,, < py,(a,) < limsup a,
n—0o0 n—00
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for all a = (ag,a1,---) € €. Therefore, if a = (ap,a1, ) € £°,b =
(bo,b1,--+) € £ and a,, — b, — 0 as n — oo, then we have un(a,) = pn(by)
(see [1, 7, 23, 25]).

In the sequel, we need the following crucial lemmas:

Lemma 2.7. [21] Let {x,} and {y,} be bounded sequences in a Banach space
E such that

Tn+1 = (]- - ﬁn)yn + ﬁnxna Vn > ]-v

where {Bn} is a real sequence in [0, 1] with 0 < liminf,, o B, < limsup,, . Bn <
1. Iflimsup,, ., (||yn+1—yn||—Hmnﬂ—wnﬂ) <0, then lim, o ||yn—2xn|| = 0.

Lemma 2.8. [28] Assume that {a,} is a sequence of nonnegative real numbers
such that

An41 S (1 - 'Yn)an + ’Vndna vn 2 17

where {7y} is a sequence in (0,1) and {d,} is a sequence in R such that

(a) Z’:,ozl TYn = OQ;
(b) limsup,, oo 0 <0 or Y07 | |Yn0n| < c0.

Then lim,,_, o a, = 0.

To deal with a family of mappings, we consider the following condition:

Let K be a subset of a real Banach space E and {T,,}52, be a family of
mappings of K such that ()~ F(T,) # 0. Then {T},} is said to satisfy the
AKTT-condition [2] if, for any bounded subset B of K,

Zsup {Tns12 — Tn2| : 2 € B} < o0.

n=1

Lemma 2.9. [2] Let K be a nonempty and closed subset of a Banach space E
and {T,} be a family of mappings of K into itself which satisfies the AKTT-
condition. Then, for any x € K, {T,a} converges strongly to a point in K.
Moreover, let the mapping T be defined by

Tr = lim T,z, VreK.

n— oo

Then, for each bounded subset B of K,

lim sup {||Tz — T,z| : z € B} = 0.
n—o0
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In the sequel, we write ({T,},T) satisfies the AKTT-condition if {7}
satisfies the AKTT-condition and T is defined by Lemma 2.9 with F(T) =

Nazi F(T0).

Example 2.10. Let 77,75, -+, be an infinite family of nonexpansive map-
pings of K into itself and 1,72, be real numbers such that 0 < ~; < 1
for all ¢ € N. Moreover, let W,, and W be the W-mappings [20] gener-
ated by 11,715, --- , T, and v1,72, -+, Yn, and 11,75, --- and 1,72, --. Then
({W,,},W) satisfies the AKTT-condition (see [15, 20]).

Example 2.11. Let T}, T5, - - - be an infinite family of nonexpansive mappings
of K into itself. For each n € N, define the mapping V,, : K — K by

Vaxr = ZA;TZ»JU, Vr € K,
i=1

where {\},} is a family of nonnegative numbers satisfying the following condi-
tions:

(a) i AL, =1 for each n € N;

(b) A" := lim;,_y00 A%, > 0 for each i € N;

(€) Domty 2oty [N — AL < oo

Let V : K — K be the mapping defined by

Vo= Z NTyz, VzeK.
i=1

Then ({V,.},V) satisfies the AKTT-condition (see [2]).

3 Path convergence theorem

Now, we denote the subset K’ of K by
K ={eeK: p®(|zn — ) = inf pa®(lza —ll)},
x pn®(llzn = 2l) = inf pn®(llzn — yll)

where @ is the function defined by (2.1).

Proposition 3.1. [8] Let K be a nonempty, closed and convexr subset of a
real Banach space E which has a uniformly Gateaux differentiable norm and
admits the duality mapping j,. Suppose that {x,} is a bounded sequence of
K. Let p, be a Banach limit and z € K. Then z € K' if and only if

pn(y — 2, jo(an —2)) <0, Vye K.
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Proposition 3.2. Let K be a nonempty, closed and convex subset of a real
reflexive and strictly convex Banach space E which has a uniformly Gateaux
differentiable norm and admits the duality mapping j,. LetT : K — K be
a nonexpansive mapping such that F(T) # 0. Suppose {x,} is a bounded
sequence in K with lim, o0 |2y, — Txy|| = 0. Then F(T)NK' # 0.

Proof. Set g(y) = pn®(|lzn — yl|) for all y € K. Then g is convex and
continuous since ® is convex and continuous. Further, g(y,,) — 00 as ||ym| —
oo since p(|lyml]) — o0 as ||ym|| — oo. Since E is reflexive, by Theorem
1.3.11 in [23], there exists z € K such that g(z) = infycx g(y). Hence K’ is
nonempty. Further, K’ is closed and convex since g is continuous and convex.
For any x € K', we have

9(Tz) = pn®(|lzn —Tz|)
< ﬂnq)(”mn — Ty || + [Tz, — TxH)
< Mn¢(||$n - x”)
= g(x).

Therefore, Tz € K’ for all z € K.
Let p € F(T). By Day-James’s theorem [12], we know that there exists a
unique element v € K’ such that

—v|| = inf — x|
ol = inf llp— ]
Since p = Tp and Tv € K', we have
lp—Tol| = Tp = Tv|| < |lp—vl| < [lp — Tv|.

It follows that v = T'w since F is strictly convex. Hence v € F(T) N K'. This
completes the proof. O

Using Propositions 3.1 and 3.2, we next prove a path convergence theorem,
which is important to prove our main theorem.

Theorem 3.3. Let K be a nonempty, closed and convex subset of a real reflex-
we and strictly Banach space E which has a uniformly Gateaux differentiable
norm and admits the duality mapping j,. Let T : K — K be a nonexpansive
such that F(T) # 0. Fizu € K and let t € (0,1). Then the net {z:} defined
by (1.2) converges strongly as t — 0 to a fized point p of T which solves the
variational inequality:

(u—=p,je(w—p)) <0, YweF(T). (3.1)
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Proof. First, we prove that the solution of variational inequality (3.1) is unique.
Suppose that p,q € F(T) satisty (3.1). Then we have

(u—p,Js(g—p)) <0, (u—q,j,(p—q)) <O0.

Adding the above inequalities, we obtain

(p=a,jp(p—a)) <0,
which implies that
lp = alle(llp —all) <0
and so p = q.
Next, we prove that {x;} is bounded in K. For any w € F(T'), we see that
[l — wllp((lz: — wl])
= <3'3t - waj«p(xt - w)>
= t{u—w,jo(zs —w)) + (1 = t)(Twy — w, j,(z: — w))
tu—w, jp(zr — w)) + (1 = Ol — wlle(lloe — wl)),

IA

which implies

lze —wlie(lze —wll) < (u—w,jg(ze —w))
< u—wlle(lz —wl). (3.2)

Hence ||z; — w| < ||u — w|| and, consequently, {z:} is bounded. So is {T'z:}.
We see that
lxs — Tael| = t|lu — Txe|| = 0 (¢t — 0).

Since E is reflexive, {z;} has a weakly convergent subsequence {z;, }. Thus
{zy, } is bounded. Putting z,, := z;,, in particular, we also have

|en — Tzn]| =0 (n— o).
By Proposition 3.2, since {z,} is bounded, there exists p € F(T') such that
pn@ (len —pll) = inf pn®(llzn —yll).
It follows from Proposition 3.1 that
pin(y — Py jp(an —p)) <0, VyeK.
Since u € K, in particular, we have

ﬂn<u _p7j<p(xn - p)> <0. (3'3)
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Observe that I
y

®([lyll) =/0 p(s)ds < llylle(lyl)-
It follows from (3.2) and (3.3) that

:U’TLCI)(H:ETL _pH) < Mn<u _pajga(xn _p)> <0
and hence
(0 — pl}) = 0. (3.4

Since ® is continuous, there exists a subsequence {z,,} of {z,} such that
{xn,} converges strongly to p. Let {z,,} be another subsequence of {z,}
such that x,,;, — ¢ as j — co. From (3.4), we have

1@ ([lzn, —pll) = @(llg —pll) =0

and so p = ¢q. Therefore, the sequence {z,,} converges strongly to a fixed point
pof T.

Next, we prove that p € F(T) is a solution to the variational inequality
(3.1). For any w € F(T), we see that

||1'n - w||90(||mn - wH) = <5'3n - wajso(xn - w)>
= tn<u — D, Jo(@n — w)> + tn<p — T, Jo(xn — w)>
+ tn<:17n — W, jo(Tn — w)>
+(1- tn)<Txn —w, Jo(Tn — w)>

< tn(u =P, Jp(tn — w)) + tallzn — pllo(l2n — wl)
+ tollen — wlo(llen — wl])
+ (1= tn)|zn — wllo(|lzn — wl])
= talu—p,jo(tn —w)) +tullzn = plle(|lzn —wl)
+ lzn — wlle(llzn —wl)).
This implies that
(u=p,jp(w—2n)) < llzn = plle(lzn —wl). (3.5)

Since j, is norm-weak® uniformly continuous on bounded subsets of E, we
have

Thus, taking the limit as n — oo in both sides of (3.5), we get

(u—p,js(w—p)) <0, YweF(T).
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Finally, we prove that 2; — p as ¢ — 0. To this end, let {z;, } be another
subsequence of {x;} such that z;, — p’ as n — co. We have to show that
p=1p'. For any w € F(T), we have

<vat - mtajgo(xt - w)> = <Txt - wajgo(xt - w)> + <w - l’tngo(l’f, - w)>
<l = wlle([lze — wll) + (w = x4, o (21 — w))
= <$t_wvj<p(xt_w)>+<w_$t,jw($t_w)>
= 0.

On the other hand, since
t
z — Tay = m(u — ),

we have
<xt — U, (@ — w)> <0, YweF(T).

In particular, we have

(wt, —u, jo (1, —p')) <O
and
<1‘sn - u;jtp(xsn _p)> <0
or, equivalently,
e, =p ez, = 2'l) + (0 = w dp (@, =) <0
and
s, = plle(lzs, —pll) + (P — u, jp(zs, —p)) <0
Taking the limit as n — oo, since ¢ is continuous and j, is norm-to-weak*
uniformly continuous on bounded subsets of E, we obtain
lp = #'lle(lp = 2'11) + (0’ —w.jp(p — ') <0
and
IP" = plle(ll” = pll) + (p = u, jo (0" = p)) < 0.
Summing the above inequalities, we also have
2lp = #lle(llp = 2'll) + v = p.jelp — ) <0.
This implies that
(p—pjelp—p)) <0

and hence p = p’. Therefore, {a;} converges strongly to a fixed point of T
This completes the proof. O



194 PrAsiT CHOLAMJIAK, YEOL JE CHO, SUTHEP SUANTAI

4 Strong convergence theorems

In this section, using Theorem 3.3, we prove a strong convergence theorem
in a real reflexive and strictly convex Banach space which has a uniformly
Gateaux differentiable norm and admits the duality mapping j,, where ¢ is a
gauge function on [0, 00).

Theorem 4.1. Let K be a nonempty closed and convex subset of a real re-
flexive and strictly convex Banach space E which has a uniformly Gateaux
differentiable norm and admits the duality mapping j,. Let {T,}32, : K = K
be a sequence of nonexpansive mappings such that F := (", F(T,) # 0. Let
u € K be fized. Let {an,} and {B,} be real sequences in (0,1) such that

(a) limy, o0 ay = 0;
(b) X521 am = oo;
(

¢) 0 < liminf, o B, < limsup,,_, . Bn < 1.

If ({T.}.T) satisfies the AKTT-condition, then the sequences {x,} and
{yn} defined by (1.6) converge strongly to p € F which also solves the varia-
tional inequality (3.1).

Proof. First, we see that the sequences {z, } and {y,} is bounded. In fact, for
any w € F, we have

1yn — wll < Bullzn — w| + (1 = B)[Tnzn — w|| < [lzn —w|

and so
lonss —wl < anllu—wl + (1~ an)llyn — wl
< anllu—w] + (1 ap)llz, — w]
< max{Jlen — vl llu - w] }.

Hence the sequence {x,} is bounded by induction and so is {y,}.
Next, we show that

nh_{go |Zn+1 — nll = 0.

Putting I,, = %, we get

T4l = (1 - Bn)ln + an'ru Vn > 1.
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Thus we have

ln—i—l - ln
_ QAp41U + (1 - an+1)yn+1 - Bn-{-lmn-&-l _ anl + (1 - an)yn - ann
1- 6n+1 1—PBn
an-i—l(u - yn+1) an(u - yn)
- Tn n - Tn "
1= B 1-3, + 1 +1Tn41 x

which implies

||ln+1_lnH
« (0%
< o e vl + 2 el g = all + [T = Tl
n n
(67 (0%
< T fu— gl + T = gall 4 s = @all 4 sup [ Tsaz = Tzl
1- ﬁnJrl 1- 577, z€{xn}

Since {T,} satisfies the AKTT-condition, it follows from the conditions (a)
and (c) that

imsup (11 — lnll = lZn+1 — @al]) <0.
n—oo

By Lemma 2.7, we also obtain

lim ||, —z,| = 0.
n— oo
Since
Tn4+1 — Tp = (1 - ﬁn)(ln - xn),
we have

[#nt1 = nll = (1= Bn)llln —znll = 0 (0 — 00). (4.1)

On the other hand, we see that
[Zn+1 = ynll = anllu = ynl = 0 (n — o0). (4.2)
Combining (4.1) and (4.2) we obtain
nli)rrgo |z — ynll = 0. (4.3)
Noting that

[Zn = Toznll < |lzn —yull + lyn — Tnznll
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from (4.3) and the condition (c), we have

7}1}11;0 lzn, — Thzy|| = 0. (4.4)
Further, we have
|z = Tzn| < |lzn = Tozall + | Tazn — Tan |
< N#n — Than||+ sup ||Thz—Tz|.
z€{zyn}
Thus, by Lemma 2.9 and (4.4), we have
lim ||, — Tz,| = 0. (4.5)

n—oo

Since T is nonexpansive, by Theorem 3.3, we know that the net {z;} generated
by (1.2) converges strongly to a fixed point p € F(T) = F which also solves
the variational inequality (3.1).

Next, we prove that

limsup (u — p, jo (v, — p)) < 0.

n—oo

Observe that

lze = znlle(llze = zal|)
= t<u — T, Jolxr — J:n)> +(1- t)<Ta:t — T, Jo(xr — xn)>
= t<p — T, Jolar — xn)> + t<u — P, Jolas — xn)>
+t<xt — T, Jolxs — xn)> +(1- t)<Txt —Txy, jo(ar — xn)>
+(1- t)<Txn — T, Jo(xr — xn)>
tllp — zello(llze — all) + t{u — p, jp(2e — 20))
+ llze — znllo(llee = zall) + (| Tzn — znlle(lze — znl).

IN

Therefore, it follows that

[T2n = xnllp(llz: = 2n])
t

(u=p,je(zn—24)) < +llze=pllellz: —znl). (4.6)

Using (4.5) and taking the limit as n — oo first and then, as ¢ — 0, the
inequality (4.6) becomes

lim sup limsup (v — p, jo(zn — 2¢)) < 0. (4.7)

t—0 n—00
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Since j, is norm-weak™ uniformly continuous on bounded sets,
(u—=p,jo(Tn — 1)) = (u—p,jp(zn —p)) (t—0).
We see that
(u=p,jp(xn —p)) = (u=p,Jo(xn = 2)) + (U=, Jo (0 = p) = Jip(@n — x1)).

By the uniform continuity of j,, we can interchange the two limits above and
deduce that
lim sup <u —p, jo(zn — p)> <0. (4.8)

n—oo

Finally, we prove that z,, — p as n — co. Observe that

O(lyn —pll) = @(IBn(zn —p)+ (1= Bn)(Tnzn —p)ll)
< Bu®([|n — pll) + (1 = Bu) @ (|| Tnn — pll)
< ®(||lzn — pll)-

Form (2.2), it follows that

O([|znr1 —pll) O([lom(u—p) + (1 = an)(yn — D))
(I)((]- - an)||yn 7pH) + an<u 7pajg0(zn+l 7p)>
(1 - an)(I)(”mn _pll) + an<u _p?jtp<xn+l —p)>-

IN N

Applying Lemma 2.8, we have ®(||z,, — p||) — 0 as n — oo by the condition
(b) and (4.8). Hence z,, — p as n — oo since @ is continuous. Moreover, the
sequence {y,} also strongly converges to p. This completes the proof. O

Remark 4.2. From Examples 2.10 and 2.11, the ordered pair ({Tn},T) in
Theorem 4.1 can be replaced by ({W,}, W) and ({V,,},V).

Remark 4.3. Theorem 4.1 mainly improves and extends the results of Kim-
Xu [10] in the following aspects:

(1) we relax the restrictions imposed on the parameters in Theorem 1 of
[10];

(2) we extend Theorem 1 of [10] from a single nonexpansive mapping to
an infinite family of nonexpansive mappings;

(3) we extend Theorem 1 of [10] from a uniformly smooth Banach space
to a much more general setting.

Remark 4.4. If f : K — K is a contraction and we replace u by f(z,) in the
recursion formula (1.6), we can obtain the so-called viscosity iteration method
(see [22]).
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Remark 4.5. Theorem 3.3 and Theorem 4.1 can be applied to the spaces LP,
? (1 < p < o0), the Sobolev spaces WE (1 < p < oo) and Hilbert spaces.
Moreover, our results hold for a Banach space which has the generalized duality
mapping j, (¢ > 1) and the normalized the duality mapping j.

Acknowledgement. The first author was supported by the Thailand Re-
search Fund, the Commission on Higher Education, and University of Phayao
under Grant MRG5580016.
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