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Strong convergence theorems for a sequence of
nonexpansive mappings with gauge functions

Prasit Cholamjiak, Yeol Je Cho, Suthep Suantai

Abstract

In this paper, we first prove a path convergence theorem for a nonex-
pansive mapping in a reflexive and strictly convex Banach space which
has a uniformly Gâteaux differentiable norm and admits the duality
mapping jφ, where φ is a gauge function on [0,∞). Using this result,
strong convergence theorems for common fixed points of a countable
family of nonexpansive mappings are established.

1 Introduction

Let K be a nonempty, closed and convex subset of a real Banach space E. Let
T : K → K be a nonlinear mapping. We denote by F (T ) the fixed points set
of T , that is, F (T ) = {x ∈ K : x = Tx}. A mapping T is called nonexpansive
if

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ K.

One classical way to study convergence of nonexpansive mappings is to use
path convergence for approximating the fixed point of mappings [3, 18, 27].
For any t ∈ (0, 1), we define the mapping Tt : K → K as follows:

Ttx = tu+ (1− t)Tx, ∀x ∈ K, (1.1)
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where u ∈ K is fixed. Banach’s contraction principle ensures that Tt has a
unique fixed point xt in K satisfying

xt = tu+ (1− t)Txt. (1.2)

Browder [3] first proved that, if E is a real Hilbert space, then {xt} con-
verges strongly to a fixed point of T . Reich [18] showed that Browder’s results
also valid in a uniformly smooth Banach space. In 2006, Xu [27] proved that
Browder’s result holds in a reflexive Banach space which has a weakly contin-
uous duality mapping.

On the other hand, Gossez-Lami gave in [9] some geometric properties
related to the fixed point theory for nonexpansive mappings. They proved that
a space with a weakly continuous duality mapping satisfies Opial’s condition
[14]. It is also known that all Hilbert spaces and ℓp (1 < p < ∞) satisfy
the Opial’s condition. However, the Lp (1 < p < ∞) spaces do not unless
p = 2. In this connection, we focus our aim to study a path convergence of
(1.2) in a different setting, a real reflexive strictly convex Banach space which
has a uniformly Gâteaux differentiable norm concerning a gauge function [4].
We note that our class of Banach spaces includes the spaces Lp, ℓp (1 <
p < ∞) and the Sobolev spaces W p

m (1 < p < ∞). Moreover, the duality
mappings associated with gauge functions also include the generalized and
the normalized duality mappings as special cases.

In 1953, Mann [11] introduced the iterative scheme {xn} as follows:{
x0 ∈ K,

xn+1 = αnxn + (1− αn)Txn, ∀n ≥ 0,
(1.3)

where {αn} ⊂ (0, 1). If T is a nonexpansive mapping with a fixed point and
the control sequence {αn} is chosen such that

∑∞
n=0 αn(1−αn) = ∞, then the

sequence {xn} defined by (1.3) converges weakly to a fixed point of T (this is
also valid in a uniformly convex Banach space with the Fréchet differentiable
norm [18]). Since 1953, many authors have constructed and proposed the
modified version of algorithm (1.3) in order to get strong convergence results
(see [5, 6, 10, 13, 16, 24, 26, 29, 30] and the references cited therein). Several
applications related to the Mann iterative scheme can be found in [17].

Kim-Xu [10] introduced the following modified Mann’s iteration as follows:
x0 = x ∈ K,

yn = βnxn + (1− βn)Txn,

xn+1 = αnu+ (1− αn)yn, ∀n ≥ 0,

(1.4)
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where T is a nonexpansive mapping of K into itself and u ∈ K is fixed. They
proved, in a uniformly smooth Banach space, that the sequence {xn} defined
by (1.4) converges strongly to a fixed point of T if the control sequences {αn}
and {βn} satisfy appropriate conditions.

Recently, Qin et al. [16] introduced the following iteration:
x0 = x ∈ K,

yn = βnxn + (1− βn)Wnxn,

xn+1 = αnu+ (1− αn)yn, ∀n ≥ 0,

(1.5)

where Wn is the W -mapping [20] generated by nonexpansive self mappings
T1, T2, · · · and γ1, γ2, · · · and u ∈ K is fixed. They proved, in a reflexive strictly
convex Banach space which has a weakly continuous duality mapping jφ, that
the sequence {xn} defined by (1.5) converges strongly to a common fixed
point of {Ti}∞i=1 if the control sequences {αn} and {βn} satisfy appropriate
conditions.

Let K be a nonempty, closed and convex subset of a real Banach space E
and {Tn}∞n=1 : K → K be a sequence of nonexpansive mappings.

Motivated by the works mentioned above, we consider the following mod-
ified Mann-type iteration:

u, x1 ∈ K,

yn = βnxn + (1− βn)Tnxn,

xn+1 = αnu+ (1− αn)yn, ∀n ≥ 1,

(1.6)

where {αn} and {βn} are real sequences in (0, 1).
In this paper, we first prove a path convergence for a nonexpansive mapping

in a real reflexive and strictly convex Banach space which has a Gâteaux
differentiable norm and admits the duality mapping associated with a gauge
function. Then we discuss strong convergence of the modified Mann-type
iteration process (1.6) for a countable family of nonexpansive mappings. Our
results improve and extend the recent ones announced by many authors.

2 Preliminaries

A Banach space E is said to be strictly convex if ∥x+y∥
2 < 1 for all x, y ∈ E with

∥x∥ = ∥y∥ = 1 and x ̸= y. A Banach space E is called uniformly convex if,
for any ϵ > 0, there exists δ > 0 such that, for any x, y ∈ E with ∥x∥, ∥y∥ ≤ 1
and ∥x− y∥ ≥ ϵ, ∥x+ y∥ ≤ 2(1− δ) holds. The modulus of convexity of E is
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defined by

δE(ϵ) = inf
{
1−

∥∥∥1
2
(x+ y)

∥∥∥ : ∥x∥, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ
}
, ∀ϵ ∈ [0, 2].

It is known that a Banach space E is uniformly convex if δE(0) = 0 and
δE(ϵ) > 0 for all 0 < ϵ ≤ 2 and every uniformly convex Banach space is strictly
convex and reflexive.

Let S(E) = {x ∈ E : ∥x∥ = 1}. Then the norm of E is said to be Gâteaux
differentiable if

lim
t→0

∥x+ ty∥ − ∥x∥
t

exists for any x, y ∈ S(E). In this case, E is called smooth. The norm of E is
said to be uniformly Gâteaux differentiable if, for any y ∈ S(E), the limit is
attained uniformly for all x ∈ S(E).

Let ρE : [0,∞) → [0,∞) be the modulus of smoothness of E defined by

ρE(t) = sup
{1

2
(∥x+ y∥+ ∥x− y∥)− 1 : x ∈ S(E), ∥y∥ ≤ t

}
.

A Banach space E is said to be uniformly smooth if ρE(t)
t → 0 as t → 0

(see [1, 7, 23] for more details).

We recall the following definitions and results which can be found in [1, 4,
7].

Definition 2.1. A continuous strictly increasing function φ : [0,∞) → [0,∞)
is called the gauge function if φ(0) = 0 and limt→∞ φ(t) = ∞.

Definition 2.2. Let E be a normed space and φ a gauge function. Then the
mapping Jφ : E → 2E

∗
defined by

Jφ(x) =
{
f∗ ∈ E∗ : ⟨x, f∗⟩ = ∥x∥φ(∥x∥), ∥f∗∥ = φ(∥x∥)

}
, ∀x ∈ E,

is called the duality mapping with gauge function φ.

In particular, if φ(t) = t, the duality mapping Jφ = J is called the normal-
ized duality mapping. If φ(t) = tq−1 for any q > 1, then the duality mapping
Jφ = Jq is called the generalized duality mapping.

It follows from the definition that Jφ(x) =
φ(∥x∥)
∥x∥ J(x) and Jq(x) = ∥x∥q−2J(x)

for any q > 1.



STRONG CONVERGENCE OF NONEXPANSIVE MAPPINGS 187

Remark 2.3. [1] For the gauge function φ, the function Φ : [0,∞) → [0,∞)
defined by

Φ(t) =

∫ t

0

φ(s)ds (2.1)

is a continuous convex and strictly increasing function on [0,∞). Therefore,
Φ has a continuous inverse function Φ−1.

Remark 2.4. [1, 7] For any x in a Banach space E, Jφ(x) = ∂Φ(∥x∥), where
∂ denotes the sub-differential.

We know the following subdifferential inequality:

Φ
(
∥x+ y∥

)
≤ Φ

(
∥x∥

)
+

⟨
y, jφ(x+ y)

⟩
, ∀jφ(x+ y) ∈ Jφ(x+ y). (2.2)

We also know the following facts (see [1]):
(1) Jφ is a nonempty, closed and convex set in E∗ for any x ∈ E.
(2) Jφ is a function when E∗ is strictly convex.
(3) If Jφ is single-valued, then

Jφ(λx) =
sign(λ)φ(∥λx∥)

φ(∥x∥)
Jφ(x), ∀x ∈ E, λ ∈ R,

and

⟨x− y, Jφ(x)− Jφ(y)⟩ ≥
(
φ(∥x∥)− φ(∥y∥)

)(
∥x∥ − ∥y∥

)
, ∀x, y ∈ E.

If E is a smooth Banach space, then Jφ is single-valued and also denoted
by jφ.

Remark 2.5. [8] Suppose E has a uniformly Gâteaux differentiable norm
and admits the duality mapping jφ. Then jφ is uniformly continuous from the
norm topology of E to the weak∗ topology of E∗ on each bounded subset of
E.

We next give the definition of Banach limit.

Definition 2.6. Let µ be a continuous linear functional on ℓ∞ and let (a0, a1, · · · ) ∈
ℓ∞. We write µn(an) instead of µ((a0, a1, · · · )). We call µ a Banach limit when
µ satisfies ∥µ∥ = µn(1) = 1 and µn(an) = µn(an+1) for each (a0, a1, · · · ) ∈ ℓ∞.

For a Banach limit µ, we know that

lim inf
n→∞

an ≤ µn(an) ≤ lim sup
n→∞

an
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for all a = (a0, a1, · · · ) ∈ ℓ∞. Therefore, if a = (a0, a1, · · · ) ∈ ℓ∞, b =
(b0, b1, · · · ) ∈ ℓ∞ and an − bn → 0 as n → ∞, then we have µn(an) = µn(bn)
(see [1, 7, 23, 25]).

In the sequel, we need the following crucial lemmas:

Lemma 2.7. [21] Let {xn} and {yn} be bounded sequences in a Banach space
E such that

xn+1 = (1− βn)yn + βnxn, ∀n ≥ 1,

where {βn} is a real sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn <
1. If lim supn→∞

(
∥yn+1−yn∥−∥xn+1−xn∥

)
≤ 0, then limn→∞ ∥yn−xn∥ = 0.

Lemma 2.8. [28] Assume that {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− γn)an + γnδn, ∀n ≥ 1,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that
(a)

∑∞
n=1 γn = ∞;

(b) lim supn→∞ δn ≤ 0 or
∑∞

n=1 |γnδn| < ∞.

Then limn→∞ an = 0.

To deal with a family of mappings, we consider the following condition:

Let K be a subset of a real Banach space E and {Tn}∞n=1 be a family of
mappings of K such that

∩∞
n=1 F (Tn) ̸= ∅. Then {Tn} is said to satisfy the

AKTT-condition [2] if, for any bounded subset B of K,

∞∑
n=1

sup
{
∥Tn+1z − Tnz∥ : z ∈ B

}
< ∞.

Lemma 2.9. [2] Let K be a nonempty and closed subset of a Banach space E
and {Tn} be a family of mappings of K into itself which satisfies the AKTT-
condition. Then, for any x ∈ K, {Tnx} converges strongly to a point in K.
Moreover, let the mapping T be defined by

Tx = lim
n→∞

Tnx, ∀x ∈ K.

Then, for each bounded subset B of K,

lim
n→∞

sup
{
∥Tz − Tnz∥ : z ∈ B

}
= 0.
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In the sequel, we write ({Tn}, T ) satisfies the AKTT-condition if {Tn}
satisfies the AKTT-condition and T is defined by Lemma 2.9 with F (T ) =∩∞

n=1 F (Tn).

Example 2.10. Let T1, T2, · · · , be an infinite family of nonexpansive map-
pings of K into itself and γ1, γ2, · · · be real numbers such that 0 < γi < 1
for all i ∈ N. Moreover, let Wn and W be the W -mappings [20] gener-
ated by T1, T2, · · · , Tn and γ1, γ2, · · · , γn, and T1, T2, · · · and γ1, γ2, · · · . Then(
{Wn},W

)
satisfies the AKTT-condition (see [15, 20]).

Example 2.11. Let T1, T2, · · · be an infinite family of nonexpansive mappings
of K into itself. For each n ∈ N, define the mapping Vn : K → K by

Vnx =
n∑

i=1

λi
nTix, ∀x ∈ K,

where {λi
n} is a family of nonnegative numbers satisfying the following condi-

tions:
(a)

∑n
i=1 λ

i
n = 1 for each n ∈ N;

(b) λi := limn→∞ λi
n > 0 for each i ∈ N;

(c)
∑∞

n=1

∑n
i=1 |λi

n+1 − λi
n| < ∞.

Let V : K → K be the mapping defined by

V x =
∞∑
i=1

λiTix, ∀x ∈ K.

Then
(
{Vn}, V

)
satisfies the AKTT-condition (see [2]).

3 Path convergence theorem

Now, we denote the subset K ′ of K by

K ′ =
{
x ∈ K : µnΦ

(
∥xn − x∥

)
= inf

y∈K
µnΦ

(
∥xn − y∥

)}
,

where Φ is the function defined by (2.1).

Proposition 3.1. [8] Let K be a nonempty, closed and convex subset of a
real Banach space E which has a uniformly Gâteaux differentiable norm and
admits the duality mapping jφ. Suppose that {xn} is a bounded sequence of
K. Let µn be a Banach limit and z ∈ K. Then z ∈ K ′ if and only if

µn

⟨
y − z, jφ(xn − z)

⟩
≤ 0, ∀y ∈ K.
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Proposition 3.2. Let K be a nonempty, closed and convex subset of a real
reflexive and strictly convex Banach space E which has a uniformly Gâteaux
differentiable norm and admits the duality mapping jφ. Let T : K → K be
a nonexpansive mapping such that F (T ) ̸= ∅. Suppose {xn} is a bounded
sequence in K with limn→∞ ∥xn − Txn∥ = 0. Then F (T ) ∩K ′ ̸= ∅.

Proof. Set g(y) = µnΦ
(
∥xn − y∥

)
for all y ∈ K. Then g is convex and

continuous since Φ is convex and continuous. Further, g(ym) → ∞ as ∥ym∥ →
∞ since φ(∥ym∥) → ∞ as ∥ym∥ → ∞. Since E is reflexive, by Theorem
1.3.11 in [23], there exists z ∈ K such that g(z) = infy∈K g(y). Hence K ′ is
nonempty. Further, K ′ is closed and convex since g is continuous and convex.
For any x ∈ K ′, we have

g(Tx) = µnΦ
(
∥xn − Tx∥

)
≤ µnΦ

(
∥xn − Txn∥+ ∥Txn − Tx∥

)
≤ µnΦ

(
∥xn − x∥

)
= g(x).

Therefore, Tx ∈ K ′ for all x ∈ K ′.
Let p ∈ F (T ). By Day-James’s theorem [12], we know that there exists a

unique element v ∈ K ′ such that

∥p− v∥ = inf
x∈K′

∥p− x∥.

Since p = Tp and Tv ∈ K ′, we have

∥p− Tv∥ = ∥Tp− Tv∥ ≤ ∥p− v∥ ≤ ∥p− Tv∥.

It follows that v = Tv since E is strictly convex. Hence v ∈ F (T ) ∩K ′. This
completes the proof.

Using Propositions 3.1 and 3.2, we next prove a path convergence theorem,
which is important to prove our main theorem.

Theorem 3.3. Let K be a nonempty, closed and convex subset of a real reflex-
ive and strictly Banach space E which has a uniformly Gâteaux differentiable
norm and admits the duality mapping jφ. Let T : K → K be a nonexpansive
such that F (T ) ̸= ∅. Fix u ∈ K and let t ∈ (0, 1). Then the net {xt} defined
by (1.2) converges strongly as t → 0 to a fixed point p of T which solves the
variational inequality:⟨

u− p, jφ(w − p)
⟩
≤ 0, ∀w ∈ F (T ). (3.1)
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Proof. First, we prove that the solution of variational inequality (3.1) is unique.
Suppose that p, q ∈ F (T ) satisfy (3.1). Then we have⟨

u− p, jφ(q − p)
⟩
≤ 0,

⟨
u− q, jφ(p− q)

⟩
≤ 0.

Adding the above inequalities, we obtain⟨
p− q, jφ(p− q)

⟩
≤ 0,

which implies that
∥p− q∥φ(∥p− q∥) ≤ 0

and so p = q.
Next, we prove that {xt} is bounded in K. For any w ∈ F (T ), we see that

∥xt − w∥φ(∥xt − w∥)
=

⟨
xt − w, jφ(xt − w)

⟩
= t

⟨
u− w, jφ(xt − w)

⟩
+ (1− t)

⟨
Txt − w, jφ(xt − w)

⟩
≤ t

⟨
u− w, jφ(xt − w)

⟩
+ (1− t)∥xt − w∥φ

(
∥xt − w∥

)
,

which implies

∥xt − w∥φ(∥xt − w∥) ≤
⟨
u− w, jφ(xt − w)

⟩
≤ ∥u− w∥φ

(
∥xt − w∥

)
. (3.2)

Hence ∥xt − w∥ ≤ ∥u − w∥ and, consequently, {xt} is bounded. So is {Txt}.
We see that

∥xt − Txt∥ = t∥u− Txt∥ → 0 (t → 0).

Since E is reflexive, {xt} has a weakly convergent subsequence {xtn}. Thus
{xtn} is bounded. Putting xn := xtn , in particular, we also have

∥xn − Txn∥ → 0 (n → ∞).

By Proposition 3.2, since {xn} is bounded, there exists p ∈ F (T ) such that

µnΦ
(
∥xn − p∥

)
= inf

y∈K
µnΦ

(
∥xn − y∥

)
.

It follows from Proposition 3.1 that

µn

⟨
y − p, jφ(xn − p)

⟩
≤ 0, ∀y ∈ K.

Since u ∈ K, in particular, we have

µn

⟨
u− p, jφ(xn − p)

⟩
≤ 0. (3.3)
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Observe that

Φ(∥y∥) =
∫ ∥y∥

0

φ(s)ds ≤ ∥y∥φ(∥y∥).

It follows from (3.2) and (3.3) that

µnΦ
(
∥xn − p∥

)
≤ µn

⟨
u− p, jφ(xn − p)

⟩
≤ 0

and hence
µnΦ

(
∥xn − p∥

)
= 0. (3.4)

Since Φ is continuous, there exists a subsequence {xnk
} of {xn} such that

{xnk
} converges strongly to p. Let {xnj} be another subsequence of {xn}

such that xnj → q as j → ∞. From (3.4), we have

µjΦ
(
∥xnj − p∥

)
= Φ

(
∥q − p∥

)
= 0

and so p = q. Therefore, the sequence {xn} converges strongly to a fixed point
p of T .

Next, we prove that p ∈ F (T ) is a solution to the variational inequality
(3.1). For any w ∈ F (T ), we see that

∥xn − w∥φ
(
∥xn − w∥

)
=

⟨
xn − w, jφ(xn − w)

⟩
= tn

⟨
u− p, jφ(xn − w)

⟩
+ tn

⟨
p− xn, jφ(xn − w)

⟩
+ tn

⟨
xn − w, jφ(xn − w)

⟩
+ (1− tn)

⟨
Txn − w, jφ(xn − w)

⟩
≤ tn

⟨
u− p, jφ(xn − w)

⟩
+ tn∥xn − p∥φ

(
∥xn − w∥

)
+ tn∥xn − w∥φ(∥xn − w∥)
+ (1− tn)∥xn − w∥φ

(
∥xn − w∥

)
= tn

⟨
u− p, jφ(xn − w)

⟩
+ tn∥xn − p∥φ

(
∥xn − w∥

)
+ ∥xn − w∥φ

(
∥xn − w∥

)
.

This implies that⟨
u− p, jφ(w − xn)

⟩
≤ ∥xn − p∥φ

(
∥xn − w∥

)
. (3.5)

Since jφ is norm-weak∗ uniformly continuous on bounded subsets of E, we
have ⟨

u− p, jφ(w − xn)
⟩
→

⟨
u− p, jφ(w − p)

⟩
(n → ∞).

Thus, taking the limit as n → ∞ in both sides of (3.5), we get⟨
u− p, jφ(w − p)

⟩
≤ 0, ∀w ∈ F (T ).
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Finally, we prove that xt → p as t → 0. To this end, let {xsn} be another
subsequence of {xt} such that xsn → p′ as n → ∞. We have to show that
p = p′. For any w ∈ F (T ), we have⟨

Txt − xt, jφ(xt − w)
⟩

=
⟨
Txt − w, jφ(xt − w)

⟩
+
⟨
w − xt, jφ(xt − w)

⟩
≤ ∥xt − w∥φ

(
∥xt − w∥

)
+

⟨
w − xt, jφ(xt − w)

⟩
=

⟨
xt − w, jφ(xt − w)

⟩
+

⟨
w − xt, jφ(xt − w)

⟩
= 0.

On the other hand, since

xt − Txt =
t

1− t
(u− xt),

we have ⟨
xt − u, jφ(xt − w)

⟩
≤ 0, ∀w ∈ F (T ).

In particular, we have⟨
xtn − u, jφ(xtn − p′)

⟩
≤ 0

and ⟨
xsn − u, jφ(xsn − p)

⟩
≤ 0

or, equivalently,

∥xtn − p′∥φ
(
∥xtn − p′∥

)
+
⟨
p′ − u, jφ(xtn − p′)

⟩
≤ 0

and
∥xsn − p∥φ

(
∥xsn − p∥

)
+
⟨
p− u, jφ(xsn − p)

⟩
≤ 0.

Taking the limit as n → ∞, since φ is continuous and jφ is norm-to-weak∗

uniformly continuous on bounded subsets of E, we obtain

∥p− p′∥φ
(
∥p− p′∥

)
+
⟨
p′ − u, jφ(p− p′)

⟩
≤ 0

and
∥p′ − p∥φ

(
∥p′ − p∥

)
+
⟨
p− u, jφ(p

′ − p)
⟩
≤ 0.

Summing the above inequalities, we also have

2∥p− p′∥φ
(
∥p− p′∥

)
+

⟨
p′ − p, jφ(p− p′)

⟩
≤ 0.

This implies that ⟨
p− p′, jφ(p− p′)

⟩
≤ 0

and hence p = p′. Therefore, {xt} converges strongly to a fixed point of T .
This completes the proof.
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4 Strong convergence theorems

In this section, using Theorem 3.3, we prove a strong convergence theorem
in a real reflexive and strictly convex Banach space which has a uniformly
Gâteaux differentiable norm and admits the duality mapping jφ, where φ is a
gauge function on [0,∞).

Theorem 4.1. Let K be a nonempty closed and convex subset of a real re-
flexive and strictly convex Banach space E which has a uniformly Gâteaux
differentiable norm and admits the duality mapping jφ. Let {Tn}∞n=1 : K → K
be a sequence of nonexpansive mappings such that F :=

∩∞
n=1 F (Tn) ̸= ∅. Let

u ∈ K be fixed. Let {αn} and {βn} be real sequences in (0, 1) such that

(a) limn→∞ αn = 0;

(b)
∑∞

n=1 αn = ∞;

(c) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

If
(
{Tn}, T

)
satisfies the AKTT-condition, then the sequences {xn} and

{yn} defined by (1.6) converge strongly to p ∈ F which also solves the varia-
tional inequality (3.1).

Proof. First, we see that the sequences {xn} and {yn} is bounded. In fact, for
any w ∈ F , we have

∥yn − w∥ ≤ βn∥xn − w∥+ (1− βn)∥Tnxn − w∥ ≤ ∥xn − w∥

and so

∥xn+1 − w∥ ≤ αn∥u− w∥+ (1− αn)∥yn − w∥
≤ αn∥u− w∥+ (1− αn)∥xn − w∥

≤ max
{
∥xn − w∥, ∥u− w∥

}
.

Hence the sequence {xn} is bounded by induction and so is {yn}.
Next, we show that

lim
n→∞

∥xn+1 − xn∥ = 0.

Putting ln = xn+1−βnxn

1−βn
, we get

xn+1 = (1− βn)ln + βnxn, ∀n ≥ 1.
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Thus we have

ln+1 − ln

=
αn+1u+ (1− αn+1)yn+1 − βn+1xn+1

1− βn+1
− αnu+ (1− αn)yn − βnxn

1− βn

=
αn+1(u− yn+1)

1− βn+1
− αn(u− yn)

1− βn
+ Tn+1xn+1 − Tnxn,

which implies

∥ln+1 − ln∥

≤ αn+1

1− βn+1
∥u− yn+1∥+

αn

1− βn
∥u− yn∥+ ∥xn+1 − xn∥+ ∥Tn+1xn − Tnxn∥

≤ αn+1

1− βn+1
∥u− yn+1∥+

αn

1− βn
∥u− yn∥+ ∥xn+1 − xn∥+ sup

z∈{xn}
∥Tn+1z − Tnz∥.

Since {Tn} satisfies the AKTT-condition, it follows from the conditions (a)
and (c) that

lim sup
n→∞

(
∥ln+1 − ln∥ − ∥xn+1 − xn∥

)
≤ 0.

By Lemma 2.7, we also obtain

lim
n→∞

∥ln − xn∥ = 0.

Since

xn+1 − xn = (1− βn)(ln − xn),

we have

∥xn+1 − xn∥ = (1− βn)∥ln − xn∥ → 0 (n → ∞). (4.1)

On the other hand, we see that

∥xn+1 − yn∥ = αn∥u− yn∥ → 0 (n → ∞). (4.2)

Combining (4.1) and (4.2) we obtain

lim
n→∞

∥xn − yn∥ = 0. (4.3)

Noting that

∥xn − Tnxn∥ ≤ ∥xn − yn∥+ ∥yn − Tnxn∥
= ∥xn − yn∥+ βn∥xn − Tnxn∥,
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from (4.3) and the condition (c), we have

lim
n→∞

∥xn − Tnxn∥ = 0. (4.4)

Further, we have

∥xn − Txn∥ ≤ ∥xn − Tnxn∥+ ∥Tnxn − Txn∥
≤ ∥xn − Tnxn∥+ sup

z∈{xn}
∥Tnz − Tz∥.

Thus, by Lemma 2.9 and (4.4), we have

lim
n→∞

∥xn − Txn∥ = 0. (4.5)

Since T is nonexpansive, by Theorem 3.3, we know that the net {xt} generated
by (1.2) converges strongly to a fixed point p ∈ F (T ) = F which also solves
the variational inequality (3.1).

Next, we prove that

lim sup
n→∞

⟨
u− p, jφ(xn − p)

⟩
≤ 0.

Observe that

∥xt − xn∥φ
(
∥xt − xn∥

)
= t

⟨
u− xn, jφ(xt − xn)

⟩
+ (1− t)

⟨
Txt − xn, jφ(xt − xn)

⟩
= t

⟨
p− xt, jφ(xt − xn)

⟩
+ t

⟨
u− p, jφ(xt − xn)

⟩
+t

⟨
xt − xn, jφ(xt − xn)

⟩
+ (1− t)

⟨
Txt − Txn, jφ(xt − xn)

⟩
+ (1− t)

⟨
Txn − xn, jφ(xt − xn)

⟩
≤ t∥p− xt∥φ(∥xt − xn∥) + t

⟨
u− p, jφ(xt − xn)

⟩
+ ∥xt − xn∥φ(∥xt − xn∥) + ∥Txn − xn∥φ(∥xt − xn∥).

Therefore, it follows that

⟨
u−p, jφ(xn−xt)

⟩
≤ ∥Txn − xn∥φ(∥xt − xn∥)

t
+∥xt−p∥φ(∥xt−xn∥). (4.6)

Using (4.5) and taking the limit as n → ∞ first and then, as t → 0, the
inequality (4.6) becomes

lim sup
t→0

lim sup
n→∞

⟨
u− p, jφ(xn − xt)

⟩
≤ 0. (4.7)
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Since jφ is norm-weak∗ uniformly continuous on bounded sets,⟨
u− p, jφ(xn − xt)

⟩
→

⟨
u− p, jφ(xn − p)

⟩
(t → 0).

We see that⟨
u− p, jφ(xn − p)

⟩
=

⟨
u− p, jφ(xn − xt)

⟩
+
⟨
u− p, jφ(xn − p)− jφ(xn − xt)

⟩
.

By the uniform continuity of jφ, we can interchange the two limits above and
deduce that

lim sup
n→∞

⟨
u− p, jφ(xn − p)

⟩
≤ 0. (4.8)

Finally, we prove that xn → p as n → ∞. Observe that

Φ
(
∥yn − p∥

)
= Φ

(
∥βn(xn − p) + (1− βn)(Tnxn − p)∥

)
≤ βnΦ

(
∥xn − p∥

)
+ (1− βn)Φ

(
∥Tnxn − p∥

)
≤ Φ

(
∥xn − p∥

)
.

Form (2.2), it follows that

Φ
(
∥xn+1 − p∥

)
= Φ

(
∥αn(u− p) + (1− αn)(yn − p)∥

)
≤ Φ

(
(1− αn)∥yn − p∥

)
+ αn

⟨
u− p, jφ(xn+1 − p)

⟩
≤ (1− αn)Φ

(
∥xn − p∥

)
+ αn

⟨
u− p, jφ(xn+1 − p)

⟩
.

Applying Lemma 2.8, we have Φ
(
∥xn − p∥

)
→ 0 as n → ∞ by the condition

(b) and (4.8). Hence xn → p as n → ∞ since Φ is continuous. Moreover, the
sequence {yn} also strongly converges to p. This completes the proof.

Remark 4.2. From Examples 2.10 and 2.11, the ordered pair
(
{Tn}, T

)
in

Theorem 4.1 can be replaced by
(
{Wn},W

)
and

(
{Vn}, V

)
.

Remark 4.3. Theorem 4.1 mainly improves and extends the results of Kim-
Xu [10] in the following aspects:

(1) we relax the restrictions imposed on the parameters in Theorem 1 of
[10];

(2) we extend Theorem 1 of [10] from a single nonexpansive mapping to
an infinite family of nonexpansive mappings;

(3) we extend Theorem 1 of [10] from a uniformly smooth Banach space
to a much more general setting.

Remark 4.4. If f : K → K is a contraction and we replace u by f(xn) in the
recursion formula (1.6), we can obtain the so-called viscosity iteration method
(see [22]).
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Remark 4.5. Theorem 3.3 and Theorem 4.1 can be applied to the spaces Lp,
ℓp (1 < p < ∞), the Sobolev spaces W p

m (1 < p < ∞) and Hilbert spaces.
Moreover, our results hold for a Banach space which has the generalized duality
mapping jq (q > 1) and the normalized the duality mapping j.
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search Fund, the Commission on Higher Education, and University of Phayao
under Grant MRG5580016.

References

[1] R.P. Agarwal, D. O’Regan, D.R. Sahu, Fixed Point Theory for Lipschitzian-

type Mappings with Applications, Springer, New York (2009).

[2] K. Aoyama, Y. Kimura, W. Takahashi, M. Toyoda, Approximation of common

fixed points of a countable family of nonexpansive mappings in a Banach space,

Nonlinear Anal. 67 (2007) 2350-2360.

[3] F.E. Browder, Fixed point theorems for noncompact mappings in Hilbert

spaces, Proc. Natl. Acad. Sci. USA 53 (1965) 1272-1276.

[4] F.E. Browder, Convergence theorems for sequences of nonlinear operators in

Banach spaces, Math. Z. 100 (1967) 201-225.

[5] S.S. Chang, Viscosity approximation methods for a finite family of nonexpansive

mappings in Banach spaces, J. Math. Anal. Appl. 323 (2006) 1402-1416.

[6] Y.J. Cho, S.M. Kang, X. Qin, Approximation of common fixed points of an

infinite family of nonexpansive mappings in Banach spaces, Comput. Math.

Appl. 56 (2008) 2058-2064.

[7] C.E. Chidume, Geometric Properties of Banach Spaces and Nonlinear Itera-

tions, in: Springer Lecture Notes Series, 2009.

[8] P. Cholamjiak, S. Suantai, Viscosity approximation methods for a nonexpansive

semigroup in Banach spaces with gauge functions, J. Glob. Optim. (2011), doi:

10.1007/s10898-011-9756-4.

[9] J.P. Gossez, D.E. Lami, Some geometric properties related to the fixed point

theory for nonexpansive mappings, Pacific J. Math. 40 (1972) 565-573.

[10] T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear

Anal. 61 (2005) 51-60.



STRONG CONVERGENCE OF NONEXPANSIVE MAPPINGS 199

[11] W.R. Mann, Mean value methods in iteration, Proc. Am. Math. Soc. 4 (1953)

506-510.

[12] R.E. Megginson, An Introduction to Banach Space Theory, Springer, New York

(1998).

[13] A. Moudafi, Viscosity approximation methods for fixed point problems, J.

Math. Anal. Appl. 241 (2000) 46-55.

[14] Z. Opial, Weak convergence of successive approximations for nonexpansive map-

pings, Bull. Amer. Math. Soc. 73 (1967) 591-597.

[15] J.W. Peng, J.C. Yao, A viscosity approximation scheme for system of equi-

librium problems, nonexpansive mappings and monotone mappings, Nonlinear

Anal. 71 (2009) 6001-6010.

[16] X. Qin, Y.J. Cho, J.I. Kang, S.M. Kang, Strong convergence theorems for an

infinite family of nonexpansive mappings in Banach spaces, J. Comput. Appl.

Math. 230 (2009) 121-127.

[17] T.-L. Radulescu, V. Radulescu, T. Andreescu, Problems in Real Analysis: Ad-

vanced Calculus on the Real Axis, Springer, New York, 2009.

[18] S. Reich, Strong convergence theorems for resolvents of accretive operators in

Banach spaces, J. Math. Anal. Appl. 75 (1980) 287-292.

[19] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach

spaces, J. Math. Anal. Appl. 67 (1979) 274-276.

[20] K. Shimoji, W. Takahashi, Strong convergence to common fixed points of infi-

nite nonexpansive mappings and applications, Taiwan. J. Math. 5 (2001) 387-

404.

[21] T. Suzuki, Strong convergence of Krasnoselskii and Manns type sequences for

one parameter nonexpansive semigroups without Bochner integrals, J. Math.

Anal. Appl. 305 (2005) 227-239.

[22] T. Suzuki, Moudafi’s viscosity approximations with Meir-Keeler contractions,

J. Math. Anal. Appl. 325 (2007) 342-352.

[23] W. Takahashi, Nonlinear Function Analysis, Yokahama Publishers, Yokahama

(2000).

[24] W. Takahashi, Y. Takeuchi, R. Kubota, Strong convergence theorems by hybrid

methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal.

Appl. 341 (2008) 276-286.



200 Prasit Cholamjiak, Yeol Je Cho, Suthep Suantai

[25] W. Takahashi, Y. Ueda, On Reich’s strong convergence for resolvents of accre-

tive operators, J. Math. Anal. Appl. 104 (1984) 546-553.

[26] R. Wangkeeree, N. Petrot, R. Wangkeeree, The general iterative methods for

nonexpansive mappings in Banach spaces, J. Glob. Optim., doi 10.1007/s10898-

010-9617-6.

[27] H.K. Xu, Strong convergence of an iterative method for nonexpansive and ac-

cretive operators, J. Math. Anal. Appl. 314 (2006) 631-643.

[28] H.K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc. 66

(2002) 240-256.

[29] Y. Yao, R. Chen, J.C. Yao, Strong convergence and certain control conditions

for modified Mann iteration, Nonlinear Anal. 68 (2008) 1687-1693.

[30] Y. Yao, J.C. Yao, H. Zhou, Approximation methods for common fixed points

of infinite countable family of nonexpansive mappings, Comput. Math. Appl.

53 (2007) 1380-1389.

Prasit Cholamjiak,
School of Science,
University of Phayao,
Phayao 56000, Thailand.
Email: prasitch2008@yahoo.com

Yeol Je Cho,
Department of Mathematics Education and the RINS,
Gyeongsang National University,
Jinju 660-701, Republic of Korea.
Email: yjcho@gnu.ac.kr

Suthep Suantai,
Department of Mathematics,
Faculty of Science,
Chiang Mai University,
Chiang Mai 50200, Thailand.
Email: scmti005@chiangmai.ac.th


	Button1: 


