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On iterative fixed point convergence in
uniformly convex Banach space and Hilbert

space

Julee Srivastava and Neeta Singh

Abstract

Some fixed point convergence properties are proved for compact and
demicompact maps acting over closed, bounded and convex subsets of
a real Hilbert space. We also show that for a generalized nonexpansive
mapping in a uniformly convex Banach space the Ishikawa iterates con-
verge to a fixed point. Finally, a convergence type result is established
for multivalued contractive mappings acting on closed subsets of a com-
plete metric space. These are extensions of results in Ciric, et. al. [7],
Panyanak [2] and Agarwal, et. al. [9].

1 Introduction

Let H be a Hilbert space and K be a nonempty subset of H. A mapping
T : K → H is said to be pseudo-contractive if

∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥(I − T )x− (I − T )y∥2 , for all x, y ∈ K.

A mapping T : K → H is called hemicontractive if F (T ) = {x ∈ K : Tx =
x} ≠ ϕ and

∥Tx− x∗∥2 ≤ ∥x− x∗∥2+∥x− Tx∥2 , for all x∗ ∈ F (T ) and for all x ∈ K.

Key Words: Ishikawa iterates, Pseudo-contractive mapping, Hilbert space, Fixed points,
Multivalued map.
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It is easy to observe that each pseudo-contractive mapping with fixed points
is hemicontractive. The reciprocal is not in general true; see [1],[4].

There are two well known methods of approximating a fixed point of a
pseudo-contractive mapping, viz. Mann [11] iterative and Ishikawa [10] itera-
tive processes. In 1991, Xu [3] introduced the following iteration process: For
T : K → E, let a sequence {xn} and x0 ∈ K, where K is a nonempty subset
of a Banach space E, defined iteratively as follows :

xn+1 = anxn + bnTyn + cnun

yn = an
′xn + bn

′Txn + cn
′vn, n ≥ 0, (1)

where {un} and {vn} are bounded sequences in K and {an}, {bn}, {cn}, {a′n},
{b′n} and {c′n} are sequences in [0, 1], such that an+bn+cn = a′n+b′n+c′n = 1,
for all n ≥ 1. If, in (1), b′n = 0 = c′n, then we obtain the Mann iterative se-
quence in the sense of Xu. If cn = 0 = c′n in (1), then we obtain the Ishikawa
iterative sequence.

In [7], Ciric, et al. have introduced and investigated the following modified
Mann implicit iterative process. Let K be a closed convex subset of a real
normed space N and T : K → K be a mapping. Define {xn} in K as follows :

x0 ∈ K,

xn = anxn−1 + bnTvn + cnun, n ≥ 1, (2)

where {an}, {bn}, {cn} are real sequences in [0,1] such that an + bn + cn = 1,
for each n ∈ N and {un} and {vn} are sequences in K.

Let H be a Hilbert space and C a subset of H. A mapping T : C → H
is called demicompact if it has the property that whenever {un} is bounded
sequence in H and {Tun − un} is strongly convergent, there exists a strongly
convergent subsequence {unk

} of {un}.
In section two of the present paper, we have shown that if K is closed,

bounded and convex subset of a real Hilbert space H, T : K → K a compact
hemicontractive map with x0 ∈ T (K) and sequence {xn} in T (K) be defined
by (1) and {bn}, {cn} and {vn} satisfy some appropriate conditions, then the
sequence {xn} converges strongly to a fixed point of T . Also, we have inves-
tigated that if K is closed, bounded and convex subset of a real Hilbert space
H and the mapping T : K → K is continuous demicompact hemicontractive
map and {an}, {bn}, {cn} are real sequences in [0,1] such that an+bn+cn = 1,
for each n ∈ N and {bn}, {cn}, {vn} satisfy some appropriate conditions, then
the sequence {xn}, defined by (2), converges strongly to some fixed point of
T .
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Let E be a Banach space. A subset K of E is called proximinal if for each
x ∈ E, there exists an element k ∈ K such that

d(x, k) = dist(x,K) = inf{∥x− y∥ : y ∈ K}.

It is well known that every closed convex subset of a uniformly convex Ba-
nach space is proximinal. We shall denote by P (K), the family of nonempty
bounded proximinal subsets of K. We say that the mapping T : E → P (E) is
generalized nonexpansive if

H(Tx, Ty) ≤ a ∥x− y∥+ b{d(x, Tx) + d(y, Ty)}+ c{d(x, Ty) + d(y, Tx)},

for all x, y ∈ X, where a+ 2b+ 2c ≤ 1.
Bancha Panyanak proved the following Theorem in [2].

Theorem 1.1. Let K be a nonempty compact convex subset of a uniformly
convex Banach Space E. Suppose T : K → P (K) is a nonexpansive map
with a fixed point p. Let {xn} be the sequence of Ishikawa iterates defined by
x0 ∈ K,

yn = (1− βn)xn + βnzn βn ∈ [0, 1], n ≥ 0,

where zn ∈ Txn is such that ∥zn − p∥ = dist(p, Txn), and

xn+1 = (1− αn)xn + αnzn
′, αn ∈ [0, 1],

where zn
′ ∈ Tyn is such that ∥zn′ − p∥ = dist(p, Tyn). Assume that

(i) 0 ≤ αn, βn < 1,
(ii) βn → 0 and
(iii)

∑
αnβn = ∞. Then the sequence {xn} converges to a fixed point of T.

In section three, we generalize the above theorem by taking generalized
nonexpansive map in place of nonexpansive map in which the sequence of
Ishikawa iterates converges to the fixed point of T.

Let X be a complete metric space and C(X) is collection of all nonempty
closed subsets of X, CB(X) is the collection of all nonempty closed bounded
subsets of X. Let H be a Hausdorff metric on C(X), that is

H(A,B) = max{supx∈Ad(x,B), supx∈Bd(x,A)},

for any A,B ∈ C(X), where d(x,B) = inf{∥x− y∥ : y ∈ B}.
A function f : X → R is called lower semi-continuous, if for any sequence

{xn} in X and x ∈ X,

xn → x =⇒ f(x) ≤ limn→∞f(xn).

In section four, we generalize the following result (cf. Theorem 4.2.11 in
[9]) by taking C(X) in place of CB(X).
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Theorem 1.2. [9]. Let X be a complete metric space and let Tn : X →
CB(X)(n = 0, 1, 2, 3, ...) be contraction mappings each having Lipschitz con-
stant k < 1, i.e.,

H(Tnx, Tny) ≤ kd(x, y),

for all x, y ∈ X and n ∈ (0, 1, 2, 3, ...). If limn→∞ H(Tn(x), T0(x)) = 0 uni-
formly for x ∈ X, then limn→∞ H(F (Tn), F (T0)) = 0.

2 Fixed point theorems for hemicontractive map

We shall make use of the following Lemmas.

Lemma 2.1. [8]. Let H be a Hilbert space, then for all x, y, z ∈ H,

∥ax+ by + cz∥2 = a ∥x∥2+b ∥y∥2+c ∥z∥2−ab ∥x− y∥2−bc ∥y − z∥2−ca ∥z − x∥2 ,

where a, b, c ∈ [0, 1] and a+ b+ c = 1.

Lemma 2.2. [5]. Suppose that {ρn}, {σn} are two sequences of nonnegative
numbers such that for some real number N0 ≥ 1,

ρn+1 ≤ ρn + σn, ∀ n ≥ N0.

(a) If
∑∞

n=1σn < ∞, then lim{ρn} exists.
(b) If

∑∞
n=1σn < ∞ and {ρn} has a subsequence converging to zero, then

limn→∞ ρn = 0.

Now we prove our main results in this section which is generalization of
[[7],Theorem 4]

Theorem 2.3. Let K be a closed bounded convex subset of a real Hilbert space
H and T : K → K a compact, hemicontractive map. Let {an}, {bn}, {cn}
be real sequences in [0,1] such that an + bn + cn = 1, for each n ∈ N and
satisfying:
(i) {bn} ⊂ [δ, 1− δ] for some δ ∈ (0, 1/2],
(ii)

∑∞
n=1cn < ∞.

For arbitrary x0 ∈ T (K), let a sequence {xn} in T (K) be iteratively defined
by

xn = anxn−1 + bnTvn + cnun, n ≥ 1, (3)

where vn ∈ T (K) are chosen such that
∑∞

n=1 ∥vn − xn∥ < ∞ and {un}∞n=1 is
arbitrary sequence in K. Then {xn}∞n=1 converges strongly to some fixed point
of T .
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Proof. Let T : K → K be a continuous map, where K is a closed bounded
convex subset of a real Hilbert space H. Then T (K) is closed subset of K
and T (K) is compact. Hence T (K) is compact. Let A = co(T (K)), convex
closure of T (K). Then A ⊂ K. Since T (K) is a relatively compact subset
of K, by Mazur’s theorem co(T (K)) is compact and convex. Furthermore,
T (A) ⊂ A. Now we have to show that in restriction T : A → A, {xn}∞n=1

converges strongly to some fixed point of T. Let x∗ ∈ T (K) be a fixed point
of T and M = diam(T (K)), diameter of T (K). Since T is hemicontractive,

∥Tvn − x∗∥2 ≤ ∥vn − x∗∥2 + ∥vn − Tvn∥2 , (4)

for each n ∈ N. By virtue of (3), Lemma 2.1 and (4), we obtain

∥xn − x∗∥2 = ∥anxn−1 + bnTvn + cnun − x∗∥2

= ∥an(xn−1 − x∗) + bn(Tvn − x∗) + cn(un − x∗)∥2

= an ∥xn−1 − x∗∥2 + bn ∥Tvn − x∗∥2 + cn ∥un − x∗∥2

− anbn ∥xn−1 − Tvn∥2 − bncn ∥Tvn − un∥2

− ancn ∥xn−1 − un∥2

≤ an ∥xn−1 − x∗∥2 + bn ∥Tvn − x∗∥2

+ cn ∥un − x∗∥2 − anbn ∥xn−1 − Tvn∥2

≤ (1− bn) ∥xn−1 − x∗∥2 + bn(∥vn − x∗∥2

+ ∥vn − Tvn∥2) + cnM
2 − anbn ∥xn−1 − Tvn∥2 . (5)

Also, we have

∥vn − x∗∥2 ≤ ∥vn − xn∥2 + ∥xn − x∗∥2 + 2 ∥xn − x∗∥ ∥vn − xn∥
≤ ∥vn − xn∥2 + ∥xn − x∗∥2 + 2M ∥vn − xn∥ , (6)

and

∥vn − Tvn∥2 ≤ ∥vn − xn∥2 + ∥xn − Tvn∥2 + 2 ∥xn − Tvn∥ ∥vn − xn∥
≤ ∥vn − xn∥2 + ∥xn − Tvn∥2 + 2M ∥vn − xn∥ (7)

and

∥xn − Tvn∥2 = ∥anxn−1 + bnTvn + cnun − Tvn∥2

= ∥(1− bn − cn)xn−1 + bnTvn + cnun − Tvn∥2

≤ [(1− bn) ∥xn−1 − Tvn∥+ cn ∥un − xn−1∥]2

≤ [(1− bn) ∥xn−1 − Tvn∥+Mcn]
2

≤ (1− bn)
2 ∥xn−1 − Tvn∥2 + 3M2cn. (8)
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In view of (7) and (8), (5) takes the form

∥xn − x∗∥2 ≤ (1− bn)
2 ∥xn−1 − x∗∥2

+ bn ∥xn − x∗∥2 + 2bn ∥vn − xn∥2 + 4Mbn ∥vn − xn∥
+ 4M2cn − bn[an − (1− bn)

2] ∥xn−1 − Tvn∥2 . (9)

Using an + bn + cn = 1 in condition (i), we have

an − (1− bn)
2 = 1− bn − cn − (1− bn)

2

= bn(1− bn)− cn

≥ δ2 − cn. (10)

From condition (ii), it follows that there exists a positive integer n0 ∈ N such
that for all n ≥ n0, we have cn ≤ δ3, i.e. δ2 − cn ≥ δ2 − δ3 = δ2(1− δ). Thus,
from (10), we obtain

an − (1− bn)
2 ≥ δ2(1− δ). (11)

From (9) and (11), we have, for all n ≥ n0

(1− bn) ∥xn − x∗∥2 ≤ (1− bn) ∥xn−1 − x∗∥2 + 2bn ∥vn − xn∥2

+ 4Mbn ∥vn − xn∥+ 4M2cn

− bnδ
2(1− δ) ∥xn−1 − Tvn∥2 .

or ∥xn − x∗∥2 ≤ ∥xn1 − x∗∥2 + 2bn
(1− bn)

∥vn − xn∥2

+ 4M
bn

(1− bn)
∥vn − xn∥+

4M2cn
(1− bn)

+ bn
δ2(1− δ)

(1− bn)
∥xn−1 − Tvn∥2 . (12)

Since 1
(1−bn)

≤ 1
δ and −1

(1−bn)
≤ −1

1−δ ; δ ≤ bn ≤ 1 − δ, we have bn
1−bn

≤ 1−δ
δ =
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1
δ − 1 < 1

δ . Hence from (12), we have

∥xn − x∗∥2 ≤ ∥xn−1 − x∗∥2 + 2

δ
∥vn − xn∥2 +

4M

δ
∥vn − xn∥+

4M2cn
δ

− δ3(1− δ)

(1− bn)
∥xn−1 − Tvn∥2

≤ ∥xn−1 − x∗∥2 + 2

δ
∥vn − xn∥2 +

4M

δ
∥vn − xn∥+

4M2cn
δ

− δ3(1− δ)

(1− δ
∥xn−1 − Tvn∥2

≤ ∥xn−1 − x∗∥2 + 2

δ
∥vn − xn∥2 +

4M

δ
∥vn − xn∥+

4M2cn
δ

− δ3 ∥xn−1 − Tvn∥2 ,
i.e. ∥xn − x∗∥2 ≤ ∥xn−1 − x∗∥2 − δ3 ∥xn−1 − Tvn∥2 + σn, for all n ≥ n0,

(13)

where

σn =

[
2

δ
∥vn − xn∥2 +

4M

δ
∥vn − xn∥+

4M2

δ
cn

]
=

1

δ
[2 ∥vn − xn∥2 + 4M ∥vn − xn∥+ 4M2cn]. (14)

By the hypothesis of the theorem, we obtain

∞∑
j=n0

σj < +∞. (15)

From (14), we get

δ3 ∥xn−1 − Tvn∥2 ≤ ∥xn−1 − x∗∥2 − ∥xn − x∗∥2 + σn,
and hence

δ3
∞∑

j=n0

∥xj−1 − Tvj∥2 ≤
∞∑

j=n0

σj + ∥xn0−1 − x∗∥2 .

By (15) we get
∑∞

j=n0
∥xj−1 − Tvj∥2 < +∞. This implies limn→∞ ∥xn−1 − Tvn∥

= 0. From (8) and condition (ii), it further implies that limn→∞ ∥xn − Tvn∥ =
0. Also the condition

∑∞
j=n0

∥vn − xn∥ < ∞ implies limn→∞ ∥vn − xn∥ = 0.
Thus from (7), we have

lim
n→∞

∥vn − Tvn∥ = 0. (16)
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By compactness of T (K), there is a convergent subsequence {vnj
} of {vn}, such

that it converges to some point z ∈ T (K) ⊂ co(T (K)) = A. By continuity of
T , {Tvnj} converges to Tz. Therefore, from (16), we conclude that Tz = z.
Further, limn→∞ ∥vn − xn∥ = 0 implies

lim
j→∞

∥∥xnj − z
∥∥ = 0. (17)

Since (13) holds for any fixed points of T , we have

∥xn − z∥2 ≤ ∥xn−1 − z∥2 − δ3 ∥xn−1 − Tvn∥2 + σn

and in view of (15), (17) and Lemma 2.2, we conclude that ∥xn − z∥ → 0 as
n → ∞ i.e xn → z as n → ∞. Thus, we have proved that a sequence {xn}
converges strongly to some fixed point of T . This sequence in K automatically
converges strongly to a fixed point of T .

Theorem 2.4. Let K be a closed bounded convex subset of a real Hilbert space
H and T : K → K a continuous demicompact and hemicontractive map. Let
{an}, {bn} and {cn} be a real sequences in [0, 1] such that an+ bn+ cn = 1 for
each n ∈ N and satisfying:
(i) {bn} ⊂ [δ, 1− δ], for some δ ∈ (0, 1

2 ],
(ii)

∑∞
n=1cn < ∞.

For arbitrary x0 ∈ K, let a sequence xn ∈ K be iteratively defined by

xn = anxn−1 + bnTvn + cnun, n ≥ 1, (18)

where vn ∈ K are chosen such that
∑∞

n=1 ∥vn − xn∥ < ∞. Then {xn}∞n=1

converges strongly to some fixed point of T .

Proof. Let x∗ ∈ K be a fixed point of hemicontractive map T and M =
diam(K). Using inequality (4) as in the proof of Theorem 2.3 and proceeding
in the similar manner we arrive at (16) which implies that the sequence {vn−
Tvn}n∈N converges strongly to zero. As T is demicompact, it results that
there exists a strongly convergent subsequence {vnj} of {vn}. such that vnj →
z ∈ K. By continuity of T , Tvnj converges to Tz. Therefore, from (16), we
conclude that Tz = z. Further, limn→∞ ∥vn − xn∥ = 0 implies∥∥xnj − z

∥∥ = 0. (19)

Since (13) holds for any fixed points of T , we have

∥xn − z∥2 ≤ ∥xn−1 − z∥2 − δ3 ∥xn−1 − Tvn∥2 + σn. (20)

In view of (15), (19) and Lemma 2.2, we conclude that ∥xn − z∥ → 0 as n → ∞
i.e. xn → z as n → ∞. Thus, we have proved that {xn} converges strongly to
some fixed point of T .
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3 Ishikawa iteration for multivalued generalized nonex-
pansive map

To prove the main theorem of this section, we need the following Lemmas:

Lemma 3.1. [3]. Let E be a Banach space. Then E is uniformly convex if and

only if for any given number ρ > 0, the square norm ∥.∥2 of E is uniformly
convex on Bρ, the closed ball centered at the origin with radius ρ; namely,
there exists a continuous strictly increasing function ϕ : [0,∞) → [0,∞) with
ϕ(0) = 0 such that

∥αx+ (1− α)y∥2 ≤ α ∥x∥2 + (1− α) ∥y∥2 − α(1− α)ϕ(∥x− y∥),

for all x, y ∈ Bρ, α ∈ [0, 1].

Lemma 3.2. [2]. Let {αn}, {βn} be two real sequences such that
(i) 0 ≤ αn, βn < 1,
(ii) βn → 0 as n → ∞ and
(iii)

∑∞
n=1αnβn = ∞.

Let {γn} be a nonnegative real sequence such that
∑∞

n=1αnβn(1 − βn)γn is
bounded. Then {γn} has a subsequence which converges to zero.

Theorem 3.3. Let K be a nonempty compact convex subset of a uniformly
convex Banach space E. Suppose T : K → P (K) is a generalized nonexpansive
map with a fixed point p. Let {xn} be the sequence of Ishikawa iterates defined
by x0 ∈ K,

yn = (1− βn)xn + βnzn βn ∈ [0, 1], n ≥ 0,

where zn ∈ Txn is such that ∥zn − p∥ = dist(p, Txn), and

xn+1 = (1− αn)xn + αnzn
′, αn ∈ [0, 1]

where zn
′ ∈ Tyn is such that ∥zn′ − p∥ = dist(p, Tyn). Assume that

(i) 0 ≤ αn, βn < 1
(ii) βn → 0 and
(iii)

∑∞
n=1 αnβn = ∞. Then the sequence {xn} converges to a fixed point of

T.

Proof. By using Lemma 3.1, we have

∥xn+1 − p∥2 = ∥(1− αn)xn + αnzn
′ − p∥2

≤ (1− αn) ∥xn − p∥2 + αn ∥zn′ − p∥2 − αn(1− αn)ϕ(∥xn − zn
′∥)

≤ (1− αn) ∥xn − p∥2 + αnH
2(Tyn, Tp)

− αn(1− αn)ϕ(∥xn − zn
′∥). (21)
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By generalized nonexpansive property of T , we have

H(Tp, Tyn) ≤ a ∥yn − p∥+ bd(yn, T yn) + c{d(p, Tyn) + d(yn, Tp)}
≤ a ∥yn − p∥+ b{∥yn − p∥+ d(p, Tyn)}+ c{d(p, Tyn) + d(yn, Tp)}
≤ (a+ b+ c) ∥yn − p∥+ (b+ c)d(p, Tyn)

≤ (a+ b+ c) ∥yn − p∥+ (b+ c)H(Tp, Tyn)

H(Tp, Tyn) ≤ a+ b+ c

1− (b+ c)
∥yn − p∥ . (22)

Since a+b+c
1−(b+c) ≤ 1, it follows that

H(Tyn, Tp) ≤ ∥yn − p∥ (23)

From (21) and (23), we get

∥xn+1 − p∥2 ≤ (1− αn) ∥xn − p∥2 + αn ∥yn − p∥2

−αn(1− αn)ϕ(∥xn − zn
′∥). (24)

Now

∥yn − p∥2 = ∥(1− βn)xn + βnzn − p∥2

≤ (1− βn) ∥xn − p∥2 + βn ∥zn − p∥2 − βn(1− βn)ϕ(∥xn − zn∥)
≤ (1− βn) ∥xn − p∥2 + βnH

2(Txn, Tp)− βn(1− βn)ϕ(∥xn − zn∥)
≤ ∥xn − p∥2 − βn(1− βn)ϕ(∥xn − zn∥). (25)

From (24) and (25), we get

∥xn+1 − p∥2 ≤ ∥xn − p∥2 − αnβn(1− βn)ϕ(∥xn − zn∥). (26)

Therefore

αnβn(1− βn)ϕ(∥xn − zn∥) ≤ ∥xn − p∥2 − ∥xn+1 − p∥2 .

This implies

∞∑
n=1

αnβn(1− βn)ϕ(∥xn − zn∥) ≤ ∥x1 − p∥2 < ∞.

By Lemma 3.2, there exists a subsequence {xnk
− znk

} of {xn − zn} such that
ϕ(∥xnk

− znk
∥) → 0 as k → ∞ and hence ∥xnk

− znk
∥ → 0, by continuity and
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strictly increasing nature of ϕ. By compactness of K, we may assume that
xnk

→ q, for some q ∈ K. Thus,

dist(q, T q) ≤ ∥q − xnk
∥+ dist(xnk

, Txnk
) +H(Txnk

, T q)

≤ ∥q − xnk
∥+ ∥xnk

− znk
∥+ ∥xnk

− q∥ → 0 as k → ∞.(27)

Hence q is a fixed point of T . Now on taking q in place of p, we get ∥xn − q∥ as
a decreasing sequence by (26). Since ∥xnk

− q∥ → 0 as k → ∞, it follows that
{∥xn − q∥} converges to zero, so that the conclusion of the theorem follows.

4 Fixed point theorem for multivalued contractive map-
pings

The main result of this section is as follows:

Proposition 4.1. Let X be a complete metric space and let S, T : X → C(X)
be a multivalued mapping. If there exists a constant c ∈ (0, 1) such that for

any x ∈ X there is y ∈ I
(S)x
b and I

(T )x
b satisfying d(y, S(y)) ≤ cd(x, y) and

d(y, Ty) ≤ cd(x, y) with c < b and f is lower semi-continuous, then

H(F (s), F (T )) ≤ (b− c)−1supx∈XH(Sx, Tx), (28)

where the following have been taken from [12], for mapping f : X → R,
f(x) is defined as f(x) = d(x, Tx) and for mapping S, f(x) is defined as
f(x) = d(x, Sx),

I
(S)x
b = {y ∈ S(x) : bd(x, y) ≤ d(x, Sx)}

and
I
(T )x
b = {y ∈ T (x) : bd(x, y) ≤ d(x, Tx)}.

Proof. Since S(x), T (x) ∈ C(X) for any x ∈ X, I
(S)x
b and I

(T )x
b are nonempty

for any constant b ∈ (0, 1). Let x0 ∈ F (S) implies x0 ∈ S(x0). Then there is
another point x1 ∈ S(x0) such that for any initial point x0 ∈ X, there exists

x1 ∈ I
s(x0)
b . For x1, there exists Sx1 such that

d(x1, Sx1) ≤ cd(x0, x1),

and for any x0 ∈ X, there exists x1 ∈ I
(T )x0

b i.e. {x1 ∈ T (x0) : bd(x0, x1) ≤
d(x0, Tx1)} satisfying

d(x1, Tx1) ≤ cd(x0, x1),
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and for x1 ∈ X, there is x2 ∈ I
(T )x1

b satisfying

d(x2, Tx2) ≤ cd(x1, x2).

Continuing this process, we can get an iterative sequence {xn}∞n=0, where

xn+1 ∈ I
(T )xn

b and

d(xn+1, Txn+1) ≤ cd(xn, xn+1), n = 0, 1, 2, ..... (29)

On the other hand xn+1 ∈ I
(T )xn

b implies

bd(xn, xn+1) ≤ d(xn, Txn), n = 0, 1, 2, .... (30)

From (30) and (31), we have

d(xn+1, Txn+1) ≤
c

b
d(xn, Txn), n = 0, 1, 2, ...

and

d(xn+1, xn+2) ≤
c

b
d(xn, xn+1), n = 0, 1, 2, ....

Observe that

d(xn, xn+1) ≤ c

b
d(xn−1, xn)

≤ c

b

[c
b
d(xn−2, xn−1)

]
=

c2

b2
d(xn−2, xn−1)

....

....

....

=
cn

bn
d(x0, x1). (31)

Since c < b, c
b < 1, therefore limn→∞( cb )

n → 0, which means that {xn}∞n=0 is
a Cauchy sequence. By the completeness of X, there exists v ∈ X such that
{xn}∞n=0 converges to v.

Now we have to show that v ∈ F (T ). We have given {f(xn)}∞n=0 =
{d(xn, Txn)}∞n=0 to be a decreasing sequence and hence it converges to zero.
Since f is lower semi-continuous, as xn → v, we have 0 ≤ f(v) ≤ limn→∞f(xn) =
0. Hence f(v) = 0. Finally the closeness of T (v) implies v ∈ T (v). Hence
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v ∈ F (T ).
Now, we observe that

d(x0, v) ≤
∞∑

n=0

d(xn, xn+1)

≤
∞∑

n=0

(c
b

)n

d(x0, x1)

≤
(

1

1− c
b

)
d(x0, x1)

≤
(
1− c

b

)−1 1

b
d(x0, Tx0). (32)

Now

d(x0, Tx0) ≤ supx∈Sx0d(x, Tx0)

≤ max{supx∈Sx0d(x, Tx0), supx∈Tx0d(x, Sx0)}
= H(Sx0, Tx0). (33)

Hence we get

d(x0, v) ≤ b(b− c)−1 1

b
d(x0, Tx0)

≤ (b− c)−1H(Sx0, Tx0). (34)

Interchanging the roles of S and T , for each y0 ∈ F (T ) and y1 ∈ Sy0, for any
y0 ∈ X and u ∈ F (S), we have

d(y0, u) ≤ (b− c)−1H(Sy0, T y0).

Thus, we have

H(F (S), F (T )) ≤ (b− c)−1supx∈XH(Sx, Tx).

Example Let X =
{

1
2 ,

1
4 ,

1
8 , .......

1
2n , ....

}
∪ {0, 1}, d(x, y) = |x− y| for any

x, y ∈ X, be a complete metric space. Define the mappings S, T : X → C(X)
as and

S(x) =


{

1

2n+2
, 1

}
, if x =

1

2n
, n = 0, 1, 2, ....{

0,
1

2

}
, if x = 0.
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Now

f(x) = d(x, Tx) =


1

2n+1
, if x =

1

2n
, n = 1, 2, ....

0, if x = 0, 1

and

f(x) = d(x, Sx) =


3

2n+2
, if x =

1

2n
, n = 1, 2, ....

0, if x = 0, 1

Hence f is continuous for both mappings S and T. Obviously, S and T are
not contractive mappings. It is clear that

H

(
T

(
1

2n

)
, T (0)

)
=

1

2
.

Hence

H

(
T

(
1

2n

)
, T (0)

)
=

1

2
≥ 1

2n
=

∣∣∣∣ 12n − 0

∣∣∣∣ = d

(
1

2n
, 0

)
n = 1, 2, 3....

For mapping S : X → C(X)

H

(
S

(
1

2n

)
, S(0)

)
=

1

2
.

Hence

H

(
S

(
1

2n

)
, S(0)

)
=

1

2
≥ 1

2n
=

∣∣∣∣ 12n − 0

∣∣∣∣ = d

(
1

2n
, 0

)
, n = 1, 2, 3....

Furthermore, there exists y ∈ Ix0.7, for any x ∈ X, such that d(y, T (y)) =
1
2d(x, y) and d(y, S(y)) < 1

2d(x, y), then

H(F (S), F (T )) = 0

and

Supx∈XH(Sx, Tx) =
1

4
.

Hence, we get H(F (S), F (T )) ≤ (b− c)−1Supx∈XH(Sx, Tx).

Theorem 4.2. Let X be a complete metric space and let Tn : X → C(X)
(n = 0, 1, 2, 3, ...) be multivalued mappings. If there exists a constant c ∈ (0, 1)

such that for any x ∈ X, there is y ∈ I
(n)x
b satisfying

d(y, Tny) ≤ cd(x, y), for n = 1, 2, 3, 4....

If limn→∞ H(Tnx, T0x) = 0 uniformly for x ∈ X, then limn→∞ H(F (Tn), F (T0)) =
0
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Proof. Since
lim
n→∞

H(Tn(x), T0(x)) = 0

uniformly for x ∈ X, it is possible to select n0 ∈ N, such that

supx∈XH(Tnx, T0x) ≤ (b− c)ϵ, for all n ≥ n0.

By proposition 4.1, we have

H(F (Tn), F (T0)) < ϵ, for all n ≥ n0.

Hence
lim
n→∞

H(F (Tn), F (T0)) = 0.
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