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The disk property. A short survey

Cezar Joiţa

Abstract

We present some results obtained over the years regarding the disk
property for complex manifolds and its connections with pseudoconvex-
ity.

The idea to use holomorphic disks to study domains of holomorphy in Cn
goes back all the way to F. Hartogs [12] at the beginning of the twentieth
century. Hartogs’ result was extended by Osgood [19] who proved what is
called ”Hartogs extension theorem” stating that if Ω is a domain in Cn, K ⊂ Ω
is a compact subset and Ω \K is connected then any holomorphic function on
Ω \K can be extended to Ω. Osgood proof of Hartogs’ theorem is incomplete.
For a complete proof along Hartogs’ ideas see [17]. The shortest and the
most elegant proof is due to Ehrenpreis [9] and uses the ∂-method. Actually
Hartogs extension theorem holds in a far more generally context, namely for
cohomologically (n − 1)-complete normal complex spaces, see [4], [18], and
[20].

A few years after Hartogs’ paper, E. E. Levi [16] founded the theory of
pseudoconvexity and proved, using holomorphic disks, that a domain of holo-
morphy with smooth boundary must be pseudoconvex. Here we say that Ω
is pseudoconvex if it has a strictly plurisubharmonic (i.e. its Levi form, or its
complex Hessian, is positive definite) exhaustion function.

Of course, by the Oka’s solution to the Levi problem, a domain in Cn is a
domain of holomorphy if and only if it is pseudoconvex.

One of the basic notions needed to deal with holomorphic disks for domains
in Cn is the continuity principle. We denote by ∆ the open unit disk in C
and, in general, by ∆r ⊂ C the disk of radius r centered at the origin.
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Definition 1. A domain Ω in Cn satisfies the continuity principle if for every
continuous function F : ∆× [0, 1]→ Cn such that z → F (z, t) is holomorphic
in ∆ for every t ∈ [0, 1] if F (∆ × {0}) ⊂ Ω and F (∂∆ × [0, 1]) ⊂ Ω then
F (∆× [0, 1]) ⊂ Ω.

This notion is an ”extrinsic“ one because F is allowed to take values outside
Ω. We want to formulate an equivalent definition that can be extended to
complex manifolds (or complex spaces). For ε > 0 we define Hε ⊂ C× R as

Hε = ∆1+ε × [0, 1)
⋃
{z ∈ C : 1− ε < |z| < 1 + ε} × {1}.

Definition 2. A complex manifold X is said to satisfy the continuous disk
property if whenever ε is a positive number and F : Hε → X is a continuous
function such that, for every t ∈ [0, 1), Ft : ∆1+ε → X, Ft(Z) = F (z, t), is
holomorphic we have that F (Hε1) b X for any ε1 ∈ (0, ε).

It is not difficult to see that Definitions 1 and 2 are equivalent for domains
in Cn.

If the parameter space is the set of positive integers instead of [0, 1] we
obtain the notion of “discrete disk property”.

Definition 3. We say that a complex manifold X satisfies the discrete disk
property if for every sequence of functions fn : ∆→ X, n ∈ N, continuous on
∆ and holomorphic on ∆, if

⋃
n∈N fn(∂∆) b X then

⋃
n∈N fn(∆) b X.

A continuous function f : ∆ → X which is holomorphic on ∆ is called
a holomorphic disk in X. We remark that in [6] the discrete disk property
was called p5-convexity. In general controlling the behavior of a sequence of
holomorphic disks only on ∂∆ might not give sufficient information for its
behavior in ∆. Take, for example, fn : ∆ → C, fn(z) = zn, which converges
uniformly to 0 on compacts subsets of ∆ but diverges at every point of ∂∆.
We introduce then a weaker notion:

Definition 4. We say that a complex manifold X satisfies the weak discrete
disk property if whenever fn : U → X is a sequence of holomorphic functions
defined on an open neighborhood U of ∆ for which there exists an ε > 0 and
a continuous function γ : S1 = {z ∈ C : |z| = 1} → X such that ∆1+ε ⊂ U ,⋃
n≥1 fn(∆1+ε \∆) is relatively compact in X and fn|S1 converges uniformly

to γ we have that
⋃
n≥1 fn(∆) is relatively compact in X.

We should mention that we do not actually know any example showing
that the weak discrete disk property is not equivalent to the discrete disk
property. Obviously the weak discrete disk property implies the continuous
one.

The proof of the next Lemma is, more or less, straightforward.
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Lemma 1. If X is a complex manifold, {Dn} is an increasing sequence of
open subsets of X such that

⋃
Dn = X and if each Dn satisfies the continuous

disk property then X satisfies the continuous disk property.

J. E. Fornæss [10] gave an example of a complex X manifold that can be
written as an increasing union of Stein open subsets and X does not satisfy
the weak discrete property. By the previous lemma, X satisfies the continuous
disk property. This shows that the weak discrete disk property is stronger that
the continuous one.

For domains in Cn all this notions of ”disk properties” are equivalent among
them and they are equivalent to pseudoconvexity. The same type of result
holds for Stein manifolds. This is not true anymore on Stein complex spaces
(hence if one allows singularities). For examples in this sense, see [5] and [11].

To prove that the disk property implies pseudoconvexity one shows that,
for a domain Ω that satisfies the disk property, − log δΩ is plurisubharmonic
on Ω where δΩ is the distance to the boundary of Ω. It turns out that one can
use the distance to the boundary to produce plurisubharmonic functions for
some other classes of complex manifolds.

Definition 5. A complex manifold is called infinitesimally homogeneous if the
global holomorphic vector fields generate the tangent space at every point.

For a domain Ω in an infinitesimally homogeneous manifold X one can
define a distance to the boundary δΩ using trajectories of global holomorphic
vector fields. A. Hirschowitz [13] proved the following:

Theorem 1. If X is an infinitesimally homogeneous manifold and Ω is a
domain in X that satisfies the discrete disk property then − log δΩ is plurisub-
harmonic.

Of course one can endow the complex manifoldX with a hermitian metric ω
and for a domain Ω ⊂ X one can define δωΩ to be the distance to the boundary
of Ω with respect to this metric. However without some extra geometric
assumptions this will not be very useful. For Kähler manifolds with positive
bisectional curvature Elencwajg [8] and Suzuki [24] have proved the following
theorem (see also [25]):

Theorem 2. Let X be a Kähler manifold and ω be a Kähler metric on X.
Assume that the biholomorphic bisectional curvature of ω is positive. If Ω is
an open subsets of X that satisfies the discrete disk property then there exists
a neighborhood U of ∂Ω such that δωΩ is strictly plurisubharmonic on U ∩ Ω.

Another method to produce plurisubharmonic functions using analytic
disks is by using disk functionals. This theory was initiated by E. A. Po-
letsky. For a complex manifold X let AX be the set of all holomorphic disks
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in X and let H : AX → [−∞,∞] be a function. The envelope of H is defined
as EH : X → [−∞,∞], EH(p) = inf{H(f) : f ∈ AX , f(0) = p}. The main
problem is to prove that EH is plurisubharmonic for various choices of H. We
refer to [21], [22], [14], [15], and [23] for various results in this direction.

We will discuss next the discrete disk property for coverings of complex
surfaces. One motivation for studying this type of problems is the Shafarevich
conjecture which asks to decide if universal covering of a projective manifold
is holomorphically convex. A complex manifold X is called holomorphically
convex if for every compact subset K ⊂ X its holomorphically convex hull
K̂ := {x ∈ X : |f(x)| ≤ ‖f‖K ∀ f ∈ O(X)} is compact. ‖f‖K denotes
the supremum of |f | on K and O(X) the set of holomorphic functions on X.
By the maximum modulus principle every holomorphically convex manifold
satisfies the discrete disk property. In its full generality Shafarevich conjecture
is open even for surfaces. For partial results we refer to [7].

Definition 6. A complex manifold X is called 1-convex if there exists a normal
Stein space Y , a proper holomorphic map p : X → Y and a finite subset A of
Y such that p : X \ p−1(A)→ Y \A is a biholomorphism.

Suppose that X is a 1-convex surface and p : X̃ → X is a covering map.
It was proved in [1] that X̃ can be exhausted by a sequence of relatively
compact strongly pseudoconvex domains with smooth boundary and therefore
it satisfies the continuous disk property. Hence the question is if X̃ satisfies
or not the discrete disk property. We want to present two results: one in the
positive direction and one in the negative direction. To formulate the first one
of them we need one more definition:

Definition 7. Let L be a connected 1-dimensional complex space and ∪Li
be its decomposition into irreducible components. L is called an infinite Nori
string if all Li are compact and L is not compact

The following theorem was proved in [2].

Theorem 3. Let X be a 1-convex surface and p : X̃ → X be a covering map.
If X̃ does not contain an infinite Nori string of rational curves then X̃ satisfies
the discrete disk property.

To explain the condition that X̃ does not contain an infinite Nori string of
rational curves that appears in Theorem 3 we mention the following Lemma:

Lemma 2. If L is 1-dimensional complex space that does not contain an
infinite Nori string of rational curves then L has a holomorphically convex
covering space.
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It turns out that the condition is really necessary because in general X̃
might not satisfy the weak discrete disk property (and therefore nor the dis-
crete disk property) as the next theorem, proved in [3], shows.

Theorem 4. There exists a 1-convex surface whose universal covering does
not satisfy weak the discrete disk property.

To prove this theorem one constructs an example. The construction is as
follows: we start with C2 and perform, step by step, an infinite sequence of
blow-ups. The center of each blow-up is chosen to be a point on the exceptional
divisor of the previous blow-up. We do the same type of construction going
back-wards in order to obtain an infinite Nori string L, all its irreducible
components being biholomorphic to P1, indexed after Z. We blow-up each
irreducible component of L at a point and we consider L1 to be the proper
transform of L. If we choose the centers of all these blow-ups appropriately we
can show that a small enough neighborhood of L1 does not satisfy the weak
discrete disk property and covers a 1-convex surface.
Acknowledgments : This work was partially supported by CNCS grant PN-
II-ID-PCE-2011-3-0269.
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