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Spacetimes with singularities

Ovidiu C. Stoica

Abstract

We report on some advances made in the problem of singularities in
general relativity.

First is introduced the singular semi-Riemannian geometry for met-
rics which can change their signature (in particular be degenerate). The
standard operations like covariant contraction, covariant derivative, and
constructions like the Riemann curvature are usually prohibited by the
fact that the metric is not invertible. The things become even worse at
the points where the signature changes. We show that we can still do
many of these operations, in a different framework which we propose.
This allows the writing of an equivalent form of Einstein’s equation,
which works for degenerate metric too.

Once we make the singularities manageable from mathematical view-
point, we can extend analytically the black hole solutions and then
choose from the maximal extensions globally hyperbolic regions. Then
we find space-like foliations for these regions, with the implication that
the initial data can be preserved in reasonable situations. We propose
qualitative models of non-primordial and/or evaporating black holes.

We supplement the material with a brief note reporting on progress
made since this talk was given, which shows that we can analytically
extend the Schwarzschild and Reissner-Nordström metrics at and be-
yond the singularities, and the singularities can be made degenerate
and handled with the mathematical apparatus we developed.

Key Words: General relativity, Space-time singularities, Einstein equations, Cauchy
foliations, global hyperbolicity, Lorentz metrics, indefinite metrics, degenerate metrics, sin-
gular semi-Riemannian geometry, black holes, Schwarzschild black hole, Reissner-Nordström
black hole, Kerr-Newman black hole.

2010 Mathematics Subject Classification: Primary 83C75, 83C05, 53Z05, 53B30, 53C50,
53C12, 35Q76.

Received: August, 2011.
Accepted: February, 2012.

213

Geo
Typewritten Text
DOI: 10.2478/v10309-012-0050-3




214 Ovidiu C. Stoica

1 Introduction

1.1 The universe as a geometry

As geometers, we love to live, in our minds, in a geometric world. But how
much of the physical world is geometry?

Many mathematicians, including Riemann, Hamilton, Clifford, tried to de-
scribe the physical reality as a geometric structure, and even pondered whether
matter could actually be a geometric property of the space.

The first materialization of their idea is Einstein’s general relativity, which
establishes the connection between the matter fields and geometry, by Ein-
stein’s equation

Gab + Λgab =
8πG

c4
Tab. (1.1)

The mathematical framework of general relativity is semi-Riemannian (or
pseudo-Riemannian) geometry, which is a generalization of Riemannian geom-
etry to indefinite metrics.

The predictions of general relativity were confirmed, and all the tests de-
vised by physicists were passed successfully, proving that general relativity
provides an accurate description of the world.

1.2 The trouble with general relativity

But two big clouds seem to be a menace for this paradise:

1. An external one – the (apparent) incompatibility with quantum theory,
which describes other very important properties of the matter

2. An internal one – the occurrence of singularities.

This presentation is about a research program concerning the problem of
singularities, and the progress made so far. This problem comes from physics,
but it is purely geometric.

1.3 The singularity theorems

A collapsing star can become a black hole - an object which bends the light-
cones so that nothing, not even light, can escape. Inside the black hole there
is a singularity.

When this was initially observed from the theoretical description of a col-
lapsing star, it was hoped that this problem cannot actually occur, and it is
an artifact of the perfect spherical symmetry. But the singularity theorems
show that, under very general assumptions, general relativity implies that such
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singularities occur with necessity (Penrose and Hawking [22, 9, 13, 12]). Sub-
sequently, it was shown that the conditions leading to singularities are more
general by Christodoulou [6], and then even more general, by Klainerman and
Rodnianski [15].

It was stated ([13, 11, 1, 14, 2, 3]) that

General relativity predicts its own breakdown!

1.4 Problems with the degenerate metric

Let’s take the simplest case of singularity in semi-Riemannian geometry: the
metric becomes degenerate.

Then, the inverse of the metric, gab, which is so necessary for raising indices,
and contracting between covariant indices, cannot be constructed.

The Christoffel symbol involves in its definition the inverse metric gab.
The Riemann curvature needs gab, because its definition involves contractions.
Therefore, we cannot construct the Levi-Civita connection from the Koszul
formula.

Actually, for the case where the signature of the metric is constant, Demir
Kupeli constructed a Koszul derivative, which unfortunately is not connection
or covariant derivative, is not unique and is not invariant [18, 16, 17, 19]. He
used a (screen) subbundle of the tangent bundle, which is maximal so that the
restriction of the metric to this bundle is non-degenerate.

He then constructed a curvature R∇, depending on the connection. The
quantity 〈R∇(X,Y )Z, T 〉 turned out to be a tensor field. To work free from the
dependence of ∇ and R∇ on the screen bundle, Kupeli developed a part of his
results in the quotient bundle TM/T ◦M (we denoted by T ◦M the subbundle
of TM made at each point p ∈M of the degenerate vectors from TpM).

Unfortunately, his result won’t apply for our case, because we need the
metric to change its signature.

As we shall see, by a different approach than Kupeli’s, we can construct
some canonically (uniquely) defined invariants like the covariant derivative
for an important class of covariant tensors (and differential forms), and the
Riemann curvature tensor. This approach will allow us to work also with
variable signature. In the case when the signature is constant, our Riemann
curvature tensor turns out to be just Kupeli’s 〈R∇(X,Y )Z, T 〉.

2 Singular semi-Riemannian geometry

We now proceed to an introduction in singular semi-Riemannian geometry, and
our contribution which is intended to help solving the problems of singularities
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in general relativity. Except for the first section, the following material was
developed in [24, 25, 27], where detailed proofs were given.

2.1 Singular semi-Riemannian geometry

Definition 2.1. (see e.g. [16], [21] p. 265 for comparison) A singular semi-
Riemannian manifold is a pair (M, g), where M is a differentiable manifold,
and g ∈ Γ(T ∗M �M T ∗M) is a symmetric bilinear form on M , named metric
tensor or metric. If the signature of g is fixed, then (M, g) is said to be with
constant signature. If the signature of g is allowed to vary from point to point,
(M, g) is said to be with variable signature. If g is non-degenerate, then (M, g)
is named semi-Riemannian manifold. If g is positive definite, (M, g) is named
Riemannian manifold.

Definition 2.2. (cf. e.g. [4] p. 1, [19] p. 3 and [20] p. 53) Let (V, g) be
a finite dimensional inner product space, where the inner product g may be
degenerate. The totally degenerate space V ◦ := V ⊥ is named the radical of
V . An inner product g on a vector space V is non-degenerate if and only if
V ◦ = {0}.

Definition 2.3. (see e.g. [16] p. 261, [21] p. 263) We denote by T ◦M
and we call the radical of TM the following subset of the tangent bundle:
T ◦M = ∪p∈M (TpM)◦. We can define vector fields on M valued in T ◦M , by
taking those vector fields W ∈ X(M) for which Wp ∈ (TpM)◦.

2.2 Covariant contraction

Here we make some preparations, and then introduce the covariant contrac-
tion, which is normally prohibited by the fact that the metric is degenerate,
hence its inverse gab – which normally performs the covariant contraction –
cannot be defined [24].

Definition 2.4. We denote by T •M the subset of the cotangent bundle defined
as

T •M =
⋃
p∈M

(TpM)• (2.1)

where (TpM)• ⊆ T ∗pM is the space of covectors at p which can be expressed as
ωp(Xp) = 〈Yp, Xp〉 for some Yp ∈ TpM and any Xp ∈ TpM . T •M is a vector
bundle if and only if the signature of the metric is constant. We can define
sections of T •M in the general case, by

A•(M) := {ω ∈ A1(M)|ωp ∈ (TpM)• for any p ∈M}. (2.2)
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Definition 2.5. On T •M we can define a unique non-degenerate inner prod-
uct g• by g•(ω, τ) := 〈X,Y 〉, where X,Y ∈ X(M), X• = ω and Y • = τ . We
alternatively use the notation 〈〈ω, τ〉〉• = g•(ω, τ).

Definition 2.6. Let T be a tensor of type (r, s). We call it radical-annihilator
in the l-th covariant slot if T ∈ Trl−1M ⊗M T •M ⊗M T0

s−lM .

Definition 2.7. We can define uniquely the covariant contraction or covariant
trace operator by extending the inner product g•. First, we define it on tensors
T ∈ T •M ⊗M T •M , by C12T = g•

abTab. This definition is independent on
the basis, because g• ∈ T •∗M ⊗M T •∗M . This operation extends by linearity
to any tensors which are radical in two covariant indices. We denote the
contraction CklT of a tensor field T by

T (ω1, . . . , ωr, v1, . . . , •, . . . , •, . . . , vs). (2.3)

2.3 Covariant derivative

In the following we construct the replacement for the covariant derivative, for
the case when the metric is allowed to become degenerate. It is not possible
to just extend the definitions of the Levi-Civita connection and the covariant
derivative, because they need the inverse of the metric, which is not defined.
We will see that we can still do a lot without introducing them. Let’s recall
first the definition of the Koszul form and its properties, without proof, from
[24].

Definition 2.8 (The Koszul form). The Koszul form is defined as

K : X(M)3 → R, (2.4)

K(X,Y, Z) :=
1

2
{X〈Y,Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉
−〈X, [Y,Z]〉+ 〈Y, [Z,X]〉+ 〈Z, [X,Y ]〉}.

(2.5)

Theorem 2.9. The Koszul form of a singular semi-Riemannian manifold
(M, g) has the following properties:

1. It is additive and R-linear in each of its arguments.

2. It is F (M)-linear in the first argument:

K(fX, Y, Z) = fK(X,Y, Z).

3. Satisfies the Leibniz rule:

K(X, fY, Z) = fK(X,Y, Z) +X(f)〈Y,Z〉.
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4. It is F (M)-linear in the third argument:

K(X,Y, fZ) = fK(X,Y, Z).

5. It is metric:

K(X,Y, Z) + K(X,Z, Y ) = X〈Y, Z〉.

6. It is symmetric or torsionless:

K(X,Y, Z)−K(Y,X,Z) = 〈[X,Y ], Z〉.

7. Relation with the Lie derivative of g:

K(X,Y, Z) + K(Z, Y,X) = (LY g)(Z,X).

8. K(X,Y, Z) + K(Y,Z,X) = Y 〈Z,X〉+ 〈[X,Y ], Z〉.

for any X,Y, Z ∈ X(M) and f ∈ F (M).

Definition 2.10 (The lower covariant derivative). The lower covariant deriva-
tive of a vector field Y in the direction of a vector field X is the differential
1-form ∇[XY ∈ A1(M) defined as

(∇[XY )(Z) := K(X,Y, Z) (2.6)

for any Z ∈ X(M). The lower covariant derivative operator is the operator

∇[ : X(M)× X(M)→ A1(M) (2.7)

which associates to each X,Y ∈ X(M) the differential 1-form ∇[XY .

Definition 2.11 (see [19] Definition 3.1.3). A singular semi-Riemannian
manifold (M, g) is radical-stationary if it satisfies the condition

K(X,Y, ) ∈ A•(M), (2.8)

for any X,Y ∈ X(M).

Definition 2.12. Let (M, g) be a radical-stationary semi-Riemannian man-
ifold. We define the covariant derivative of a radical-annihilator 1-form ω ∈
A•(M) in the direction of a vector field X ∈ X(M) by

∇ : X(M)×A•(M)→ Ad
1(M) (2.9)

(∇Xω) (Y ) := X (ω(Y ))− 〈〈∇[XY, ω〉〉•, (2.10)

where Ad
1(M) is the set of sections of T ∗M smooth at the points of M where

the signature is constant.
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Definition 2.13. Let (M, g) be a radical-stationary semi-Riemannian mani-
fold. We define the following vector spaces of differential forms having smooth
covariant derivatives:

A •1(M) = {ω ∈ A•(M)|(∀X ∈ X(M)) ∇Xω ∈ A•(M)}, (2.11)

A •k(M) :=
k∧
MA •1(M). (2.12)

Definition 2.14. We define the Riemann curvature tensor as

R : X(M)× X(M)× X(M)× X(M)→ R, (2.13)

R(X,Y, Z, T ) := (∇X∇[Y Z −∇Y∇[XZ −∇[[X,Y ]Z)(T ) (2.14)

for any vector fields X,Y, Z, T ∈ X(M).

2.4 Semi-regular semi-Riemannian geometry

There is a special type of metric – which we call semi-regular – which, even
though it is degenerate, it is very well behaved. In particular, it allows the
definition of smooth covariant derivatives for an important class of differential
forms and covariant tensors. It also allows us to construct in a canonical way a
smooth Riemann curvature tensor Rabcd (unlike Rabcd, it can be constructed).

Definition 2.15. A semi-regular semi-Riemannian manifold is a singular
semi-Riemannian manifold (M, g) which satisfies

∇[XY ∈ A •1(M) (2.15)

for any vector fields X,Y ∈ X(M).

Proposition 2.16. Let (M, g) be a radical-stationary semi-Riemannian mani-
fold. Then, the manifold (M, g) is semi-regular if and only if for any X,Y, Z, T ∈
X(M)

K(X,Y, •)K(Z, T, •) ∈ F (M). (2.16)

Theorem 2.17. Let (M, g) be a semi-regular semi-Riemannian manifold. The
Riemann curvature is a smooth tensor field R ∈ T0

4M .

Example 2.18. An important example of semi-regular metric is provided by
taking the metric to be diagonal in a coordinate chart [24]. The Koszul form,
when expressed in coordinates, reduces in fact to Christoffel’s symbols of the
first kind, which, when the metric is diagonal, are of the form ± 1

2∂agbb. If
g =

∑
a εaα

2
adxa ⊗ dxa, where εa ∈ {−1, 1}, for the metric to be semi-regular
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is needed that for any a, b ∈ {1, . . . , n} and c ∈ {a, b} there is a smooth
function fabc ∈ F (M) so that supp(fabc) ⊆ supp(αc) and

∂aα
2
b = fabcαc. (2.17)

Please note that if c = b, from ∂aα
2
b = 2αb∂aαb follows that the function is

fabb = 2∂aαb. This has to satisfy the additional condition that ∂aαb = 0
whenever αb = 0. The condition supp(fabc) ⊆ supp(αc) is required because
for a manifold to semi-regular it first has to be radical-stationary.

More examples of semi-regular semi-Riemannian manifolds are given in
[25], where we study the warped product of such manifolds, and conditions
which ensure its semi-regularity.

3 Einstein’s equation on semi-regular spacetimes

The Einstein tensor is usually defined on a semi-Riemannian manifold by the
the Ricci tensor and the scalar curvature:

G := Ric− 1

2
sg (3.1)

If the metric is degenerate and radical-stationary, the Ricci tensor and the
scalar curvature can be defined as in [24]. They are smooth as long as the
metric doesn’t change its signature, but they can become infinite at the points
where the metric changes its signature. In [24] we showed that, if the metric
is semi-regular, we can remove the singularity by using instead of the tensorial
equation a densitized version.

Definition 3.1. A four-dimensional semi-regular semi-Riemannian manifold
having the signature (0, 3, 1) at the points where it is non-degenerate is named
semi-regular spacetime.

Theorem 3.2. The Einstein density tensor Gdet g on a semi-regular space-
time (M, g) is smooth.

If the metric is not degenerate at p, we can express the Einstein tensor 3.1
using the Hodge ∗ operator:

Gab = gst(∗R∗)asbt, (3.2)

where (∗R∗)abcd is the double Hodge dual of Rabcd with respect to both the
first and the second pairs of indices cf. e.g. [23], p. 234. This can be written
explicitly, in terms of the components εabcd of the volume form associated to
the metric, as

(∗R∗)abcd = εab
stεcd

pqRstpq. (3.3)
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The volume form can be expressed in coordinates, in terms of the Levi-
Civita symbol, by

εabcd = εabcd
√
−det g, (3.4)

which allows the rewriting of the Einstein tensor as

Gab =
gklε

akstεblpqRstpq
det g

, (3.5)

At the points where the signature changes, the Einstein tensor is not guar-
anteed to be smooth and it may become infinite. The tensor density Gab det g
in turn, remains smooth:

Gab det g = gklε
akstεblpqRstpq (3.6)

in a semi-regular spacetime. This is because Gab det g is constructed from the
smooth Riemann curvature tensor (cf. Theorem 2.17), and from the Levi-
Civita symbol, which is also smooth. The tensor density Gab det g obtained
by lowering the indices, is smooth too.

These observations allow us to write a densitized Einstein equation:

Gdet g + Λg det g = κT det g, (3.7)

or, locally,
Gab det g + Λgab det g = κTab det g, (3.8)

where G and c are Newton’s constant and the speed of light, κ := 8πG
c4 , and T

is the stress-energy tensor.
Since we could construct a differential geometry and a form of Einstein’s

equation which works with a class of singularities, we may reconsider the
thought that general relativity breaks down with necessity at singularities.

4 Physical laws in general relativity

The physical laws are described by evolution equations.
Einstein’s equation 1.1 shows the relation between the matter fields (present

through the stress-energy tensor Tab), and the geometry (represented by Ein-
stein’s tensor Gab := Rab − 1

2gabR).
To have a well defined evolution, it is normally required that

1. the quantities involved in Einstein’s equation are non-singular

2. the spacetime admits a space-like foliation by a family of Cauchy hyper-
surfaces.
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4.1 The problem with singularities

Singularities violate both requirements of a well defined evolution:

1. They make the quantity involved in Einstein’s equation become infinite.

2. They seem to block the time evolution, because the Cauchy data is
partially lost in the singularities.

Therefore, the information seems to no longer be preserved, leading to the
black hole information paradox [10, 11].

4.2 Repairing Einstein’s equation

The problem of singular quantities involved in the evolution equations can
be approached by a method used by Einstein and Rosen [8] (for which they
credited Mayer). They suggested to multiply the Riemann and the Ricci
tensors by a power of det g, so that all occurrences of gab in the expression
of the Ricci and scalar curvatures are replaced by the adjugate matrix of gab,
det ggab ([8], p. 74).

Another possibility is to use other appropriate quantities to multiply with.
For example, consider the Kerr-Newman solution of Einstein’s equations ex-
pressed in Boyer-Lindquist coordinates [5, 30], p. 313:

ds2 = ∆−a2 sin2 ϑ
Σ dt2 − 2a sin2 ϑ(r2+a2−∆)

Σ dtdϕ

+ (r2+a2)2−∆a2 sin2 ϑ
Σ sin2 ϑdϕ2 + Σ

∆dr2 + Σdϑ2,
(4.1)

where
Σ := r2 + a2 cos2 ϑ, (4.2)

∆ := r2 + a2 + e2 − 2Mr, (4.3)

and e is the electric charge, a the angular momentum, M the mass. This
solution contains as particular cases the Schwarzschild, Reissner-Nordström
and Kerr solutions.

We can multiply equation (4.1) with the product Σ∆ and obtain a non-
singular expression. The equation 4.1 modified like this will depend on the
coordinate system, but it remains non-singular. Of course, if we would want
to solve for the geometry (e.g. for the metric), we will still obtain infinities,
and we may apply the method used by Einstein and Rosen.

While this method may work in replacing the singular data with smooth
values, from geometric viewpoint one would be happier with an invariant the-
ory which allows us to deal properly with such singularities, by relying on
smooth fields. Our development of singular semi-Riemannian geometry for
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metric with variable signature presented in the earlier sections makes some
steps in this direction, but for the important singularities in general relativity
we may need a more powerful tool. This is because the singularities of inter-
est for relativity are not necessarily of degenerate type (as we can see from
equation (4.1)) ∗.

5 Repairing the topology

Once the equations are repaired, we need to solve the second problem: finding
the correct topology at the singular regions. Here usually the things are am-
biguous, because we cannot tell which coordinate systems are singular at the
singularities and which are not. This freedom allows us to find a nice topol-
ogy, which allows us to select globally hyperbolic regions from the maximally
extended spacetimes, and to find space-like foliations of these regions.

We will exemplify this method on the standard black hole solutions.

5.1 Penrose-Carter diagrams

Penrose invented a method to map the entire spacetime on a finite region
of a piece of paper. He employed the spherical symmetry of some of the
solutions to reduce the number of dimensions to 2, r and t. Then, he applied a
conformal mapping to map for example the Minkowski spacetime to a diamond
shaped region (Fig. 1). Very often we represent only half of the diagram,
corresponding to r ≥ 0.

Similar mappings work for other solutions of Einstein’s equations. When
Penrose’s coordinates are used, they may reveal that the spacetime can be
analytically extended. Figure 2 shows the maximally extended Schwarzschild
solution, in Penrose coordinates. It seems to imply that the black hole is
paired with a white hole, in the past.

Sometimes, the analytical continuation leads to an infinite chain of uni-
verses similar to ours. This is the case with the Penrose-Carter diagram of the
electrically charged (Reissner-Nordström) black holes (Fig. 3). The Penrose-
Carter diagrams which describe Kerr (rotating) black holes are very similar
to those for the Reissner-Nordström black holes, except that the symmetry is
now axial, and at r = 0 there is analytical continuation to negative values for
r.

The maximally extended solution may contain Cauchy horizons, so if we

∗Recent progresses, taking place after this conference, show that the singularities can be
made of degenerate type, at least for Schwarzschild and Reissner-Nordström solutions (see
section §8).
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Figure 1: The Penrose-Carter diagram corresponding to the Minkowski spacetime.

Figure 2: The maximally extended Schwarzschild solution, in Penrose coordinates.

want a good foliation of the spacetime, we need to keep only a globally hyper-
bolic region of it.

5.2 Schwarz-Christoffel mapping

The foliations we want can be obtained with the help of the Schwarz-Christoffel
mapping. It has a version mapping the strip
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Figure 3: A. Reissner-Nordström black holes with e2 < m2. B. Extremal Reissner-
Nordström black holes (e2 = m2). C. Naked Reissner-Nordström black holes (e2 >
m2).

S := {z ∈ C|Im(z) ∈ [0, 1]} (5.1)

to a polygonal region from C, with the help of the formula

f(z) = A+ C

∫ S

exp
[π

2
(α− − α+)ζ

] n∏
k=1

[
sinh

π

2
(ζ − zk)

]αk−1

dζ, (5.2)
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where zk ∈ ∂S := R×{0, i} are the prevertices of the polygon, and α−, α+, αk
are the measures of the angles of the polygon, divided by π (cf. e.g. [7]). The
ends of the strip, which are at infinite, correspond to the vertices having the
angles α− and α+. The foliation is given by the level curves {Im(z) = const.}.

5.3 Foliating the maximally extended Schwarzschild solution

The Schwarzschild black hole solution has the following metric tensor in Schwarzschild
coordinates:

ds2 = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2dσ2, (5.3)

where
dσ2 = dθ2 + sin2 θdφ2 (5.4)

is the metric of the unit sphere S2, m the mass of the body, and the units
were chosen so that c = 1 and G = 1 (see e.g. [12] p. 149).

Figure 4 presents a space-like foliation of the maximally extended Schwarzschild
solution.

Figure 4: Space-like foliation of the maximally extended Schwarzschild solution.

To obtain it, we take the prevertices to be

(−∞,−a, a,+∞, a+ i,−a+ i) , (5.5)

where a > 0 is a real number. The angles are respectively(
π

2
,

3π

4
,

3π

4
,
π

2
,

3π

4
,

3π

4

)
. (5.6)
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We can make a similar foliation, this time without the white hole, if we
use the prevertices

(−∞,−a, 0, a,+∞, b+ i,−b+ i) , (5.7)

where 0 < b < a are positive real numbers (Fig. 5). The angles are respectively(
π

2
,
π

2
,

3π

2
,
π

2
,
π

2
,

3π

4
,

3π

4

)
. (5.8)

Figure 5: Space-like foliation of the Schwarzschild solution.

5.4 Space-like foliation of the Reissner-Nordström solution.

The Reissner-Nordström solution describes a static, spherically symmetric,
electrically charged, non-rotating black hole. It has the following metric:

ds2 = −
(

1− 2m

r
+
e2

r2

)
dt2 +

(
1− 2m

r
+
e2

r2

)−1

dr2 + r2dσ2, (5.9)

where e is the electric charge of the body, m the mass of the body, and the
units were chosen so that c = 1 and G = 1 (see e.g. [12], p. 156).

The naked Reissner-Nordström solution admits a simple foliation, which
coincides with that of the Minkowski spacetime (Fig. 6).

In this case, the prevertices are

(−∞, 0,+∞, i) , (5.10)

and the angles are (π
2
,
π

2
,
π

2
,
π

2

)
. (5.11)
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Figure 6: Space-like foliation of the naked Reissner-Nordström solution (e2 > m2).

For the other cases, we take as prevertices of the Schwarz-Christoffel map-
ping 5.2 the set

(−∞,−a, 0, a,+∞, i) , (5.12)

where 0 < a is a positive real number. The angles are respectively(
π

2
,
π

2
,

3π

2
,
π

2
,
π

2
,
π

2

)
. (5.13)

By a properly chosen a, we can obtain a space-like foliation of the non-
extremal Reissner-Nordström solution 7, or of the extremal Reissner-Nordström
solution 8.

The case of rotating black holes has many common features with the
charged black holes, and the Penrose-Carter diagrams are very similar. But
the analysis is more complicated, because it’s symmetry is not spherical, only
axial. The singularity is a ring, and the analytic extension through the ring
leads to closed time-like curves (time machines). We have this case in progress.

5.5 Non-eternal black holes

The static solutions are idealized and may not actually represent physically
real black holes. In reality, the black holes appear, grow, and possibly evap-
orate and disappear. There may be primordial black holes, which exist since
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Figure 7: Space-like foliation of the non-extremal Reissner-Nordström solution (e2 <
m2).

Figure 8: Space-like foliation of the extremal Reissner-Nordström solution with
e2 = m2.

the beginning of the universe, and black holes which will last until the end
of the universe, but they change anyway. In order to have the precise equa-
tions of such black holes, we would need to account for all possible types of
matter fields which may exist, and the dynamics would be impossible to be
solved anyway. But since we shown that the static solutions can be “cropped”
to spacetimes with trivial topology, we can glue together, in principle, such
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solutions and obtain at least qualitative descriptions of spacetimes containing
black holes with finite life span.

From this viewpoint, we can add before and/or after a spacetime slice
as those described above, a spacetime slice without singularities, and model
more general black holes. This method relies on the wide flexibility offered
by the fact that the Penrose-Carter diagrams are conformal, and one such
diagram represents in fact an infinity of possible metrics, which are conformally
equivalent to the diagram. We will base this procedure on generalizing the
Schwarzschild solution, and the Reissner-Nordström solution, as prototypes
for black holes with space-like, respectively time-like singularities.

5.5.1 Non-primordial, eternal black holes with space-like singular-
ity

A space-like foliation of a non-primordial, black hole which continues to exist
forever, having a space-like singularity, is shown in Figure 9.

Figure 9: The space-like foliation for a non-primordial, eternal black hole with
space-like singularity.

The prevertices are given by the set

(−∞, 0,+∞, a+ i,−a+ i) , (5.14)

where 0 < a is a positive real number. The angles are respectively(
π

2
,
π

2
,
π

2
,

3π

4
,

3π

4

)
. (5.15)
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5.5.2 Primordial, non-eternal black holes with space-like singular-
ity

The space-like foliation for primordial black hole which evaporates after a finite
time is represented in Fig. 10. The prevertices and the angles are the same as
in the Reissner-Nordström solution, as in equations 5.12 and 5.13.

Figure 10: The space-like foliation for a primordial, non-eternal black hole with
space-like singularity.

5.5.3 Non-primordial, non-eternal black holes with space-like sin-
gularity

In this case (Fig. 11), the prevertices are like those in the equation 5.10, and
the angles are the same as in 5.11.

5.5.4 Primordial evaporating black hole with time-like singularity

For obtaining the space-like foliation of such a black hole, we take as prevertices
and angles those from the Reissner-Nordström solution, as in equations 5.12
and 5.13 (see Fig. 12).

5.5.5 Non-primordial non-evaporating black hole with time-like
singularity

The prevertices are those from the equation 5.10, and the angles are the same
as in 5.11. In this case, the foliation is the same as for the Minkowski spacetime
(Fig. 13).



232 Ovidiu C. Stoica

Figure 11: The space-like foliation for a non-primordial, non-eternal black hole with
space-like singularity.

Figure 12: Primordial evaporating black hole with time-like singularity.

5.5.6 Non-primordial evaporating black hole with time-like singu-
larity

The prevertices are again identical to those from the equation 5.10, and the
angles are the same as in 5.11 (Fig. 14).
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Figure 13: Non-primordial non-evaporating black hole with time-like singularity.

Figure 14: Non-primordial evaporating black hole with time-like singularity.

6 Conclusion

This presentation shows that in important cases we can
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1. make a reformulation of Einstein’s equations, in order to express them
in terms of finite quantities

2. find an appropriate foliation of the spacetime into space-like hypersur-
faces

3. choose an appropriate extension of the spacetime at singularities, so that
the topology of the space-like hypersurfaces of the foliations is preserved,

restoring thus the time evolution at singularities. Consequently, the Cauchy
data is preserved, and the information loss is avoided. This shows that the
construction of quantum field theories in curved spacetimes with singularities
is not necessarily forbidden ([14], p. 9), and the unitarity is not necessarily
violated.

7 For a singular semi-Riemannian geometry

Once we allow the metric to become degenerate or singular, the invariants like
covariant derivative and curvature become undefined. The quantities which
replace them if we multiply the equations with det g or other factors cannot
give them this meaning. Maybe a new kind of geometry is required to restore
the ideas of covariant derivative and curvature for singular metrics. We did
a modest step in this direction, by developing a singular semi-Riemannian
geometry for a class of metrics which can become degenerate [24, 25], but the
more general case of singular metrics remains to be researched.

8 Short Addendum

Actually, the singularities of the standard black hole solutions can be made of
degenerate type. Since this conference took place, we made important progress
in the direction of dealing with the singularities in a geometric and invariant
way. We showed that we can change the coordinates in a way which allows us to
extend analytically the Schwarzschild and the Reissner-Nordström solutions at
the singularity and beyond. The Schwarzschild solution turned out to be semi-
regularizable [28], and the Reissner-Nordström solution could be analytically
extended so that its singularity became of degenerate type only [29]. This can
be viewed as resemblant to Eddington-Finkelstein coordinates, which remove
the apparent singularity at the event horizon. In both cases, a singularity is
removed by a singular coordinate change, whose singularity overlaps with the
singularity of the metric. In our case, the obtained metric is degenerate. One
may worry about the fact that this depends on the particular coordinates, but
in fact the metric’s property of being singular or not is invariant only under
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non-singular coordinate changes. We have similar results for the Kerr metric
in progress.
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