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Riemannian foliations and the kernel of the
basic Dirac operator

Vladimir Slesar

Abstract

In this paper, in the special setting of a Riemannian foliation en-
dowed with a bundle-like metric, we obtain conditions that force the
vanishing of the kernel of the basic Dirac operator associated to the
metric; this way we extend the traditional setting of Riemannian foli-
ations with basic-harmonic mean curvature, where Bochner technique
and vanishing results are known to work. Beside classical conditions
concerning the positivity of some curvature terms we obtain new rela-
tions between the mean curvature form and the kernel of the basic Dirac
operator.

1 Introduction

In the framework of a closed differential manifold endowed with a foliated
structure and a bundle-like metric tensor field (i.e. the manifold can be locally
described as a Riemannian submersion [18]), the natural differential operators
canonically associated to the Riemannian structure can be defined. As in
the classical case, they are known to play a crucial role in the study of the
geometry of the underlying foliated manifold.

For the so called basic Laplacian which acts on the de Rham complex of
basic differential forms (or for the transversal Laplacian, if one consider general
differential forms instead of basic forms), the relevant features has been carried
out in the last period of time [2, 4, 12, 17, 19, 21].
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On the other side, the transversal Dirac operator for Riemannian folia-
tions were introduced in [6]. In the particular case of a Riemannian foliation
with basic mean curvature form, this operator is used to defined the basic
Dirac operator, which is symmetric, essentially self-adjoint and transversally
elliptic [6]. A Weitzenböck-Lichnerowicz formula is also obtained, and in the
case when the mean curvature form of the Riemannian foliation is not only
basic, but also harmonic, Bochner techniques can be implemented and van-
ishing results can be obtained [3]. We emphasize the fact that in this specific
framework conditions for the vanishing of the basic Dirac kernel are related
to curvature type operator, as in the classical case [7], but also to the mean
curvature, exhibiting the specific nature of a Riemannian foliated manifold.

Now, concerning the mean curvature form and the way it varies when the
bundle-like metric is changed, we refer to [1, 5, 16]. In [5], using a Hodge-type
decomposition theorem from [1], the author show that any bundle-like metric
can be transformed such that the new bundle-like metric have basic mean cur-
vature form; in fact the transformation leaves invariant the transversal metric
and the basic component of the mean curvature form of the initial metric.
Furthermore, as an application of stochastic flows in theory of Riemannian
foliations, in [16] the author constructs a dilation of the metric which turn it
into a metric with basic-harmonic mean curvature.

In [9], the authors recently proved the invariance of the spectrum of the
basic Dirac operator with respect to a special class of transformations of the
bundle-like metric; more exactly, the metric on M can be changed in any way
that leaves the transverse metric on the normal bundle intact. They also used a
generalized definition of the basic Dirac operator, defined this time on a general
Riemannian foliation. Using this result we can derive a method for studying
the spectrum of such Dirac-type operator, as pointed out in [9]; that is, we
may assume the bundle like metric is chosen so that the mean curvature is
basic-harmonic, the result being therefore pulled back in the general case using
[5] and [16]. As an application, the authors finally obtained the eigenvalues
estimate for arbitrary Riemannian foliation with bundle-like metric.

In this paper, using the spectral rigidity result [9], we obtain the corre-
sponding version of the classical vanishing result of the kernel on Dirac bundle
[7]. Furthermore, we use a Weitzenböck-Lichnerowicz formula for the basic
Dirac operator which is different from [3, 6]. Let us point out that this for-
mula allows one to perform classical Bochner technique directly in the case
of a Riemannian foliation with basic, non-necessarily harmonic mean curva-
ture [20]. In the same framework of arbitrary Riemannian foliations, we get
a second vanishing condition related this time to the mean curvature vector
field.

The second and the third section contained the definitions of the geo-
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metric objects we are dealing with and a presentation of the Weitzenböck-
Lichnerowicz formulas that we employ, while the main results are presented
in the last section.

2 The basic Dirac operator

Let us consider in what follows a smooth, closed Riemannian manifold (M, g,F)
endowed with a foliation F such that the metric g is bundle-like [18]; the di-
mension of M will be denoted by n. We also denote by TF the leafwise dis-
tribution tangent to leaves, while Q = TF⊥ ' TM/TF will be the transversal
distribution. Let us assume dimTF = p, dimQ = q, so p+ q = n.

As a consequence, the tangent and the cotangent vector bundles associated
with M split as follows

TM = Q⊕ TF,
TM∗ = Q∗ ⊕ TF∗.

The canonical projection operators will be denoted by πQ and πTF, respec-
tively.

Throughout this paper we will use local vector fields {fa, ei} defined on
a neighborhood of an arbitrary point x ∈ M , so that they determine an
orthonormal basis at any point where they are defined, {fa} spanning the
distribution Q and {ei} spanning the distribution TF.

For the study of the basic geometry of our Riemannian foliated manifold
a convenient metric and torsion-free linear connection is the so called Bott
connection (see e.g. [21]). If we denote by ∇g the canonical Levi-Civita
connection, then on the transversal distributionQ we can define the connection
∇ by the following relations{

∇UX := πQ ([U,X]),
∇YX := πQ (∇gYX),

for any smooth sections U ∈ Γ (TF), X, Y ∈ Γ (Q). In particular we can
associate to ∇ the transversal scalar curvature Scal∇.

We restrict the classical de Rham complex of differential forms Ω (M) to
the complex of basic differential forms, defined as

Ωb (M) := {ω ∈ Ω (M) | ιUω = LUω = 0} ,

where U is again an arbitrary leafwise vector field, L being the Lie derivative
along U , while ι stands for interior product. Considering now the de Rham
exterior derivative d, it is possible to define the basic operator db := d|Ωb(M)
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(see e.g. [1]). Let us notice that basic de Rham complex is defined independent
of the metric structure g.

One differential form which is not necessarily basic is the mean curvature

form. In order to define it, we first of all set k] := πQ

(∑
i

∇geiei
)

to be the

mean curvature vector field associated with the distribution TF, while k will
be the mean curvature form which is subject to the condition k(U) = g(k], U),
for any vector field U , ] being the musical isomorphism.

Remark 2.1. It is easy to see that k(k]) =
∥∥k]∥∥2

.

By Theorem 2.1 in [1], we have the orthogonal decomposition

Ω (M) = Ωb (M)
⊕

Ωb (M)
⊥
,

with respect to the C∞−Frechet topology. So, on any Riemannian foliation
the mean curvature form can be decomposed as the sum

k = kb + ko,

where kb ∈ Ωb (M) is the basic component of the mean curvature, ko being

the orthogonal complement. From now on we denote τ := k]b.
Using the above notations, at any point x on M we consider the Clifford

algebra Cl(Qx) which, with respect to the orthonormal basis {fa} is gener-
ated by 1 and the vectors {fa} over the complex field, being subject to the
relations fa · fb + fb · fa = −2δab, 1 ≤ a, b ≤ q, where dot stands for Clifford
multiplication. The resulting bundle Cl(Q) of Clifford algebras will be called
the Clifford bundle over M , associated with Q. Let us also consider a vector
bundle E over M and suppose we have a smooth bundle action

Γ (Cl(Q))⊗ Γ (E) −→ Γ (E) ,

denoted also with Clifford multiplication such that

(u · v) · s = u · (v · s) ,

for u, v ∈ Γ (Cl(Q)), s ∈ Γ (E).
As a result, E becomes a bundle of Clifford modules (see e.g. [15]).
If a Clifford bundle E is endowed with a connection ∇E , then ∇E is said

to be compatible with the Clifford action and the Levi-Civitá connection ∇ if

∇EU (u · s) = (∇Uu) · s+ u∇EUs,

for any U ∈ Γ(TM), u ∈ Γ (Cl(Q)), s ∈ Γ(E), extending canonically the
connection ∇ to Γ (Cl(Q)).
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In what follows, we assume the existence of a hermitian structure (· | ·)
on E such that (X · s1 | s2) = − (s1 | X · s2), for any X ∈ Γ (Q), s1, s2 ∈
Γ (E), and a metric connection ∇E , compatible with Cl(L1) action and the
connection ∇.

On the above transverse Dirac bundle over M , in accordance with [6], we
introduce now the transversal Dirac operator,

Dtr :=
∑
a

fa · ∇Efa , (2.1)

and its restriction to the basic (or holonomy invariant) sections

Γb (E) :=
{
s ∈ Γb (E) | ∇EUs = 0, for anyU ∈ Γ (TF)

}
,

the basic Dirac operator, which is defined using the basic component of the
mean curvature form [6, 9]

Db :=
∑
a

fa · ∇Efa −
1

2
τ. (2.2)

Remark 2.2. As we use the connection ∇, considering the definition of Ωb (M)
and Γb (E), the first example is provided by the usual complex of (C- valued)
basic forms of (M, g,F).

Remark 2.3. The basic Dirac operator is elliptic in the directions of the distri-
bution Q and essentially self-adjoint with respect to the inner product canon-
ically associated with the closed Riemannian manifold [6].

3 Weitzenböck-Lichnerowicz type formulas for Rieman-
nian foliations

In [3, 6], in the setting of a Riemannian foliation with basic mean curvature
form, the authors work out the following Weitzenböck-Lichnerowicz formula,
which is a useful tool for studying the spectral properties of the basic Dirac
operator (see [8, 11])

D2
b =

∑
a

∇E∗fa ∇
E
fa −

1

2
δbkb +

1

4
‖τ‖2 + Rs (3.1)

where R :=
∑
a<b

fa ·fb ·REfa,fb , RE being the curvature operator associated with

∇E . The basic de Rham coderivative can be written as [1]

δb :=
∑
a

−ιfa∇fa + ιτ .
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If we integrate over the manifold M , from the relation (3.1) we obtain

‖Dbs‖2 =
∑
a

∥∥∇Efas∥∥2
+

∫
M

(
−1

2
δbkb +

1

4
‖τ‖2

)
(s | s) +

∫
M

(Rs | s) (3.2)

Let us define the transversal divergence of a vector field V ∈ Γ (Q),

div∇V :=
∑
a

〈∇faV, fa〉 ,

where {fa} is again a transversal orthonormal basis. If the mean curvature is
not harmonic, then the term related to de Rham coderivative from (3.2) does
not vanish; it can be evaluated as

δbkb = −
∑
a

ιfa∇fakb + ιτ (kb) (3.3)

= −
∑
a

〈∇faτ, fa〉+ ‖τ‖2

= −div∇τ + ‖τ‖2 ,

Another useful relation is

divτ =
∑
a

〈∇faτ, fa〉+
∑
i

〈
∇geiτ, ei

〉
(3.4)

= div∇τ − ‖τ‖2 ,

where {ei} is a local orthonormal frame for the leafwise distribution TF, the
basic vector field τ remaining perpendicular to TF at any point.

Plugging (3.3) in (3.1), we obtain

‖Dbs‖2 =
∑
a

∥∥∇Efas∥∥2
+

∫
M

(
1

2
div∇τ − 1

4
‖τ‖2

)
(s | s) +

∫
M

(Rs | s) (3.5)

In the following we hold the assumption of a basic mean curvature differ-
ential 1-form k ≡ kb.

In [20], the modified connection on the space of basic section Γb (E) is
defined in the following manner

∇̄EXs := ∇EXs−
1

2
〈X, τ〉 s, (3.6)

for any X ∈ Γ (TM) and s ∈ Γb (E), 〈·, ·〉 being our scalar product.
Consequently, the Laplacian of the modified connection can be calculated
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∑
a

∇̄E∗fa ∇̄
E
fa =

∑
a

(
−∇Efa −

1

2
〈fa, τ〉 − div (fa)

)(
∇Efa −

1

2
〈fa, τ〉

)
(3.7)

= −
∑
a

∇Efa∇
E
fa −

∑
a

div(fa)∇Efa +
∑
a

1

2
〈∇fafa, τ〉

+
∑
a

1

2
〈fa,∇faτ〉+

∑
a

1

2
〈fa, τ〉∇Efa −

∑
a

1

2
〈fa, τ〉∇Efa

+
1

4
‖τ‖2 +

∑
a

1

2
div (fa) 〈fa, τ〉

=
∑
a

∇E∗fa ∇
E
fa +

1

2

∑
a

〈fa,∇faτ〉 −
1

4
‖τ‖2 .

for any X ∈ Γ (TM) and s ∈ Γb (E), 〈·, ·〉 being our scalar product.
In the above relation we use the fact that ∇Efa − div(fa) = ∇E∗fa (see e.g.

[14]) and the relation∑
a

div (fa) 〈fa, τ〉 =
∑
a,b

〈∇fbfa, fb〉+
∑
a,i

〈
∇geifa, ei

〉
〈fa, τ〉

= −
∑
a,b

〈fa,∇fbfb〉 〈fa, τ〉 −
∑
a,i

〈
fa,∇geiei

〉
〈fa, τ〉

= −
∑
a

〈∇fafa, τ〉 − ‖τ‖
2
.

On the other hand, we can obtain the following formula from (3.1) using
the fact that dbk = 0, or from the more general formula stated in Theorem 4
in [14], using the definition of Γb (E):

D2
b =

∑
a

∇E∗fa ∇
E
fa −

1

2

∑
a

fa · ∇faτ (3.8)

−1

4
‖τ‖2 + R,

Considering (3.7) and (3.8), we get

D2
b =

∑
a

∇̄E∗fa ∇̄
E
fa −

1

2

∑
a

fa · ∇faτ (3.9)

−1

2

∑
a

〈fa,∇faτ〉+ R.
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From here, integrating over the closed manifold M , we obtain:

‖Dbs‖2 =
∑
a

∥∥∇̄Efas∥∥2 − 1

2

∫
M

∑
a

〈fa,∇faτ〉 (s | s) (3.10)

−1

2

∫
M

∑
a

(fa · ∇faτ · s | s) +

∫
M

(Rs | s) ,

for any s ∈ Γ (E) where ‖·‖ is the L2 norm associated with the hermitian
structure.

We study now the real and the pure imaginary part of
∑
a (fa · ∇faτ · s | s).

For this we need the following result due to O. Hijazi which is a direct con-
sequence of the properties of Clifford multiplication and hermitian structure
[10].

Lemma 3.1. Using the above notations, Re (fa · fb · s | s) = 0 for 1 ≤ a, b ≤
q, a 6= b.

Now, for any X , Y ∈ Γ (Q), with respect to the orthonormal basis {fa},
using the Einstein notations, we can write locally X = Xafa, Y = Y bfb. As
a consequence

(X · Y · s | s) =
(
Xafa · Y bfb · s | s

)
= −〈X,Y 〉 (s | s) +

∑
a6=b

XaY b (fa · fb · s | s) .

Using the above Lemma, we get that Re (X · Y · s | s) = −〈X,Y 〉 (s | s).
As a consequence,

Re

∫
M

∑
a

(fa · ∇faτ · s | s) dµ

 = −
∫
M

∑
a

〈fa,∇faτ〉 (s | s) ,

and, finally the formula becomes [20]

‖Dbs‖2 =
∑
a

∥∥∇̄Efas∥∥2
+ Re

∫
M

(Rs | s)

 . (3.11)

4 The Bochner technique for the basic Dirac operator

In the case when the mean curvature 1-form is not only basic, but also har-
monic (δbkb = 0), the classical Bochner technique applied to formula (3.2)
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yields vanishing results for harmonic sections of Db [3, 6]. Unfortunately, for
non-harmonic mean curvature the term related to basic de Rham coderiva-
tive is difficult to estimate. In turn, using the invariance of the basic Dirac
spectrum from [9] and (3.11), in the following we obtain vanishing conditions
for the kernel of basic Dirac operator in the setting of general Riemannian
foliations.

The standard assumption in this context is the non-negativity of the cur-
vature operator R, that is (Rs | s)x > c (s | s)x for any s, at any point x ∈M
(see e.g. [7]).

Remark 4.1. Concerning the eigensections of the basic Dirac operator for a fo-
liation with non-negative curvature term R, a characterization can be obtained
as a direct application of the Bochner argument for the formula (3.11); that is,
any harmonic eigensection with respect to Db must satisfy the equation [20]

∇EXs−
1

2
〈X, τ〉 s = 0,

for any vector field X ∈ Γ (TM).
As pointed out in the introductory section, the metric change described in

[5] leaves the transverse metric and the basic part kb of the mean curvature
intact, so the action of the basic Dirac operator and the modified connection on
Γb (E) does not changes. As a consequence, the result is extended to arbitrary
Riemannian foliations using [5].

In the following, we present conditions which force the vanishing of the set
of harmonic eigensections of Db.

From now on, by taut foliation we will denote a Riemannian foliation which
admits a bundle-like metric with a vanishing mean curvature (see e.g. [1]).

Theorem 4.2. On a Riemannian foliation (M, g,F), if the basic curvature
operator R is nonnegative and furthermore, the foliation is not taut or R is
strictly positive at one point x ∈ M , ((Rs | s)x > c (s | s)x for any s, with
c > 0), then there are no nontrivial harmonic eigensection.

Proof. The result is a direct consequence of [16] and [9]; namely, we consider
a metric change as in [16]; consequently we obtain a new bundle-like metric
and a new basic Dirac operator which isa a conjugate of the initial Dirac
operator, and consequently they have the same spectrum; moreover, the new
basic component of the mean curvature is basic-harmonic. As a result, using
the formula (3.2), it turns out that in order to have nontrivial eigensection we
need τ = 0, sx = 0 and

∑
a ‖∇fas‖2 = 0, so s is parallel with respect to the

transversal directions. Concerning the first condition, our foliation needs to
be taut. Concerning the last two conditions, as s is a basic section, it is in
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fact parallel on the manifold M with respect to the connection ∇. The result
now follows arguing as in the classical case [15]. Applying the spectral rigidity
from [9], the result is pulled back in the general case.

Remark 4.3. We emphasize the fact that the tautness of a foliations is related
to the basic cohomology of the foliation; indeed, applying a metric change as
in [5], the basic cohomology class of kb remains invariant [1]. As the basic co-
homology is a topological invariant [13], we have in fact a topological condition
for having nontrivial basic Dirac kernel.

Another important feature of the basic Dirac operator is that even in the
case of the basic de Rham complex its square do not equals the basic Laplace
operator [9], so relations between the kernel and the groups of the basic coho-
mology complex cannot be obtained via some Hodge-de Rham theorem.

As an example of the above result, we may consider a more specific setting,
namely we assume that the foliation F is transversally oriented and has a
transverse spin structure. This means that there exists a principal Spin(q)-
bundle P̃ which is a double sheeted covering of the transversal principal SO(q)-
bundle of oriented orthonormal frames P , such that the restriction to each fiber
induces the covering projection Spin(q) → SO(q); such a foliation is called
spin foliation [9]. Similar to the classical case [15], if we denote by ∆q the
spin irreducible representation associated with Q, then one can construct the
foliated spinor bundle S := P̃ ×Spin(q) ∆q. The hermitian metric on S is
now induced from the transverse metric. Also, the lifting of the Riemannian
connection on P can be used to introduce canonically a connection on S.

This is in fact the classical setting when the curvature term can be cal-
culated explicitly; as the twisted curvature term vanishes (see e.g. [15]), we
obtain R = 1

4Scal
∇. As a consequence, for a spin foliation we may obtain the

corresponding version in this particular framework of the well known results
of A. Lichnerowicz on spin manifolds.

Remark 4.4. In the above particular setting, the tautness condition can be
derived directly from a more general result concerning the limiting case of the
lower bound problem for the eigenvalues of the basic Dirac operator; this was
stated first of all in the case of basic-harmonic mean curvature in [11], and
extended to arbitrary Riemannian foliations in [9].

Now, searching for more convenient vanishing condition, let us notice that
in the restricted setting of a Riemannian foliations with R ≡ 0 and basic mean
curvature, if div∇τ > 1

2 ‖τ‖
2

at any point x ∈ M , then the vanishing result
for the set of harmonic sections can also be obtained using (3.5). In the final
part of the paper, we show that in fact the following stronger result holds.

Theorem 4.5. If (M, g,F) is a Riemannian foliation with R ≡ 0, and div∇τ >
0 over the compact manifold M , then again kerDb is trivial.
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Proof. The result can be obtained using the transverse divergence theorem,
the non-tautness of the foliations and the above result. In the following we
show that it can be also achieved by direct calculation applying the new
Weitzenböck-Lichnerowicz formula (3.11).

First of all, let us assume the mean curvature to be a basic form. We define
the connection

∇̄cXs := ∇̄Xs+ c 〈X, τ〉 s, (4.1)

for the arbitrary real constant c.
If we take the square in (4.1) and integrate over the closed manifold M ,

we obtain ∫
M

∑
a

∣∣∇̄cfas∣∣2 =

∫
M

∣∣∇̄s∣∣2 +

∫
M

c2 ‖τ‖2 |s|2 (4.2)

+

∫
M

2cRe
〈
∇̄τs, s

〉
.

For the third term, let us notice that

2Re
〈
∇̄τs, s

〉
= 2Re

〈
∇τs−

1

2
〈τ, τ〉 s, s

〉
(4.3)

= −‖τ‖2 |s|2 + 2Re 〈∇τs, s〉 .

Considering the classical formula

div
(
|s|2 τ

)
= τ

(
|s|2
)

+ |s|2 divτ,

and the fact that the connection ∇ is metric and the underlying manifold M
is closed, we obtain using (3.4)∫

M

2Re 〈∇τs, s〉 =

∫
M

2
1

2
τ
(
|s|2
)

(4.4)

= −
∫
M

divτ |s|2

= −
∫
M

(
div∇τ − ‖τ‖2

)
|s|2

= −
∫
M

div∇(τ) |s|2 +

∫
M

‖τ‖2 |s|2 ,
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The third term from (4.2) can be computed from (4.3) and (4.4):∫
M

2Re
〈
∇̄τs, s

〉
= −

∫
M

div∇(τ) |s|2 . (4.5)

From here, the formula (4.2) can be finally written in the following way∫
M

∣∣∇̄cs∣∣2 =

∫
M

(∣∣∇̄s∣∣2 + c2 ‖τ‖2 |s|2 − cdiv∇(τ) |s|2
)
.

We put s ∈ KerDb. Consequently, using (3.11), the equation becomes∫
M

∣∣∇̄cs∣∣2 = −c
∫
M

(
div∇(τ)− c ‖τ‖2

)
|s|2 . (4.6)

As the manifold M is compact, let us consider c1 < minx∈M div∇x (τ), and

c2 = maxx∈M ‖τ‖2, with c1, c2 > 0. If we set c := c1
c2

, from (4.6) we obtain
that s = 0.

As pointed out before, the metric change described in [5] leaves invariant
the transversal metric and the basic component of the mean curvature. On
the other side we have

div∇τ =
∑
a

ιfa∇fakb,

so both the differential operator and the kb are invariant and the result can be
extended to arbitrary Riemannian foliations using [5] and the spectral rigidity
result from [9].
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