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On formal Riemannian metrics

Mihaela Pilca

Abstract

Formal Riemannian metrics are characterized by the property that
all products of harmonic forms are again harmonic. They have been
studied over the last ten years and there are still many interesting open
conjectures related to geometric formality.

The existence of a formal metric implies Sullivan’s formality of the
manifold, and hence formal metrics can exist only in presence of a very
restricted topology.

In this paper we give an overview over the present state of research
on geometrically formal manifolds, with emphasis on the recent results
obtained by the author together with Liviu Ornea in [11]. We are mainly
interested in the topological obstructions to the existence of formal me-
trics. Moreover, we discuss natural constructions of formal metrics start-
ing from known ones.

1 Motivation, Definitions and Examples

A manifold is geometrically formal if it admits a formal Riemannian metric,
while a Riemannian metric is called formal if all products of harmonic forms are
again harmonic. One of the main motivation for the study of such manifolds
is that the existence of a formal metric implies Sullivan’s formality of the
manifold.

In algebraic topology one wants to read the homotopy type of a space in
terms of cohomological data. A precise definition of this property was given
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by Sullivan in [13] and is called formality. Roughly, a formal manifold is one
whose real (or rational) homotopy type is a formal consequence of its real
(resp. rational) cohomology ring. Algebro-topologically this means that all
Massey products vanish. The rational homotopy theory is the study of the
rational homotopy type of a space, which mainly means that all torsion in
the homotopy groups is ignored. The principal idea is that rational homo-
topy types of simply connected spaces can be identified with certain algebraic
objects called minimal Sullivan algebras, which are commutative differential
graded algebras over the rational numbers satisfying certain conditions.

As far as manifolds are concerned, it is known e.g. that all compact Rie-
mannian symmetric spaces and all compact Kähler manifolds are formal.

Sullivan also observed that if a compact manifold admits a metric such
that the wedge product of any two harmonic forms is again harmonic, then,
by Hodge theory, the manifold is formal. This motivated Kotschick to give
the following:

Definition 1.1 ([6]). A Riemannian metric is called formal if all wedge prod-
ucts of harmonic forms are harmonic. A closed manifold is called geometri-
cally formal if it admits a formal Riemannian metric.

Let us first fix the notation. We denote by (Mn, g) a compact oriented
Riemannian n-dimensional manifold without boundary and by Ωp(M), 0 ≤
p ≤ n the space of smooth, real valued, p-forms of M . The de Rham complex

. . .→ Ωp(M)
d→ Ωp+1(M)→ . . .

where d stands for exterior derivative is then used to introduce the de Rham
cohomology groups Hp

dR(M). The topological information contained in these
cohomology groups may be understood geometrically, using Hodge theory, by
means of the isomorphisms

Hp
dR(M) ∼= Hp(M, g), 0 ≤ p ≤ n, (1.1)

where the space of harmonic p-forms of (Mn, g) is defined by

Hp(M, g) = {α ∈ Ωp(M)|∆α = 0},

for the Laplacian on forms: ∆ = dδ + δd, where δ is the formal adjoint of d
with respect to the given metric and orientation. We now set

H?
dR(M) =

⊕
p≥0

Hp
dR(M) and H?(M, g) =

⊕
p≥0

Hp(M, g).

Whereas H?(M) is a graded algebra, in general H?(M, g) is not an algebra
with respect to the wedge product operation for there is no reason that the
isomorphism (1.1) descends to the level of harmonic forms.
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Thus, in general, on a Riemannian manifold, wedge products of harmonic
forms are not usually harmonic, so H∗(M, g) is not closed under wedge prod-
uct. But there are some examples where this does happen, for instance arbi-
trary Riemannian metrics on rational homology spheres. Classical examples
of geometrically formal manifolds are compact globally symmetric spaces. On
these manifolds the harmonic forms coincide with the invariant ones, and the
latter are clearly closed under products.

In [7] and [8] more general examples are provided, both of geometrically
formal and of formal but non-geometrically formal homogeneous manifolds.

An important property of formal metrics is that the length of any har-
monic form is (pointwise) constant. This is a striaghtforward consequence of
the definition and the formula α ∧ ∗α = |α|2volg (where volg is the volume
form which is harmonic) applied to any harmonic form α (then ∗α is also
harmonic since ∆ commutes with the Hodge-∗ operator). Furthermore, by
polarisation, it follows that the inner product of any two harmonic forms is
constant. This has important consequences in many arguments, for instance
the linear independence of a set of harmonic forms is sufficient to be tested at
one point.

This basic property also places the formal metrics into the larger class of
metrics having all harmonic forms of constant length. These naturally ap-
pear in other geometric contexts, for instance in the study of certain systolic
inequalities, and has been investigated in [9], [10]. Following [9] we now intro-
duce various notions of “constancy” related to harmonic forms.

Definition 1.2. Let (Mn, g) be compact and oriented. It is said to satisfy the
hypothesis (CLp) for some 1 ≤ p ≤ n−1 if and only if every harmonic p-form
has pointwisely constant norm.

Manifolds satisfying hypothesis (CL1) appear to be naturally related to a
generalized systolic inequality. More precisely, for a compact, orientable Rie-
mannian manifold (Nn, g) with non-vanishing first Betti number one defines
the stable 1-systole stsys1(g) in terms of the stable norm. If sysn−1(g) is the
infimum of the (n− 1)-volumes of all nonseparating hypersurfaces in N , then
the following systolic inequality holds:

stsys1(g) · sysn−1(g) ≤ γ′b1(N) · vol(g). (1.2)

Here γ′b1(N) is the Bergé-Martinet constant for whose definition we refer to [2].

The important point for us is that it was shown in [2] that if equality in (1.2)
occurs then (Nn, g) satisfies the hypothesis (CL1). Note that the converse is
false, as flat tori always satisfy (CL1) but saturate (1.2) if and only if they are
dual-critical.
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Riemannian manifolds (Nn, g) satisfying equality in (1.2) have strong ge-
ometric properties. It was proved in [2], Thm. 1.2, that in this case (Nn, g) is
the total space of a Riemannian submersion with minimal fibers to a flat torus,
whose projection is actually the Albanese map. Therefore, in the special case
when b1(N) = n − 1 it follows that the fibers of the Albanese map must be
totally geodesic. Using Chern-Weil theory and an argument that reproduces
in part that in section 6 of [2], it was shown in [10] that the only possible
topologies of manifolds Nn which admit a metric satisfying (CL1) and have
b1(N) = n − 1 are those of 2-step nilmanifolds with 1-dimensional kernel.
Equivalently, the above class of manifolds is parametrized by couples (T, ω)
where T is a flat (n− 1)-torus and ω is a non zero, integral cohomology class
on T . The next definition, which is a kind of refinement of Definition 1.1, is
related to this fact.

Definition 1.3. Let (Mn, g) be compact and oriented. The metric g is p-
formal for some 1 ≤ p ≤ n − 1 if and only if the product of any harmonic
p-forms remains harmonic.

As noticed above, formal metrics satisfy hypothesis (CLp) for all 1 ≤ p ≤
n− 1. However, the converse is not true: the class of (non necessarily invari-
ant) metrics on nilmanifolds studied in [10] satisfy hypothesis (CLp) whenever
1 ≤ p ≤ n− 1, but none of the p-formality hypothesis. Moreover, it is known
that certain classes of homogeneous spaces fail to be geometrically formal for
cohomological reasons [7].

One of the natural questions which arises is which constructions allow to
obtain new examples from known ones. We considered the following elemen-
tary constructions:

(i) Riemannian Products. By considering the splitting of the codiffer-
ential on a product of Riemannian manifolds and the corresponding commuta-
tion relations with the natural projections on the factors, a direct computation
yields the following:

Proposition 1.4. If (M1, g1) and (M2, g2) are two compact Riemannian man-
ifolds with formal metrics, then the metric g = g1+g2 on the product manifold
M = M1 ×M2 is also formal.

(ii) Warped Products. In this case, also by a direct but rather lenghty
computation, we have shown the following (for the proof we refer to [11]):

Theorem 1.5 ([11]). Let (Bn, gB) and (Fm, gF ) be two compact Riemannian
manifolds with formal metrics. Then the warped product metric g = π∗(gB) +
(ϕ ◦ π)2σ∗(gF ) on B × ϕF is formal if and only if the warping function ϕ is
constant.
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(iii) Conformal Changes. We have studied under which condition two
formal metrics may belong to the same conformal class. Under a weak topo-
logical assumption, we obtained the following uniqueness result:

Proposition 1.6 ([11]). Let M2n be an even-dimensional compact manifold
whose middle Betti number bn(M) is non-zero. Then, in any conformal class
of metrics there is at most one formal metric (up to homothety).

Proof: Let [g] be a class of conformal metrics on M and suppose there
are two formal metrics g1 and g2 = e2fg1 in [g]. In the middle dimension the
kernel of the codifferential is invariant at conformal changes of the metric, so
that there are the same harmonic forms for all metrics in a conformal class:
Hn(M, g1) = Hn(M, g2). As bn(M) ≥ 1 there exists a non-trivial g1-harmonic
(and thus also g2-harmonic) n-form α on M . The length of α must then be
constant with respect to both metrics, which are assumed to be formal and
thus we get:

g2(α, α) = e2nfg1(α, α),

which shows that f must be constant. �

Remark 1.7. Using the product construction to assure that the middle Betti
number is non-zero, one can build such examples of formal metrics which are
unique in their conformal class. Other examples are provided by manifolds
with “big” first Betti number, as follows from Corollary 2.3: if b1(M2n) ≥ n,
then bn(M2n) ≥ 1.

Remark 1.8. We notice that all the above results related to constructions of
new formal metrics hold true more generally for metrics having all harmonic
forms of constant length.

2 Topological Obstructions

Geometric formality imposes strong restrictions on the (real) cohomology of
the manifold. This fact was first observed by Sullivan in [13]: “There are
topological obstructions for M to admit a metric for which the product of
harmonic forms is harmonic.” For example, it is proven in [6] that a manifold
admits a non-formal metric if and only if it is not a rational homology sphere.

In this article, we shall present the already known obstructions to formality
and the new ones obtained in [11].

The topological restrictions satisfied by geometrically formal manifolds are
similar to properties of flat manifolds, as it was noticed in [6]. It was also
Kotschick who remarked that metric formality is a weakening of a reduction of
holonomy. For example, as noticed above, it implies that harmonic forms have
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constant length, though it does not imply that they are parallel. Nevertheless,
the more harmonic forms there are, the stronger the constraints.

Most of these obstructions are independent of formality in the sense of
rational homotopy theory and are often nonzero on formal manifolds.

We first consider the existence of upper bounds for the Betti numbers and
the description of the limiting manifolds. Then we look at certain other rela-
tions between the Betti numbers. More precisely, we show that on a compact
geometrically formal manifold with b1 = p ≥ 1, if there exist two vanishing
Betti numbers such that the distance between them is not larger than p + 2,
then all the intermediary Betti numbers must be zero too.

One of the most important conjecture related to geometrically formal man-
ifolds is that they have the same real cohomology algebra as the compact glob-
ally symmetric spaces. This is known to be true up to dimension 4 (this result
is due to Kotschick, [6]) and is still open for higher dimensions. In § 2.3 we
shall give the main ideas of the proofs.

In the last part we look at special geometric structures and analyze the
topological obstructions imposed by the formality of the Riemannian metric
of the structure. More precisely, we first recall the known results about the
Kähler and Sasaki structures and then consider the locally conformally Kähler
(lcK) structures and in particular Vaisman manifolds. Unlike Kähler mani-
folds, which are known to be formal (cf. [3]), nothing is yet known about
the Sullivan formality of locally conformally Kähler (in particular Vaisman)
manifolds.

2.1 Upper bounds for the Betti Numbers and limiting manifolds

The Betti numbers of any geometrically formal manifold are bounded from
above by the Betti numbers of the torus in that dimension. More precisely,
the following holds:

Theorem 2.1 ([6]). On a closed oriented geometrically formal manifold Mn

the following inequalities hold:

1. The real Betti numbers of M are bounded by bk(M) ≤ bk(Tn) =
(
n
k

)
.

2. The first Betti number b1(M) 6= n− 1.

3. If n = 4m, then b±2m(M) ≤ b±2m(Tn).

The main idea of the proof is that the number of linear independent har-
monic k-forms cannot exceed the rank of the bundle of k-forms (for details we
refer to [6]).

We now consider the limiting manifolds for the above inequalities for the
Betti numbers. Namely, a geometrically formal manifold with maximal first
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or second Betti number is shown to be flat. For the Betti numbers of higher
order it is still a conjecture that the corresponding limiting manifolds are also
flat.

The main result concerning geometrically formal metrics with maximal
first Betti number is due to Kotschick:

Theorem 2.2 ([6]). Suppose the closed oriented manifold Mn is geometrically
formal. If b1(M) = k, then there is a smooth submersion π : M → T k, for
which π∗ is an injection of cohomology algebras. In particular, if b1(M) = n,
then M is diffeomorphic to Tn. In this case every formal Riemannian metric
is flat.

The idea of the proof is to consider the Albanese map π : M → T k given
by integration of harmonic 1-forms. The flatness of the metric then follows
from the existence of a trivialization given by a basis of harmonic 1-forms.

A straightforward consequence of the above result is the following property
of “propagation” for Betti numbers on geometrically formal manifolds:

Corollary 2.3. If the first Betti number of a closed oriented geometrically
formal manifold M satisfies b1(M) = p ≥ 1, then bq(M) ≥

(
p
q

)
, for all 1 ≤

q ≤ p.

The characterisation of geometrically formal Riemannian manifold with
maximal second Betti number was given by Grosjean and Nagy as follows:

Theorem 2.4 ([5]). Let Mn be geometrically formal with n ≥ 3. If b2(M) is

maximal, b2(M) =

(
n
2

)
, then any formal metric on M is flat.

The proof of Theorem 2.4 uses a nice trick when the dimension n is odd,
which reduces to the preceding case of maximal first Betti number. Namely,
if bp(M) and bq(M) are maximal for p = q ≤ dim(M), then also bp+q(M)
must be maximal. Applying this to b2(M), we obtain in odd dimensions that
b1(M) = bn−1(M) is maximal. The even-dimensional case is more involved
and uses the existence of a compatible almost Kähler structure on M (see [5]).

2.2 Vanishing of Intermediary Betti Numbers

We further present obstructions to geometric formality obtained in [11]. We
have shown that if a compact manifold with b1 = p ≥ 1 admits a formal
metric, and if there exist two vanishing Betti numbers such that the distance
between them is not larger than p+2, then all the intermediary Betti numbers
must be zero too. More precisely, we have:
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Proposition 2.5 ([11]). Let Mn be a compact geometrically formal manifold
with b1(M) = p ≥ 1. If there exist two Betti numbers that vanish: bk(M) =
bk+l(M) = 0, for some k and l with 0 < k + l < n and 0 < l ≤ p + 1, then
all intermediary Betti numbers must vanish: bi(M) = 0, for k ≤ i ≤ k + l. In
particular, if there exists k ≥ n−p−1

2 such that bk(M) = 0, then bi(M) = 0 for
all k ≤ i ≤ n− k.

Proof: Let {θ1, . . . , θp} be an orthogonal basis of g-harmonic 1-forms, where
g is a formal metric on M . We first notice that here is no ambiguity in
considering the orthogonality with respect to the global scalar product or to
the pointwise inner product, because, when restricting ourselves to the space
of harmonic forms of a formal metric, these notions coincide. Thus, if two
harmonic forms α and β are orthogonal with respect to the global product, we
get: 0 = (α, β) =

∫
M
< α, β > dvolg =< α, β > vol(M), showing that their

pointwise inner product is the zero-function.
It is enough to show that bk+1(M) = 0 and then use induction on i. Let α

be a harmonic (k+ 1)-form. By formality, θ1∧ θ2∧ · · ·∧ θl−1∧α is a harmonic
(k + l)-form and thus must vanish, since bk+l(M) = 0. On the other hand,

θ]jyα = (−1)k(n−k−1) ∗ (θj ∧ ∗α) is a harmonic k-form, again by formality.

As bk(M) = 0, it follows that θ]jyα = 0, for 1 ≤ j ≤ p. Then, using that
{θ1, . . . , θp} are also orthogonal, we obtain:

0 = θ]1y · · ·yθ
]
l−1y(θ1 ∧ · · · ∧ θl−1 ∧ α) = ±|θ1|2 · · · |θl−1|2α,

which implies that α = 0, because each θj has non-zero constant length. This
shows that bk+1(M) = 0. �

2.3 The Real Cohomology of Geometrically Formal Manifolds

In small dimensions every geometrically formal manifold has the real cohomol-
ogy algebra of a compact Riemannian symmetric space. However, in higher
dimensions this is still an open conjecture and very few general facts are known
about geometrically formal manifolds.

Theorem 2.6 ([6]). If M is a closed oriented geometrically formal manifold
of dimension smaller or equal to 4, then M has the real cohomology algebra of
a compact globally symmetric space.

It is however not true that M is a globally symmetric space, even up to
homotopy. There are examples of this in dimensions 3 and 4. In [6] there
are also provided examples of 4-manifolds which do have the real cohomology
algebra of a compact symmetric space, but are not geometrically formal.

For the details of the proof we refer the reader to [6]. The argument is
different in each dimension and the main ideas are as follows.
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• Dimension Two. If Σ is a closed oriented surface of genus equal to
0 or 1, then there are globally symmetric Riemannian metrics. If its
genus is ≥ 2, there are nontrivial harmonic 1-forms for all metrics, but
every 1-form has zeros. In this case every wedge product of 1-forms
also has zeros, but for cohomological reasons cannot vanish identically
in all cases. The only harmonic 2-forms are the constant multiples of
the Riemannian volume form, so there cannot be any formal Riemannian
metric.

• Dimension Three. If M is a closed oriented geometrically formal 3-
manifold, then, by Theorem 2.1, b1(M) ∈ {0, 1, 3}. If b1(M) = 3, then
Theorem 2.2 implies that M is the torus. If b1(M) = 1, then the real
cohomology algebra is that of the globally symmetric space S2×S1 and
if b1(M) = 0, M is a rational homology sphere.

• Dimension Four. If M is a closed oriented geometrically formal 4-
manifold, then by Theorem 2.1 we have b1(M) ∈ {0, 1, 2, 4}. If the first
Betti number is maximal, then Theorem 2.2 implies that M is the 4-
torus. If b1(M) = 2 or b1(M) = 1 it is shown that the real cohomology
ring of M is the same as that of the globally symmetric space S2 × T 2,
respectively of S3 × S1. The remaining case, b1(M) = 0 is the most
difficult. After an investigation of all possible cases, it turns out that
all combinations occur for the globally symmetric spaces S4, CP 2, CP 2

and S2 × S2.

2.4 Geometric formality and special geometric structures

Kähler structures. The first special structures we consider are the Kähler
structures. Compact Kähler manifolds are topologically formal in the sense of
Sullivan, as it was proven in [3], but in general, they are not geometrically for-
mal. Nagy gave in [9] algebraic and topological obstructions to the existence of
a geometrically 2-formal Kähler metric, at the level of the second cohomology
group. Most of these geometric properties are more generally consequences of
the constancy of the length for low degree harmonic forms. The main results
are the following (for their proofs we refer to [9]):

Theorem 2.7 ([9]). Let (M2n, g, J) be a compact Kähler manifold. Then
every harmonic 1-form of pointwisely constant length is parallel with respect
to the Levi-Civita connection of g. In particular, if g satisfies the hypothesis
(CL1) then (M2n, g, J) is locally the Riemannian (and biholomorphic) product
of a compact, simply connected Kähler manifold and of a flat torus.

In [9] it is also shown that harmonic 2-forms of a 2- formal Kähler manifold
have a global spectral decomposition and constant eigenvalues. This sustains
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the remark, already noticed in [6], that geometric formality is weakening the
notion of Riemannian holonomy reduction. Based upon this, the following
result holds:

Theorem 2.8 ([9]). Let (M2n, g, J) be a compact Kähler manifold and assume
that the metric g is 2-formal. Then :

(i) the space H1,1 of J-invariant harmonic forms is spanned by almost
Kähler forms compatible with the metric g.

(ii) the space H2
− of J-anti-invariant harmonic two-forms consists only in

parallel forms.

By contrast, recall that simply connected, irreducible compact Hermitian
symmetric space have second Betti number equal to 1. The case of geometri-
cally formal Kähler manifolds of complex dimension 3 is now well understood.
More precisely, the possible values of the second Betti number are known,
as well as more precise information concerning the algebraic structure of the
second cohomology group:

Theorem 2.9 ([9]). Let (M6, g, J) be a geometrically formal Kähler manifold.
If the metric g is locally irreducible then b1(M) = b−2 (M) = 0. Moreover one
has b2(M) ≤ 3 and H1,1 is spanned by mutually commuting almost Kähler
structures.

As noticed in [9], finding further, first order obstructions to geometric for-
mality in the Kähler case relies on understanding of the algebraic structure of
the space of harmonic p-forms, p ≥ 3.

Sasakian structures. We further consider the topology of geometrically
formal Sasakian metrics, which are the analogue of Kähler metrics in odd
dimensions. The cohomology algebra of geometrically formal Sasakian man-
ifolds can be completely described. More precisely, in [5], it is shown that a
formal Sasakian metric can exist only on a real cohomology sphere.

Theorem 2.10 ([5]). Let (M2n+1, g) be a compact Sasakian manifold. If the
metric g is formal, then bp(M) = 0 for 1 ≤ p ≤ 2n, i.e. M is a real cohomology
sphere.

The proof uses the decomposition of the tangent bundle of a Sasakian mani-
fold as a direct sum of the 1-dimensional distribution generated by the Reeb
vector field and the horizontal contact distribution, which admits a Kähler
structure. The corresponding decomposition of the exterior differential and
of the codifferential acting on the space of primitive harmonic forms together
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with an algebraic relation involving powers of the Lefschetz operator yield the
desired topological obstruction. A similar argument will be used below in the
proof of Theorem 2.12.

Locally conformally Kähler structures. We now discuss the geometric
formality of a Vaisman manifold, which is a particular type of locally conformal
Kähler (LCK) manifold. It is defined as a Hermitian manifold (M,J, g), of real
dimension n = 2m ≥ 4, whose fundamental 2-form ω satisfies the conditions:

dω = θ ∧ ω, ∇θ = 0.

Here θ is a (closed) 1-form, called the Lee form, and ∇ is the Levi-Civita
connection of the LCK metric g (we always consider θ 6= 0 to exclude the
Kähler manifolds). Locally, θ = df and the local metric e−fg is Kähler, hence
the name LCK. When lifted to the universal cover, these local metrics glue to
a global one, which is Kähler and acted on by homotheties by the deck group
of the covering.

In the Vaisman case, the universal cover is a Riemannian cone. In fact,
compact Vaisman manifolds are closely related to Sasakian ones, as the fol-
lowing structure theorem shows:

Theorem 2.11 ([12]). Compact Vaisman manifolds are mapping tori over
S1. More precisely: the universal cover M̃ is a metric cone N ×R>0, with N
compact Sasakian manifold and the deck group is isomorphic with Z, generated
by (x, t) 7→ (λ(x), t+ q) for some λ ∈ Aut(N), q ∈ R>0.

Every Hopf manifold (quotient of CN\{0} by the cyclic group generated by
a semi-simple operator with subunitary eigenvalues) is a Vaisman manifold, as
well as all its compact complex submanifolds. The complete list of Vaisman
compact surfaces is given in [1]. On the other hand, examples of LCK man-
ifolds (satisfying only the condition dω = θ ∧ ω for a closed θ) which cannot
admit any Vaisman metric are also known, e.g. one type of Inoue surfaces
and the non-diagonal Hopf surface, see [1]. The non-diagonal Hopf surface is
particularly relevant for our discussion because it is topologically formal.

Being parallel and Killing (see [4]), the Lee field θ] is real holomorphic
and, together with Jθ] generates a one-dimensional complex, totally geodesic,
Riemannian foliation F. Note that F is transversally Kähler, meaning that the
transversal part of the Kähler form is closed (for a proof of this result, see e.g.
[15, Theorem 3.1]). We recall that a form is called horizontal with respect to a
foliation F if its interior product with any vector field tangent to the foliation
vanishes and is called basic if in addition its Lie derivative along a vector field
tangent to the foliation also vanishes. In the sequel we shall use the basic
versions of the standard operators acting on Ω∗B(M), the space of basic forms:
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∆B is the basic Laplace operator, LB is the exterior multiplication with the
transversal Kähler form and ΛB its adjoint with respect to the transversal
metric. For details on these operators and their properties we refer the reader
to [14, Chapter 12]. Our main result, which is an analogue of Theorem 2.10
for Sasakian structures, puts severe restrictions on formal Vaisman metrics:

Theorem 2.12 ([11]). Let (M2m, g, J) be a compact Vaisman manifold. The
metric g is formal if and only if bp(M) = 0 for 2 ≤ p ≤ 2m− 2 and b1(M) =
b2m−1(M) = 1, i.e. M is a cohomological Hopf manifold.

Proof: Let γ ∈ Ωp(M) be a harmonic form on M for some p, 1 ≤ p ≤ m−1.
By [15, Theorem 4.1], γ has the following form:

γ = α+ θ ∧ β, (2.1)

with α and β basic, transversally harmonic and transversally primitive.
Since α is basic, Jα is also a basic p-form that is transversally harmonic

and transversally primitive:

∆B(Jα) = 0, ΛB(Jα) = 0,

because ∆B and ΛB both commute with the transversal complex structure J
(as the foliation is transversally Kähler). Again from [15, Theorem 4.1], by
taking β = 0, it follows that Jα is a harmonic form on M : ∆(Jα) = 0.

The assumption that g is formal implies that α ∧ Jα is harmonic on M
and in particular coclosed: δ(α∧Jα) = 0. According to [15], this implies that
α ∧ Jα is transversally primitive: ΛB(α ∧ Jα) = 0.

On the other hand, it is proven in [5, Proposition 2.2] that for primitive
forms η, µ ∈ ΛpV , where (V, g, J) is any Hermitian vector space, the following
algebraic relation holds:

(Λ)p(η ∧ µ) = (−1)
p(p−1)

2 p!〈 η, Jµ 〉, (2.2)

where J is the extension of the complex structure to Λ∗V defined by:

(Jη)(v1, . . . , vp) := η(Jv1, . . . , Jvp), for all η ∈ ΛpV, v1, . . . , vp ∈ V.

We apply the above formula to the transversal Kähler geometry and obtain
that α vanishes everywhere:

0 = (ΛB)p(α ∧ Jα) = (−1)
p(p+1)

2 p!〈α, α 〉.

The same argument as above applied to β ∈ Ωp−1
B (M) shows that β is

identically zero if p ≥ 2. Thus, γ = 0 for 2 ≤ p ≤ m− 1, which proves that:

b2(M) = · · · = bm−1(M) = 0.
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If p = 1, then β is a basic function, which is transversally harmonic, so
that β is a constant. Thus γ is a multiple of θ, showing that the space of
harmonic 1-forms on M is 1-dimensional: b1(M) = 1.

It remains to show that the Betti number in the middle dimension, bm(M),
also vanishes. This follows from Proposition 2.5 applied to p = 1, k = m − 1
and l = 2.

The converse is clear, since the space of harmonic forms with respect to the
Vaisman metric g is spanned by {1, θ, ∗θ, dvolg} and thus the only product of
harmonic forms which is not trivial is θ∧∗θ = g(θ, θ)dvolg, which is harmonic
because θ has constant length, being a parallel 1-form. �
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