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Reidemeister type moves for knots and links in
lens spaces

Enrico Manfredi and Michele Mulazzani

Abstract

We introduce the concept of regular diagrams for knots and links in
lens spaces, proving that two diagrams represent equivalent links if and
only if they are related by a finite sequence of seven Reidemester type
moves. As a particular case, we obtain diagrams and moves for links in
RP3 previously introduced by Y.V. Drobothukina.

1 Preliminaries

In this paper we work in the Diff category (of smooth manifolds and maps).
Every result also holds in the PL category.

Let X and Y be two smooth manifolds. A smooth map f : X → Y is
an embedding if the differential dxf is injective for all x ∈ X and if X and
f(X) are homeomorphic. As a consequence, X and f(X) are diffeomorphic
and f(X) is a submanifold of Y . An ambient isotopy between two embeddings
l0 and l1 from X to Y is a smooth map H : Y × [0, 1] → Y such that, if we
define ht(y) = H(y, t) for each t ∈ [0, 1], then ht : Y → Y is a diffeomorphism,
h0 = IdY and l1 = h1 ◦ l0.

A link in a closed 3-manifold M3 is an embedding of ν copies of S1 into
M3, namely it is l : S1 t . . . t S1 → M3. A link can also be denoted by L,
where L = l(S1 t . . . t S1) ⊂ M3. A knot is a link with ν = 1. Two links
L0 and L1 are equivalent if there exists an ambient isotopy between the two
related embeddings l0 and l1 (i.e., h1(L0) = L1).
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Let p and q be two integer numbers such that gcd(p, q) = 1 and 0 6 q < p.
Consider B3 = {(x1, x2, x3) ∈ R3 | x21 + x22 + x23 6 1} and let E+ and E−
be respectively the upper and the lower closed hemisphere of ∂B3. Call B2

0

the equatorial disk, defined by the intersection of the plane x3 = 0 with B3.
Label with N and S the ”north pole” (0, 0, 1) and the ”south pole” (0, 0,−1)
of B3, respectively. Let gp,q : E+ → E+ be the rotation of 2πq/p around the
x3 axis as in Figure 1, and let f3 : E+ → E− be the reflection with respect
to the plane x3 = 0. The lens space L(p, q) is the quotient of B3 by the
equivalence relation on ∂B3 which identify x ∈ E+ with f3 ◦ gp,q(x) ∈ E−.
We denote by F : B3 → B3/ ∼ the quotient map. Notice that on the equator
∂B2

0 = E+ ∩ E− there are p points in each class of equivalence.

B0
2

E+

E

2πq/p

x

f3◦gp,q (x)

x2

x3

x1

gp,q

f3◦gp,q (x)

B3⊂R3

Figure 1: Model for L(p, q).

It is easy to see that L(1, 0) ∼= S3 since g1,0 = IdE+
. Furthermore, L(2, 1)

is RP3, since we obtain the usual model of the projective space where opposite
points of the boundary of the ball are identified.

2 Links in S3

2.1 Diagrams

One of the first tools used to study links in S3 are diagrams, which are suitable
projections of the links on a plane.

If L is a link in S3 = R3 ∪{∞}, we can always suppose, up to equivalence,
that L belongs to intB3. Let p : B3 r {N,S} → B2

0 be the projection defined
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by p(x) = c(x) ∩ B2
0 , where c(x) is the circle (possibly a line) through N , x

and S.
Now project L ⊂ intB3 using p|L : L → B2

0 . For any P ∈ p(L), p−1|L (P )

may contains more than one point; in this case, we say that P is a multiple
point. In particular, if it contains exactly two points, we say that P is a
double point. We can assume, up to a ”small” isotopy, that the projection
p|L : L→ B2

0 of L is regular, namely:

1. the arcs of the projection contain no cusps;

2. the arcs of the projection are not tangent to each other;

3. the set of multiple points is finite, and all of them are actually double
points.

V1 V2 V3

Figure 2:

These conditions correspond to forbidden configurations depicted in Fig-
ure 2.

Now let Q be a double point and consider p−1|L (Q) = {P1, P2}.

             

N

S

x

p(x)

Figure 3: A link in S3 and the corresponding diagram.
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We suppose that P2 is nearer to S than P1. Take U as an open neighbor-
hood of P2 in L such that p(U) does not contain other double points. We call
U underpass. Take the complementary set in L of all the underpasses. Ev-
ery connected component of this set (as well as its projection in B2

0) is called
overpass. The overpass/underpass rule in the double points is visualized by
removing U from L′ before projecting the link (see Figure 3). Observe that
some components of the link might have no underpasses.

A diagram of a link L in S3 is a regular projection of L on the equatorial
disk B2

0 , with specified overpasses and underpasses.

2.2 Reidemeister moves

There are three (local) moves that allow us to determine when two links in S3

are equivalent, directly from their diagrams. Reidemeister proved this theorem
for PL links. For the Diff case a possible reference is [3], where the result
concerns links in arbitrary dimensions, so the proof is rather complicated.

The Reidemeister moves for a diagram of a link L ⊂ S3 are the moves
R1, R2, R3 of Figure 4.

R1

R2

R3

Figure 4: Reidemeister moves.
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Theorem 2.1. [3] Two links L0 and L1 in S3 are equivalent if and only if their
diagrams can be joined by a finite sequence of Reidemeister moves R1, R2, R3

and diagram isotopies.

Proof. It is easy to see that each Reidemeister move produces equivalent links,
hence a finite sequence of Reidemeister moves and isotopies on a diagram does
not change the equivalence class of the link.

On the other hand, if we have two equivalent links L0 and L1, then there is
an ambient isotopy H : S3×[0, 1]→ S3 such that l1 = h1◦l0. At each t ∈ [0, 1]
we have a link Lt, defined by ht ◦ l0. From general position theory (see [3] for
details), we can assume that the projection of Lt is not regular only a finite
number of times, and that at each of these times only one condition is violated.
From each type of violation a transformation of the diagram appears, that is
to say, a Reidemeister move, as it follows (see Figure 5):

– from V1 we obtain the move R1;

– from V2 we obtain the move R2;

– from V3 we obtain the move R3.

R1

R2

R3

V1

V2

V3

Figure 5:

So diagrams of two equivalent links can be joined by a finite sequence of
Reidemeister moves R1, R2, R3 and diagram isotopies.
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3 Links in RP3

3.1 Diagrams

The definition of diagrams for links in the projective space, given by Droboth-
ukina in [1], makes use of the model of the projective space RP3 explained
in Section 1, as a particular case of L(p, q) with p = 2 and q = 1. Namely,
consider B3 and let ∼ the equivalence relation which identify diametrically
opposite points on ∂B3, then RP3 ∼= B3/ ∼.

Let L be a link in RP3 and consider L′ = F−1(L), where F is the quotient
map. By moving L with a small isotopy in RP3, we can suppose that:

i) L′ does not meet the poles S and N of B3;

ii) L′ ∩ ∂B3 consists of a finite set of points.

So L′ is the disjoint union of closed curves in intB3 and arcs properly embed-
ded∗ in B3.

Let p : B3r{N,S} → B2
0 be the projection defined in the previous section.

Take L′ and project it using p|L′ : L′ → B2
0 . A point P ∈ p(L′) such that

p−1|L′(P ) contains more than one point is called a multiple point. In particular,

if it contains exactly two points, we say that P is a double point. We can
assume, by moving L via small isotopies, that the projection p(L′) is regular,

namely:

1) the arcs of the projection contain no cusps;

2) the arcs of the projection are not tangent to each other;

3) the set of multiple points is finite, and all of them are actually double
points;

4) the arcs of the projection are not tangent to ∂B2
0 ;

5) no double point is on ∂B2
0 .

These conditions correspond to forbidden configurations V1, . . . , V5 de-
picted in Figures 2 and 6.

Now let Q be a double point and consider p−1|L′(Q) = {P1, P2}. We suppose

that P2 is nearer to S than P1. Take U as an open neighborhood of P2 in L′

such that p(U) does not contain other double points and does not meet ∂B2
0 .

We call U underpass. Take the complementary set in L′ of all the underpasses.
Every connected component of this set (as well as its projection in B2

0) is called

∗An arc is properly embedded in a compact 3-manifold M3 if only the endpoints belong
to ∂M3.
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V4 V5

Figure 6:

overpass. Again the overpass/underpass rule in the double points is visualized
by removing U from L′ before projecting the link (see Figure 7).

1

1

2

2N

S

x

p(x)

Figure 7: A link in RP3 and the corresponding diagram.

A diagram of a link L in RP3 is a regular projection of L′ = F−1(L) on
the equatorial disk B2

0 , with specified overpasses and underpasses.

The boundary points of the link projection are labelled in order to make
clear the identifications. Assume that the number of boundary points is 2t and
orient the equator counterclockwise (looking at it from N). Choose a point
of p(L′) on the equator and label it by 1, as well as its antipodal point; then
following the orientation of ∂B2

0 , label the points of p(L′) on the equatorial
circle, as well as the antipodal ones, by 2, . . . , t respectively (see Figure 7).
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3.2 Generalized Reidemeister moves

The generalized Reidemeister moves on a diagram of a link L ⊂ RP3 are the
moves R1, R2, R3 of Figure 4 and the moves R4, R5 of Figure 8.

1
2

R4

R5

1
2

1
21

2

1
2

1
2

Figure 8: Generalized Reidemeister moves for links in RP3.

An analogue of the Reidemeister theorem can be proved in this contest:

Theorem 3.1. [1] Two links L0 and L1 in RP3 are equivalent if and only if
their diagrams can be joined by a finite sequence of generalized Reidemeister
moves R1, . . . , R5 and diagram isotopies.

Proof. It is easy to see that each Reidemeister move produces equivalent links,
hence a finite sequence of Reidemeister moves and isotopies on a diagram does
not change the equivalence class of the link.

On the other hand, if we have two equivalent links L0 and L1, then there
is an ambient isotopy H : RP3 × [0, 1] → RP3 such that l1 = h1 ◦ l0. At each
t ∈ [0, 1] we have a link Lt, defined by ht ◦ l0. As for links in S3, using general
position theory we can assume that the projection of Lt is not regular only a
finite number of times, and that at each of these times only one condition is
violated. From each type of violation a transformation of the diagram appears,
that is to say, a generalized Reidemeister move, as it follows (see Figures 5
and 9):

– from V1, V2 and V3 we obtain the classic Reidemeister moves R1, R2 and
R3;
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– from V4 we obtain the move R4;

– from V5 we obtain the move R5.

1
2

1
2

1
21

2

1
2

1
2

R4

R5

V4

V5

Figure 9:

So diagrams of two equivalent links can be joined by a finite sequence of
generalized Reidemeister moves R1, . . . , R5 and diagram isotopies.

4 Links in L(p, q)

4.1 Diagrams

In this section we improve the definition of diagram for links in lens spaces
given in [2]. We can assume p > 2, since the particular cases L(1, 0) ∼= S3 and
L(2, 1) ∼= RP3 have been already considered in previous sections.

The model for the lens space L(p, q) = B3/ ∼ is the one given in Section 1.
Let L be a link in L(p, q) and let L′ = F−1(L), where F is the quotient map.
By moving L via a small isotopy in L(p, q), we can suppose that:

i) L′ does not meet the poles S and N of B3;

ii) L′ ∩ ∂B3 consists of a finite set of points.

So L′ is the disjoint union of closed curves in intB3 and arcs properly embedded
in B3.

Let p : B3 r {N,S} → B2
0 be the projection defined in Section 2. Take L′

and project it using p|L′ : L′ → B2
0 . As before, a point P ∈ p(L′) such that

p−1|L′(P ) contains more than one point is called a multiple point. In particular,
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if it contains exactly two points, P is called a double point. We can assume,
by moving L via a small isotopy, that the projection p|L′ : L′ → B2

0 of L is
regular, namely:

1) the arcs of the projection contain no cusps;

2) the arcs of the projection are not tangent to each other;

3) the set of multiple points is finite, and all of them are actually double
points;

4) the arcs of the projection are not tangent to ∂B2
0 ;

5) no double point is on ∂B2
0 ;

6) L′ ∩ ∂B2
0 = ∅.

Of course, overpasses and underpasses are defined as in the previous sec-
tion. A diagram of a link L in L(p, q) is a regular projection of L′ = F−1(L)
on the equatorial disk B2

0 , with specified overpasses and underpasses.

+1
−1

+2

−2
+3 −3 +4

−4

N

x

p(x)

S

Figure 10: A link in L(9, 1) and the corresponding diagram.

We label the boundary points of the link projection, in order to make
clear the identification. Assume the equator is oriented counterclockwise, and
consider the t endpoints of the overpasses belonging to the upper hemisphere.
Label their projecton by +1, . . . ,+t, according to the orientation of ∂B2

0 . Then
label the other t boundary points by −1, . . . ,−t, where for each i = 1, . . . , t,
according to the identifications. An example is shown in Figure 10.
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Now we explain which diagram violations arise from condition 1)-6). As
usual, conditions 1), 2) and 3) correspond to forbidden configurations V1, V2
and V3 of Figure 2.

Condition 4), as in the projective case, corresponds to V4. On the contrary,
condition 5) does not behave as in the projective case. Indeed two forbidden
configurations arise from it (V5 and V6), as Figure 11 shows. The difference
between them is that V5 involves two arcs of L′ that end in the same hemisphere
of ∂B3, on the contrary V6 involves arcs that end in different hemispheres.

V4 V5 V6

Figure 11:

Finally, condition 6) produces a family of forbidden configurations, called
V7,1, . . . , V7,p−1 (see Figure 12). The difference between them is that V7,1 has
the arcs of the projection identified directly by gp,q, while V7,k has the arcs
identified by gkp,q, for k = 2, . . . , p− 1.

(gp,q)
2 (gp,q)

p-1gp,q

V7,1 V7,2 V7,p-1

Figure 12:

It is easy to see what kind of small isotopy on L is necessary, in order
to make the projection of the link regular when we deal with configurations
V1, . . . , V6. Now we explain how the link can avoid to meet ∂B2

0 up to isotopy,
that is to say, avoid V7,1, . . . , V7,p−1.
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We start with a link with two arcs ending on ∂B2
0 . Suppose that the

endpoints B and C of the arcs are connected by gp,q, (a V7,1 violation), namely
C = gp,q(B). In this case the required isotopy is the one that lift up a bit the
arc ending in B and lower down the other one.

Now if we suppose that the endpoints B and C of the arcs are connected
by a power of gp,q, (a V7,k violation with k > 1), namely C = gkp,q(B). In
this case the required isotopy is similar to the one of the example in L(9, 1) of
Figure 13. In lens spaces with q 6= 1, the new arcs end in the faces specified
by the map f3 ◦ gp,q.

CB
C

B

Figure 13: How to avoid ∂B2
0 in L(9, 1).

4.2 Generalized Reidemeister moves

Again, with the aim of discovering when two diagrams represent equivalent
links in L(p, q), we generalize Reidemeister moves to this contest.

The generalized Reidemeister moves on a diagram of a link L ⊂ L(p, q) are
the moves R1, R2, R3 of Figure 4 and the moves R4, R5, R6 and R7 of Figure
14.

Theorem 4.1. Two links L0 and L1 in L(p, q) are equivalent if and only if
their diagrams can be joined by a finite sequence of generalized Reidemeister
moves R1, . . . , R7 and diagram isotopies.

Proof. It is easy to see that each Reidemeister move produces equivalent links,
hence a finite sequence of Reidemeister moves and isotopies on a diagram does
not change the equivalence class of the link.

On the other hand, if we have two equivalent links L0 and L1, then there is
an ambient isotopy H : L(p, q)× [0, 1]→ L(p, q) such that l1 = h1 ◦ l0. At each
t ∈ [0, 1] we have a link Lt, defined by ht ◦ l0. As before, using general position
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−2

−1

+1 −j

+i

Figure 14: Generalized Reidemeister moves for links in L(p, q).

arguments we can assume that the projection p(L′t) is not regular only a finite
number of times, and that at each of these times only one condition is violated.

From each type of violation a transformation of the diagram appears, that
is to say, a generalized Reidemeister move, as follows (see Figures 5 and 15):

– from V1, V2 and V3 we obtain the classical Reidemeister moves R1, R2
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V4

V5

V6

V7

Figure 15:

and R3;

– from V4 we obtain the move R4;

– from V5, we obtain two different moves: if the endpoints of the arcs
corresponding to the double point belong in the same hemisphere, then
we obtain R5; on the contrary we obtain R6;

– from condition 6 we have a family of forbidden configurations V7,1, . . . , V7,p−1,
from which we obtain the moves R7,1, . . . , R7,p−1.
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R4

R7

+1

−1+2−2+3

−3

+1
+2−1+3−2+4

−3

−4
+5

−5+6 −6+7

−7

+1
+2−1+3−2

+4

−5+6 −6+7

−7

+1

−1
+2 −2+3

−3
R7,3

V7

−3

−4
+5

+1+2

−1

+3
−2

−3+4 −4+5

−5

R4
+1+2

−1
+3
−2

−3+4 −4+5

−5

+1+2

−1
+3
−2

−3+4 −4+5

−5

R1

R1

+1

−1
+2 −2+3

−3

R6

R6

Figure 16: How to reduce a composite move.
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Indeed, if an arc cross the equator during the isotopy, then we have a class
of moves, R7,1 = R7, R7,2, . . . , R7,p−1. All these moves can be seen as the
composition of R7, R6, R4 and R1 moves. More precisely, the move R7,k with
k = 2, . . . , p − 1, can be obtained by the following sequence of moves: first
we perform an R7 move on one overpass that end on the equator and the
corresponding point in a small arc, then we repeat for k − 1 times the three
moves R6-R4-R1 necessary to retract the small arc with ending points having
the same sign (see an example in Figure 16).

So we can drop R7,2, . . . , R7,p−1 from the set of moves, and keep only
R7,1 = R7. As a consequence, any pair of diagrams of two equivalent links can
be joined by a finite sequence of generalized Reidemeister moves R1, . . . , R7

and diagram isotopies.
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