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Seiberg-Witten Equations on
Pseudo-Riemannian Spinc Manifolds With

Neutral Signature

Nedim Değirmenci, Şenay Karapazar

Abstract

Pseudo-Riemannian spinc manifolds were introduced by Ikemakhen
in [7]. In the present work we consider pseudo-Riemannian 4−manifolds
with neutral signature whose structure groups are SO+(2, 2). We prove
that such manifolds have pseudo-Riemannian spinc structure. We con-
struct spinor bundle S and half-spinor bundles S+ and S− on these
manifolds. For the first Seiberg-Witten equation we define Dirac opera-
tor on these bundles. Due to the neutral metric self-duality of a 2−form
is meaningful and it enables us to write down second Seiberg-Witten
equation. Lastly we write down the explicit forms of these equations on
4−dimensional flat space.

1 Introduction

Spinors are geometric objects living around manifolds. They are important
for the investigation of manifolds (see [6, 9]). Seiberg-Witten Monopole equa-
tions were defined by E. Witten on 4−dimensional Riemannian manifolds by
using the spinors [16]. The solution space of these equations provides new
invariants for 4−manifolds, namely Seiberg-Witten invariants ([1, 12, 13]).
Similar equations were written down on 4−dimensional Lorentzian manifolds
[3]. Pseudo-Riemannian 4−manifolds with neutral signature are being stud-
ied by various authors from different point of view (see [2, 4, 8, 10, 11]).
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Pseudo-Riemannian spinc spinors are introduced by Ikemakhen in [7] recently.
The aim of this article is to write down similar equations to Seiberg-Witten
equations on 4−dimensional Pseudo-Riemannian spinc manifolds with neutral
signature.

2 Some Preliminaries

On R4, we consider the pseudo-Riemannian metric g (x, y) = x1y1 + x2y2 −
x3y3 − x4y4, where x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) ∈ R4. When this
metric considered on the 4-dimensional space is denoted by R2,2. The isometry
group of this space is denoted by O(2, 2), that is

O(2, 2) =
{
A ∈ GL(4,R) : g (A (x) , A (y)) = g (x, y) , where x, y ∈ R2,2

}
.

The group O(2, 2) has four connected components. The special orthogonal
subgroup of O(2, 2) is denoted by

SO(2, 2) = {A ∈ O(2, 2) : detA = 1} .

The subgroup SO(2, 2) has two connected components and the connected com-
ponent to the identity of SO(2, 2) is denoted by SO+(2, 2). In this work we
mainly deal with the group SO+(2, 2). Spin+(2, 2) lives in the Clifford algebra
Cl2,2 = Cl

(
R4, g

)
and it is isomorphic to SU(1, 1)× SU(1, 1) (see [11]).

The covering map λ : Spin+(2, 2) → SO+(2, 2) is a 2 : 1 group homomor-
phism given by λ (g) (x) = g · x · g−1 for any x ∈ R4, g ∈ Spin+(2, 2).

Remark 1. Contrary to the Euclidean and Lorentzian cases the fundamental
group of SO+(2, 2) is not Z2 and Spin+(2, 2) is not simply connected.

One can define a new group which lies in the complex Clifford algebra
Cl2,2 ∼= Cl4 by

Spinc+(2, 2) = Spin+(2, 2)× S1/Z2.

The elements of Spinc+(2, 2) are the equivalence classes [g, z] of pairs (g, z) ∈
Spin+(2, 2) × S1 under the equivalence relation (g, z) ∼ (−g,−z). From the
definitions of Spin+(2, 2) and Spin

c
+(2, 2) the following sequences are exact:

1 → Z2 → Spin+(2, 2)
λ→ SO+(2, 2) → 1,

1 → Z2 → Spinc+(2, 2)
ξ→ SO+(2, 2)× S1 → 1,

where ξ ([g, z]) =
(
λ (g) , z2

)
.

Since the complex Clifford algebra Cl2,2 is isomorphic to the endomorphism
algebra End(C4), there is a natural representation κ : Cl2,2 → End(C4). For
example, we can define κ on the basis elements as follows:



Seiberg-Witten Equations on Pseudo-Riemannian Spinc Manifolds With Neutral
Signature 75

κ(e1) =

(
0 I
−I 0

)
, κ(e2) =

(
0 iσ3
iσ3 0

)

κ(e3) =

(
0 −σ2

−σ2 0

)
, κ(e4) =

(
0 σ1
σ1 0

)
where I2 is 2× 2 unit matrix and

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(1)

are Pauli-spin matrices.
The complex vector space C4 is called the space of spinors and denoted

by ∆2,2. The spinor space ∆2,2 carries a non-degenerate indefinite Hermitian
inner product ⟨ , ⟩∆2,2

which is invariant under the action of Spinc+(2, 2) is
given by

⟨Ψ1,Ψ2⟩∆2,2
= ⟨κ (e1)κ (e2)Ψ1,Ψ2⟩ ,

where ⟨ , ⟩ denotes the positive definite Hermitian inner product on C4 (see
[7]). We can restrict the map κ to Spinc+(2, 2) and we obtain a group repre-
sentation

κ : Spinc+(2, 2) → Aut(∆2,2).

The restricted map κ is called spinor representation of Spinc+(2, 2). The spinor
space ∆2,2 decomposes two parts

∆2,2 = ∆+
2,2 ⊕∆−

2,2,

where ∆±
2,2 are the eigenspaces of f = κ (e1e2e3e4), f

2 is the identity map.

The elements of ∆+
2,2 are called the positive spinors. Since the spinor repre-

sentation of Spinc+(2, 2) preserves these eigenspaces, we obtain the following
representations by restriction

κ± : Spinc+(2, 2) → Aut(∆±
2,2).

The spinor representation κ has the following properties:

Proposition 1.

i) κ(Spin+(2, 2)) ∼= SU(1, 1)× SU(1, 1).

ii) κ+(Spin+(2, 2)) ∼= SU(1, 1)

iii) κ−(Spin+(2, 2)) ∼= SU(1, 1)
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iv) κ(Spinc+(2, 2))
∼= {(A,B) ∈ U(1, 1)× U(1, 1) : det(A) = det(B)}

v) κ+(Spinc+(2, 2)) ⊂ U(1, 1)

vi) κ (v) maps ∆−
2,2 to ∆+

2,2 and ∆+
2,2 to ∆−

2,2 for each v ∈ R4.

vii) κ(v)2 = −g(v, v)I4 for each v ∈ R4, where I4 is 4× 4 identity matrix.

The Lie algebras of the groups Spin+(2, 2) and Spin
c
+(2, 2) are

spin+(2, 2) = {ei · ej ; 1 ≤ i < j ≤ 4}

and
spinc+(2, 2) = spin+(2, 2)⊕ iR,

respectively, where ei · ej is the second order element of the Cl2,2. The deriva-
tive of ξ = λ× l is a Lie algebra isomorphism and given by

ξ∗ (ei · ej , it) = (λ∗ (ei · ej) , l∗ (it)) = (2Eij , 2it) ,

where Eij denotes the basis elements of the Lie algebra so+(2, 2) and

λ : Spinc+(2, 2) → SO+(2, 2), λ ([g, z]) = λ (g)

and l : Spinc+(2, 2) → S1, l([g, z]) = z2 are group homomorphisms.

3 Pseudo-Riemannian Manifolds of Metric Signature (++
−−)

3.1 Existence of Neutral Metric

Let M be a 4−dimensional space and time oriented smooth manifold with the
pseudo-Riemannian metric g of signature (2, 2) (that is of type (+,+,−,−)).
Such a metric is called neutral metric. Existence conditions of neutral metric
on a 4−dimensional differentiable manifold M were given in [11] in detail
form. In the present work we focus on the completely orientiable case, i.e.,
the structure group of the tangent bundle TM is SO+(2, 2). It is pointed out
in [11] that the structure group of M is SO+(2, 2) if and only if it admits a
fields of orientiable tangent 2−planes. Following theorem will be useful for
our discussion on the existence of pseudo-Riemannian spinc−structure.

Theorem 1. Existence of neutral metric on a compact manifoldM with struc-
ture group SO+(2, 2) is equivalent to the existence of a pair (J, J ′) of an almost
complex structure J and an opposite almost complex structure J ′ on the man-
ifold, where J and J ′ are orthogonal with respect to the metric g and they
commutes, that is; JJ ′ = J ′J [11].
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The family of manifolds which have neutral metric is rather large, for
example; K3 surfaces, Enriques surfaces, Kodaria surfaces, Ruled surfaces of
genus g ≥ 1 and see [11] for others.

3.2 Self-Duality

Neutral metric shares some properties of the Riemannian metric. For example,
the Hodge star operator ∗ is an involution on the space of two forms Λ2(M).
Since ∗2 = id, ∗ induces a splitting of Λ2(M) = Λ+ ⊕ Λ−, where Λ+ and Λ−

denote the space of self-dual and anti-self-dual 2−forms

Λ+ =
{
η ∈ Λ2(M) : ∗η = η

}
, Λ− =

{
η ∈ Λ2(M) : ∗η = −η

}
.

The projection of a 2-form η ∈ Λ2(M) onto the subspace Λ+ is called the
self-dual part of η and we denote it by η+, similarly the projection of η onto
the subspace Λ− is called the anti-self-dual part of η and we denote it by
η−. Note that η = η+ + η− and the self-dual and anti-self-dual parts can be
expressed in terms of the Hodge star operator ∗ by the following way:

η+ =
1

2
(η + ∗η) and η− =

1

2
(η − ∗η).

Let {e1, e2, e3, e4} be a local pseudo-orthonormal frame on the open set
U ⊂M and

{
e1, e2, e3, e4

}
be the corresponding dual frame. Then the vectors

f1 = e1 ∧ e2 + e3 ∧ e4, f2 = e1 ∧ e3 + e2 ∧ e4, f3 = e1 ∧ e4 − e2 ∧ e3 form a basis
for self-dual 2−forms, that is

Λ+ = span {f1, f2, f3} .

Similarly the vectors g1 = e1 ∧ e2 − e3 ∧ e4, g2 = e1 ∧ e3 − e2 ∧ e4, g3 =
e1 ∧ e4 + e2 ∧ e3 form a basis for anti-self-dual 2−forms, that is

Λ− = span {g1, g2, g3} .

The componentwise expression of these two parts is given by

η+ =
1

2
[((η12 + η34) f1 + (−η13 − η24)f2 + (−η14 + η23)f3]

η− =
1

2
[((η12 − η34) f1 + (−η13 + η24)f2 + (−η14 − η23)f3] .

Similar to the Riemannian case self-duality and anti-self-duality of a neutral
metric can be defined in terms of the Weyl tensor. Such structures are also
related with the geometry of underlying manifolds (see [4, 8]).
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3.3 Pseudo-Riemannian spinc Structure

The definitions of a pseudo-Riemannian spin and spinc structures on M can
be given similar to the Riemannian cases as follows:

Since the structure group of M is SO+(2, 2), there are an open covering
{Uα}α∈A and transition functions gαβ : Uα ∩ Uβ → SO+(2, 2) for M . If there
exists another collection of transition functions

g̃αβ : Uα ∩ Uβ → Spin+(2, 2)

such that the following diagram commutes

Spin+(2, 2)

λ 2:1

��
Uα ∩ Uβ

g̃αβ

88qqqqqqqqqqq
gαβ

// SO+(2, 2)

that is, λ◦g̃αβ = gαβ and the cocycle condition g̃αβ g̃βγ = g̃αγ on Uα∩Uβ∩Uγ is
satisfied, then M is called a pseudo-Riemannian spin manifold. Then one can
construct a principal Spin+(2, 2)−bundle PSpin+(2,2) on M and a 2 : 1 bundle
map Λ : PSpin+(2,2) → PSO+(2,2) such that the following diagram commutes:

PSpin+(2,2) × Spin+(2, 2)

(Λ,λ)

��

// PSpin+(2,2)

Λ

�� $$I
III

III
III

PSO+(2,2) × SO+(2, 2) // PSO+(2,2)
// M

Similarly pseudo-Riemannian spinc structures on M can be defined by a col-
lection of transition functions. There are an open covering {Uα}α∈A ofM and
transition functions gαβ : Uα ∩Uβ → SO+(2, 2) for M . If there exists another
collection of transition functions

g̃αβ : Uα ∩ Uβ → Spinc+(2, 2)

such that the following diagram commutes

Spinc+(2, 2)

λ

��
Uα ∩ Uβ

g̃αβ

88qqqqqqqqqqq
gαβ

// SO+(2, 2)

that is, λ◦g̃αβ = gαβ and the cocycle condition g̃αβ g̃βγ = g̃αγ on Uα∩Uβ∩Uγ is
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satisfied then M is called a pseudo-Riemannian spinc manifold. Then one can
construct a principal Spinc+(2, 2)−bundle PSpinc

+(2,2) on M and a 2 : 1 bundle
map Λ : PSpinc

+(2,2) → PSO+(2,2) such that the following diagram commutes:

PSpinc
+(2,2) × Spinc+(2, 2)

(Λ,λ)

��

// PSpinc
+(2,2)

Λ

�� $$H
HH

HH
HH

HH

PSO+(2,2) × SO+(2, 2) // PSO+(2,2)
// M

Remark 2. Since Spinc+(2, 2) is isomorphic to the group

H = {(A,B) ∈ U(1, 1)× U(1, 1) : det(A) = det(B)},

one can define spinc structure on M by the existence of transition functions

g̃αβ : Uα ∩ Uβ → H

such that Ad ◦ g̃αβ = gαβ and the cocycle condition g̃αβ g̃βγ = g̃αγ on Uα ∩
Uβ ∩ Uγ is satisfied. The covering map Ad : H → SO+(2, 2) is defined by
Ad(A,B)(V ) = AV B−1 for each (A,B) ∈ H and V ∈ C2 ∼= R4. In the
definition of the map Ad we use the one to one correspondence between the
vectors V = (v1, v2, v3, v4) in R2,2 and the 2 by 2 complex matrices by the
following way

V = (v1, v2, v3, v4) = v1I + v2iσ3 − v3σ2 + v4σ1 =

(
v1 + iv2 v4 + iv3
v4 − iv3 v1 − iv2

)
.

Note that the equality det(V ) = v21 + v22 − v23 − v24 = g(V, V ) holds. From this
equality we obtain g(Ad(A,B)(V ), Ad(A,B)(V )) = det(AV B−1) = det(V ) =
g(V, V ), so Ad(A,B) belongs to the group SO+(2, 2) for each (A,B) ∈ H.

If M has a pseudo-Riemannian spin (spinc) structure, then M is called
pseudo-Riemannian spin (spinc) manifold. It is known that each pseudo-
Riemannian spin structure on M induces a pseudo-Riemannian spinc struc-
ture, hence every pseudo-Riemannian spin manifold is a pseudo-Riemannian
spinc manifold.

Theorem 2. If M is a 4-dimensional compact differentiable manifold with
structure group SO+(2, 2), then M is a pseudo-Riemannian spinc manifold.

Proof. By Theorem 1 there is a g−orthogonal almost complex structure J
on M . Then the structure group of M can be reduced from SO+(2, 2) to
U(1, 1). That is, there are an open covering {Uα}α∈A and transition functions
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gαβ : Uα ∩ Uβ → U(1, 1) for M . The canonical action of U(1, 1) on R2,2 ∼= C2

is given by ordinary matrix product AV for each A ∈ U(1, 1) and V = (v1 +
iv2, v4 − iv3). This action can also be interpreted as follows: Think the vector
V as the following 2 by 2 matrix(

v1 + iv2 ..
v4 − v3 ..

)
whose first column is the components of V and second column may be any-
thing. Multiply A with this matrix, consider the first column of the resulting
matrix. The map j : SU(1, 1) → H by j(A) = (A,B) is an injective group

homomorphism, where B =

(
1 0
0 det(A)

)
.

Define new transition functions g̃αβ : Uα ∩ Uβ → H by g̃αβ = j ◦ gαβ . It
is clear that these functions satisfy cocycle condition. On the other hand, let
x ∈ Uα ∩ Uβ be any point and say A = gαβ(x). We obtain following identity

Ad(j(A))(V ) = A

(
v1 + iv2 v3 + iv4
v4 − v3 v1 + iv2

)(
1 0
0 det(A)

)−1

= A

(
v1 + iv2 ..
v3 − iv4 ..

)
.

It means that the commuting relation Ad ◦ g̃αβ(x) = gαβ(x) holds for each
x ∈ Uα ∩ Uβ . This completes the proof.

For the Riemannian analogy of this theorem and other concepts see [13].

3.4 Connection 1−Form on PSpinc
+(2,2)

If M is a pseudo-Riemannian spinc manifold, then by using the map

l : Spinc+(2, 2) → S1, l([g, z]) = z2,

we can construct an associated principal S1-bundle

PS1 = PSpinc
+(2,2) ×l S1.

Let ∇ be the Levi-Civita covariant derivative associated to g onM . Then it is
known that the Levi-Civita covariant derivative∇ determines an so(2, 2)−valued
connection 1−form ω on the principal bundle PSO+(2,2). The connection
1−form ω can be expressed locally

ωU =
∑
i<j

ωijEij ,

where {e1, e2, e3, e4} is a local orthonormal frame on open set U ⊂ M and
ωij = εig (∇ei, ej). Take an iR−valued connection 1−form A on S1−principal
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bundle PS1 . Now we can define an so(2, 2) ⊕ iR−valued connection 1−form
on the principal bundle PSO+(2,2)×̃PS1 (the fibre product bundle):

ω ×A : T
(
PSO+(2,2)×̃PS1

)
→ so(2, 2)⊕ iR.

This connection can be lift to a connection 1−form ZA in the principal bundle
PSpinc

+(2,2) via the 2−fold covering π : PSpinc
+(2,2) → PSO+(2,2)×̃PS1 and the

following diagram commutes:

T
(
PSpinc

+(2,2)

)
dπ

��

ZA
// Lie(Spinc+(2, 2))

∼= spin(2, 2)⊕ iR

ξ∗

��
T
(
PSO+(2,2)×̃PS1

) ω×A // so(2, 2)⊕ iR

where ξ∗ : Lie(Spinc+(2, 2)) → so(2, 2) ⊕ iR is the differential of the 2−fold
covering
ξ = (λ, l) : Spinc+(2, 2) → SO+(2, 2)× S1.

4 Spinor bundle

Let (PSpinc
+(2,2),Λ) be a pseudo-Riemannian spinc structure on M . If we

consider the Spinc+(2, 2) representation

κ : Spinc+(2, 2) → Aut(∆2,2)

then we can construct a new associated complex vector bundle

S = PSpinc
+(2,2) ×κ ∆2,2.

This complex vector bundle is called spinor bundle for a given spinc structure
on M and sections of S are called spinor fields. One can obtain a covariant
derivative operator ∇A on S by using the connection 1−form ZA and a local
expression of ∇A is

∇AΨ = dΨ+
1

2

∑
i<j

εiεjwijκ (eiej)Ψ +
1

2
AΨ,

where εi = g (ei, ei) and Ψ is a local section of S over the open set U ⊂ M
(see [5, 7]).
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The composite map τ ◦ λ : Spinc+(2, 2) → Aut
(
R4
)
is a representation of

Spinc+(2, 2) on R4 and gives

TM ∼= PSpinc
+(2,2) ×τ◦λ R4,

where τ : SO+(2, 2) → Aut(R4) is the canonical representation. Such interpre-
tations of tangent bundle enable us to product the elements of spinor bundle
with tangent vectors by the formula

[p, v] · [p, ψ] = [p, κ (v)ψ]

where p ∈ PSpinc
+(2,2), v ∈ R4, ψ ∈ C4. This product is bilinear and we extend

it to the tensor product space

TM ⊗ S → S

[p, v]⊗ [p, ψ] 7→ [p, κ (v)ψ] ,

and denote it as a map κ : TM ⊗ S → S and call it Clifford multiplication.
Also we obtain a bundle map

κ : TM → End(S).

Some authors call the bundle map κ as the spinc structure ([15]). Generally
the Clifford multiplication κ (X) (Ψ) is denoted by X · Ψ. One can endow
S with an indefinite Hermitian inner product by using the inner product on
∆2,2 and denote it again by ⟨ , ⟩∆2,2

. The covariant derivative operator ∇A

is compatible with ⟨ , ⟩∆2,2
and Clifford multiplication in the following sense

(see [7]):

Proposition 2. For all X,Y ∈ Γ (TM) and Ψ,Ψ1,Ψ2 ∈ Γ (S) ,

1. ⟨X ·Ψ1,Ψ2⟩∆2,2
= (−1) ⟨Ψ1, X ·Ψ2⟩∆2,2

,

2. ∇A
Y (X ·Ψ) = X · ∇A

Y (Ψ) + (∇YX) ·Ψ,

3. X ⟨Ψ1,Ψ2⟩∆2,2
=
⟨
∇A
XΨ1,Ψ2

⟩
∆2,2

+
⟨
Ψ1,∇A

XΨ2

⟩
∆2,2

.

5 Seiberg-Witten Like Equations on pseudo-Riemannian
spinc manifolds

The spinor bundle S splits into the sum of subbundles S+, S−:

S = S+ ⊕ S−, S± = PSpinc
+(2,2) ×κ± ∆±

2,2.
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The subbundles S± can be endowed with indefinite Hermitian inner prod-
uct by Proposition 2. The indefinite Hermitian inner product on

S+ = PSpinc
+(2,2) ×κ+ ∆+

2,2

is crucial for the interpretation of second Seiberg-Witten equation onM . Since
κ+ takes value in U(1, 1), we can endow S+ with an indefinite Hermitian inner
product of type (1, 1) and we denote it by <,>1,1.

Moreover the covariant derivative operator ∇A on S preserves the sub-
bundles S+ and S−. So ∇A induces covariant derivative operators on these
subbundles and we denote both of them with same symbol ∇A.

5.1 The Dirac Equation

Now we want to define a Dirac operator on S. Note that the covariant deriva-
tive operator ∇A can be thought as a linear map

∇A : Γ (S) → Γ (T ∗M ⊗ S)

satisfying the Leibnitz rule:

∇A (fΨ) = (df)⊗Ψ+ f∇AΨ.

Definition 1. The composite map

DA = κ ◦ ∇A : Γ (S)
∇A

→ Γ (T ∗M ⊗ S)
g∼= Γ (TM ⊗ S)

κ→ Γ (S)

is called Dirac operator on pseudo-Riemannian spinc manifold M .

In a space and time oriented local orthonormal frame {e1, e2, e3, e4} , the
covariant derivative operator ∇A can be written as

∇AΨ =
4∑

i=1

εie
∗
i ⊗∇A

eiΨ.

Then a local expression of DA is

DAΨ =
4∑

i=1

εiei · ∇A
eiΨ.

Obviously the operator DA is first order differential operator. The Dirac oper-
ator splits into two pieces DA = D+

A ⊕D−
A with respect to the decomposition

S = S+ ⊕ S−, where D+
A : Γ(S+) → Γ(S−) and D−

A : Γ(S−) → Γ(S+).
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We are ready to express the first Seiberg-Witten equation, the Dirac equa-
tion, on a pseudo-Riemannian manifold with neutral metric. The first Seiberg-
Witten equation associated to the pair (A,Ψ) is

D+
AΨ = 0 (2)

where A is an iR−valued connection 1−form on the principal bundle PS1 and
Ψ is a positive spinor field on M , i.e. a section of S+.

5.2 The Curvature Equation

We need some other concepts for the second Seiberg-Witten equation. We
consider the situation in local form firstly. We can define an action of the
space of 2−forms Λ2(R2,2)∗ on the spinor space S. Let C2 be the set of the
second order elements of the Clifford algebra Cl2,2 and consider the linear map

Λ2(R2,2)∗ → C2

η =
∑
i<j

ηije
i ∧ ej 7→

∑
i<j

εiεjηijeiej

where εi = g(ei, ei). If we compose this map with the spinor representation κ,
then we obtain a map ρ : Λ2(R2,2)∗ → End(C4) by

ρ(
∑
i<j

ηije
i ∧ ej) =

∑
i<j

εiεjηijκ(ei)κ(ej).

The half-spinor spaces △±
2,2 are invariant under ρ(η) for every η ∈ Λ2(R2,2)∗,

so we obtain the following maps by restriction

ρ±(η) = ρ(η)|S± .

Now we calculate the explicit forms of the maps ρ(η) and ρ(η)± for arbitrary
2-form η ∈ Λ2(R2,2)∗.

ρ(η) = ρ(
∑
i<j

ηije
i ∧ ej)

= η12κ(e1)κ(e2)− η13κ(e1)κ(e3)− η14κ(e1)κ(e4)− η23κ(e2)κ(e3)
−η24κ(e2)κ(e4) + η34κ(e3)κ(e4

The left upper block of ρ(η) represents ρ+(η), so it is given by

ρ+(η) = (η12 + η34)(iσ3) + (−η13 − η24)(−σ2) + (−η14 + η23)σ1

=

 i(η12 + η34) −η14 + η23 − i(η13 + η24)
−η14 + η23 + i(η13 + η24) −i(η12 + η34)

 ,
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similarly the right lower block of ρ(η) represents ρ−(η), so it is given by

ρ−(η) = (−η12 + η34)(iσ3) + (η13 − η24)(−σ2) + (η14 + η23)σ1

=

(
i(−η12 + η34) η14 + η23 + i(η13 − η24)

η14 + η23 − i(η13 − η24) −i(−η12 + η34)

)
.

Proposition 3. Let η ∈ Λ2(R2,2)∗ be a 2-form, then
i) η is anti-self-dual if and only if ρ+(η) = 0.
ii) η is self-dual if and only if ρ−(η) = 0.
iii) The space of self-dual 2−forms Λ+ is isomorphic to su(1, 1)
iv)The space of complex valued self-dual 2−forms Λ+ ⊗C is isomorphic to

End0(△+
2,2)

Since M is a spinc manifold, globalizing above concepts is possible. We
pointed out the global map, a bundle map, κ : TM → End(S) in Section 4,
similarly we can define bundle map

ρ : Λ2(M) → End(S)

and complexified map

ρ : Λ2(M)⊗ C → End(S).

The restriction of this map to the complex valued self-dual 2−forms gives the
following bundle map

ρ+ : Λ+ ⊗ C → End0(S
+)

where End0(S) denotes the space of traceless endomorphisms of the bundle
S+. Now we can write down the second Seiberg-Witten equation. Let A be
an iR−valued connection 1−form on the S1 principal bundle PS1 and FA be
its curvature 2−form, which is iR valued 2−form on PS1 . It is known that
such curvature 2−forms are in one to one correspondence with the iR−valued
2−forms on M (see [5]). We denote the corresponding 2−form on M with
the same symbol FA. Let F+

A be the self-dual part of FA, then ρ
+(F+

A ) is a
traceless endomorphism of the bundle S+. On the other hand any positive
spinor field Ψ determines an endomorphism ΨΨ∗ of S+ by the formula

(ΨΨ∗)(Φ) =< Ψ,Φ >1,1 Ψ

where <,>1,1 is indefinite Hermitian inner product on S+ and Φ is a spinor
field on S+. The traceless part of ΨΨ∗ is denoted by (ΨΨ∗)0. Then the second
Seiberg-Witten equation for the pair (A,Ψ) is

ρ+(F+
A ) = (ΨΨ∗)0. (3)
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5.3 Seiberg-Witten Equations on R2,2

Now we write down Seiberg-Witten equations on 4−dimensional flat space
with neutral metric. Explicit interpretations of original Seiberg-Witten equa-
tions on flat Euclidean flat space R4 and some properties of them can be found
in [14] and [15]). For the explicit interpretations of these equations in the neu-
tral case we use the spinor representation κ given in Section 2. In this case
S = R2,2 ×△2,2, S

+ = R2,2 ×△+
2,2 and S− = R2,2 ×△−

2,2. The sections of the
subbundles S± can be expressed as follows

Γ(S+) =
{
(ψ1, ψ2, 0, 0) | ψ1, ψ2 ∈ C∞ (R2,2,C

)}
,

Γ(S−) =
{
(0, 0, ψ3, ψ4) | ψ3, ψ4 ∈ C∞ (R2,2,C

)}
.

Since PS1 = R2,2 × S1, the iR−valued connection 1−form on PS1 is given by

A =

4∑
j=1

Ajdxj ∈ Ω1
(
R2,2, iR

)
where Aj : R2,2−→iR are smooth maps. The associated spinc connection
∇ = ∇A on R2,2 is given by

∇jΨ =
∂Ψ

∂xj
+AjΨ,

where Ψ : R2,2 −→ C2 . Then the Dirac equation in flat case is given by

DAΨ = e1 · ∇e1Ψ+ e2 · ∇e2Ψ− e3 · ∇e3Ψ− e4 · ∇e4Ψ

=

4∑
i=1

εiκ(ei)(∇eiΨ)

=
4∑
i=1

κ(ei)

(
∂ψ1

∂xi
+Aiψ1

∂ψ2

∂xi
+Aiψ2

)

=

(
∂ψ1

∂x1
+A1ψ1 + i(∂ψ2

∂x2
+A2ψ2) + i(∂ψ2

∂x3
+A3ψ2) +

∂ψ2

∂x4
+A4ψ2

∂ψ2

∂x1
+A1ψ2 − i(∂ψ1

∂x2
+A2ψ1)− i(∂ψ1

∂x3
+A3ψ1) +

∂ψ1

∂x4
+A4ψ1

)
=

(
0
0

)
.

The explicit form of Dirac equation:

∂ψ1

∂x1
+A1ψ1 + i(

∂ψ2

∂x2
+A2ψ2) + i(

∂ψ2

∂x3
+A3ψ2) +

∂ψ2

∂x4
+A4ψ2 = 0

∂ψ2

∂x1
+A1ψ2 − i(

∂ψ1

∂x2
+A2ψ1)− i(

∂ψ1

∂x3
+A3ψ1) +

∂ψ1

∂x4
+A4ψ1 = 0.
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The curvature 2-form FA is given by

FA = dA =
∑
i<j

Fije
i ∧ ej ∈ Ω2

(
R2,2, iR

)
,

where Fij =
∂Aj

∂xi
− ∂Ai

∂xj
for i, j = 1, ..., 4 .

The matrix form of ΨΨ∗ with respect to the frame E1 = (1, 0), E2 = (0, 1)
is given by

(ΨΨ∗) =

(
|ψ1|2 −ψ1ψ2

ψ2ψ1 −|ψ2|2
)
.

The traceless part of ΨΨ∗ is

(ΨΨ∗)0 =

(
|ψ1|2 −ψ1ψ2

ψ2ψ1 −|ψ2|2
)
− 1

2 |ψ|
2

(
1 0
0 1

)
=

(
1
2 (|ψ1|2 + |ψ2|2) −ψ1ψ2

ψ2ψ1 − 1
2 (|ψ1|2 + |ψ2|2)

)
Now we can interpret the curvature equation by ρ+(F+) = (ΨΨ∗)0. Then

we obtain following set of equations

F12 + F34 = − i
2 (|ψ1|2 + |ψ2|2)

F23 − F14 = 1
2 (ψ1ψ2 − ψ1ψ2)

F13 + F34 = − i
2 (ψ1ψ2 + ψ1ψ2)

(4)

which are consistent and similar to the classical Seiberg-Witten equations on
R4 with Euclidean metric.
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