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Seiberg-Witten Equations on
Pseudo-Riemannian Spin® Manifolds With
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Abstract

Pseudo-Riemannian spin® manifolds were introduced by Ikemakhen
in [7]. In the present work we consider pseudo-Riemannian 4—manifolds
with neutral signature whose structure groups are SO4(2,2). We prove
that such manifolds have pseudo-Riemannian spin® structure. We con-
struct spinor bundle S and half-spinor bundles ST and S~ on these
manifolds. For the first Seiberg-Witten equation we define Dirac opera-
tor on these bundles. Due to the neutral metric self-duality of a 2—form
is meaningful and it enables us to write down second Seiberg-Witten
equation. Lastly we write down the explicit forms of these equations on
4—dimensional flat space.

1 Introduction

Spinors are geometric objects living around manifolds. They are important
for the investigation of manifolds (see [6, 9]). Seiberg-Witten Monopole equa-~
tions were defined by E. Witten on 4—dimensional Riemannian manifolds by
using the spinors [16]. The solution space of these equations provides new
invariants for 4—manifolds, namely Seiberg-Witten invariants ([1, 12, 13]).
Similar equations were written down on 4—dimensional Lorentzian manifolds
[3]. Pseudo-Riemannian 4—manifolds with neutral signature are being stud-
ied by various authors from different point of view (see [2, 4, 8, 10, 11]).
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Pseudo-Riemannian spin® spinors are introduced by Tkemakhen in [7] recently.
The aim of this article is to write down similar equations to Seiberg-Witten
equations on 4—dimensional Pseudo-Riemannian spin® manifolds with neutral
signature.

2 Some Preliminaries

On R*, we consider the pseudo-Riemannian metric g (z,y) = z1y1 + Toys —
T3y3 — Taya, Where x = (z1,29,23,24), ¥ = (Y1,¥2,93,9s) € R*. When this
metric considered on the 4-dimensional space is denoted by R%2. The isometry
group of this space is denoted by O(2,2), that is

0(2,2) ={A€GL(4,R): g(A(z),A(y)) = g(z,y), where z,y € R**} .

The group O(2,2) has four connected components. The special orthogonal
subgroup of O(2,2) is denoted by

SO(2,2) = {A € 0(2,2) : det A = 1}.

The subgroup SO(2, 2) has two connected components and the connected com-
ponent to the identity of SO(2,2) is denoted by SO, (2,2). In this work we
mainly deal with the group SO, (2,2). Spiny(2,2) lives in the Clifford algebra
Cly 2 = Cl(R*, g) and it is isomorphic to SU(1,1) x SU(1,1) (see [11]).

The covering map A : Spins(2,2) — SO4+(2,2) is a 2 : 1 group homomor-
phism given by A (g) (z) =g-x-g~! for any x € R%, g € Spin, (2,2).

Remark 1. Contrary to the Euclidean and Lorentzian cases the fundamental
group of SO (2,2) is not Zs and Spin(2,2) is not simply connected.

One can define a new group which lies in the complex Clifford algebra
(Clz’g = (Cl4 by
Spint. (2,2) = Spini(2,2) x S /Z,.

The elements of Sping (2,2) are the equivalence classes [g, z| of pairs (g,2) €
Spin, (2,2) x S* under the equivalence relation (g,z) ~ (—g, —2). From the
definitions of Spin(2,2) and SpinS (2,2) the following sequences are exact:

1 Zs — Spini(2,2) D S0,(2,2) — 1,

1= Zy — Spinf (2,2) 5 S0,(2,2) x S* = 1,

where & ([g, 2]) = ()\ (9), z2) .

Since the complex Clifford algebra Cls 5 is isomorphic to the endomorphism
algebra End(C*), there is a natural representation r : Cla o — End(C*). For
example, we can define x on the basis elements as follows:
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K(e1)

(58 e (%)

de) = (0, 0) s = (o0 %)

where I5 is 2 X 2 unit matrix and

(1) () (L) w

are Pauli-spin matrices.

The complex vector space C* is called the space of spinors and denoted
by Ag 2. The spinor space A 5 carries a non-degenerate indefinite Hermitian
inner product (, ), which is invariant under the action of Sping (2,2) is
given by

(W1, Wa)p,, = (k(e1) K (e2) V1, W),

where (, ) denotes the positive definite Hermitian inner product on C* (see
[7]). We can restrict the map x to Spin (2,2) and we obtain a group repre-
sentation

K Sping (2,2) — Aut(Az ).

The restricted map & is called spinor representation of Spin€ (2,2). The spinor
space As o decomposes two parts

Dpp=AF,BAS,,

where A§f2 are the eigenspaces of f = k (ejezezes), f2 is the identity map.
The elements of A;Q are called the positive spinors. Since the spinor repre-
sentation of Spin (2,2) preserves these eigenspaces, we obtain the following
representations by restriction

K Spint (2,2) — Aut(AQi,Q).
The spinor representation x has the following properties:
Proposition 1.
i) k(Spiny(2,2)) = SU(1,1) x SU(1,1).
ii) kT (Spiny(2,2)) = SU(1,1)
iii) Kk~ (Spiny(2,2)) =2 SU(1,1)
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iv) K(SpinS (2,2)) = {(A,B) € U(1,1) x U(1,1) : det(A) = det(B)}
v) KT (Sping.(2,2)) C U(1,1)

vi) K (v) maps Ay, to AT, and AJ, to A, for each v € R*.

vii) k(v)? = —g(v,v)Iy for each v € R*, where I, is 4 x 4 identity matriz.
The Lie algebras of the groups Spin(2,2) and Spin$ (2,2) are

sping(2,2) ={e;-e; ;1 <i<j<4}
and
spin§ (2,2) = spiny(2,2) @ iR,

respectively, where e; - e; is the second order element of the Cly 5. The deriva-
tive of £ = A x [ is a Lie algebra isomorphism and given by

Ea(eie,it) = (A (e - €5) , L (it)) = (2E4, 2it) ,
where E;; denotes the basis elements of the Lie algebra soy(2,2) and
X: Spint (2,2) = $04(2,2), A(lg.2)) = A(9)

and [ : Spin% (2,2) — S*, ([g,2]) = 2? are group homomorphisms.

3 Pseudo-Riemannian Manifolds of Metric Signature (++
3.1 Existence of Neutral Metric

Let M be a 4—dimensional space and time oriented smooth manifold with the
pseudo-Riemannian metric g of signature (2,2) (that is of type (+,+,—, —)).
Such a metric is called neutral metric. Existence conditions of neutral metric
on a 4—dimensional differentiable manifold M were given in [11] in detail
form. In the present work we focus on the completely orientiable case, i.e.,
the structure group of the tangent bundle TM is SO (2,2). It is pointed out
in [11] that the structure group of M is SO4(2,2) if and only if it admits a
fields of orientiable tangent 2—planes. Following theorem will be useful for
our discussion on the existence of pseudo-Riemannian spin®—structure.

Theorem 1. Ezistence of neutral metric on a compact manifold M with struc-
ture group SO (2,2) is equivalent to the existence of a pair (J,J') of an almost
complex structure J and an opposite almost complex structure J' on the man-
ifold, where J and J' are orthogonal with respect to the metric g and they
commutes, that is; JJ' = J'J [11].
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The family of manifolds which have neutral metric is rather large, for
example; K3 surfaces, Enriques surfaces, Kodaria surfaces, Ruled surfaces of
genus g > 1 and see [11] for others.

3.2 Self-Duality

Neutral metric shares some properties of the Riemannian metric. For example,
the Hodge star operator * is an involution on the space of two forms A?(M).
Since *2 = id, * induces a splitting of A2(M) = At & A~, where AT and A~
denote the space of self-dual and anti-self-dual 2—forms

A+:{77€A2(M):*77:77}a A_:{UEAQ(M):*n:—n}.

The projection of a 2-form 7 € A?(M) onto the subspace A* is called the
self-dual part of 7 and we denote it by i, similarly the projection of 7 onto
the subspace A~ is called the anti-self-dual part of n and we denote it by
n~. Note that n = ™ + 7~ and the self-dual and anti-self-dual parts can be
expressed in terms of the Hodge star operator x by the following way:

1 1
n+:§(77+*77) and 1~ = 5 (1 = #1).

Let {e1,ea,€e3,e4} be a local pseudo-orthonormal frame on the open set
U C M and {el, e?, e?, 64} be the corresponding dual frame. Then the vectors
fi=etne2+e3net, fo=elned+e?net, f3 =el Ae* —e?2 Ae? form a basis
for self-dual 2—forms, that is

A+ = Span{f17f27f3}'

Similarly the vectors g3 = e! Ae2 —e3 ANet, go = el ANed —e2 Net, g3 =
el Aet +e? Ae? form a basis for anti-self-dual 2—forms, that is

A™ = span{g1, g2, 95} -
The componentwise expression of these two parts is given by

+:

n [((m2 4+ n34) f1 + (=013 — 124) f2 + (=014 + 123) f3]

’[7 =

= ol

5 [((m2 — m34) f1 + (=3 +n24) f2 + (=114 — 123) f3] .

Similar to the Riemannian case self-duality and anti-self-duality of a neutral
metric can be defined in terms of the Weyl tensor. Such structures are also
related with the geometry of underlying manifolds (see [4, 8]).
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3.3 Pseudo-Riemannian spin® Structure

The definitions of a pseudo-Riemannian spin and spin® structures on M can
be given similar to the Riemannian cases as follows:

Since the structure group of M is SO, (2,2), there are an open covering
{Us}aea and transition functions gns : U, N Ug — SO4(2,2) for M. If there
exists another collection of transition functions

Jap : Ua NUg — Spini(2,2)
such that the following diagram commutes

Spin(2,2)

gaﬁ
)\lQ:l

that is, Aogag = gap and the cocycle condition gnggsy = gay o0 UnNUBNU, is
satisfied, then M is called a pseudo-Riemannian spin manifold. Then one can
construct a principal Spin, (2,2)—bundle Pgpip, (2,2) on M and a 2 : 1 bundle
map A : Pspin, (2,2) — Pso, (2,2) such that the following diagram commutes:

Pspin, (2,2) X Spin(2,2) — Pspin. (2,2)

SIS

Pso, (2,2) X 8O4(2,2) —— Pso, (22) —> M

Similarly pseudo-Riemannian spin® structures on M can be defined by a col-
lection of transition functions. There are an open covering {Uq }aca of M and
transition functions gag : Uo NUg — SO4(2,2) for M. If there exists another
collection of transition functions

Gap : Ua NUg = Spinf (2,2)
such that the following diagram commutes
Spin (2,2)

=)

that is, Aogag = gap and the cocycle condition gaggsy = Gay on UaNUgNU, is
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satisfied then M is called a pseudo-Riemannian spin® manifold. Then one can
construct a principal Spin€ (2,2)—bundle Pspin:_(lg) on M and a 2 : 1 bundle
map A : PSm‘ni(2,2) — Pso, (2,2) such that the following diagram commutes:

PSpini(Q,Z) X Spmi@a 2) — PSpinﬁr(Z,Z)

<A,A>i lA \

Pso_ (2.2) X 804(2,2) —— Pso, (22 —> M
Remark 2. Since Spin€ (2,2) is isomorphic to the group
H={(A,B)eU(1,1) x U(1,1) : det(A) = det(B)},
one can define spin® structure on M by the existence of transition functions
gap : UaNUg = H

such that Ad o gag = gag and the cocycle condition Gaggsy = Gay 0on Uy N
Us NU, is satisfied. The covering map Ad : H — SO,(2,2) is defined by
Ad(A,B)(V) = AVB™! for each (A,B) € H and V € C?> = R*. In the
definition of the map Ad we use the one to one correspondence between the
vectors V. = (v1,v2,v3,v4) in R*2 and the 2 by 2 complex matrices by the
following way

_ i . B V1 4+ tve  vg + U3
V = (v1,v2,v3,v4) = v1] + v2io3 — v309 + V401 = ( Ve — s UL — g ) .
Note that the equality det(V) = v 4+ v3 — v3 —v3 = g(V, V) holds. From this
equality we obtain g(Ad(A, B)(V), Ad(A, B)(V)) = det(AVB™!) = det(V) =
g(V, V), so Ad(A, B) belongs to the group SO4(2,2) for each (A,B) € H.

If M has a pseudo-Riemannian spin (spin®) structure, then M is called
pseudo-Riemannian spin (spin®) manifold. It is known that each pseudo-
Riemannian spin structure on M induces a pseudo-Riemannian spin® struc-
ture, hence every pseudo-Riemannian spin manifold is a pseudo-Riemannian
spin® manifold.

Theorem 2. If M is a 4-dimensional compact differentiable manifold with
structure group SO4(2,2), then M is a pseudo-Riemannian spin® manifold.

Proof. By Theorem 1 there is a g—orthogonal almost complex structure J
on M. Then the structure group of M can be reduced from SO4(2,2) to
U(1,1). That is, there are an open covering {Uy, }oc4 and transition functions
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Jap : Ua MUz — U(1,1) for M. The canonical action of U(1,1) on R*? = C?
is given by ordinary matrix product AV for each A € U(1,1) and V = (vy +
ivg,v4 — v3). This action can also be interpreted as follows: Think the vector
V' as the following 2 by 2 matrix

v+ vy .
Vg4 — V3 .

whose first column is the components of V' and second column may be any-
thing. Multiply A with this matrix, consider the first column of the resulting
matrix. The map j : SU(1,1) — H by j(A) = (4, B) is an injective group
1 0

0 det(A) )’

Define new transition functions gog : Uo NUg — H by gag = j 0 gag. It
is clear that these functions satisfy cocycle condition. On the other hand, let
x € Uy, NUg be any point and say A = g,5(x). We obtain following identity

Ad(j(A))(V):A< v 4 ive U3+ vy > <(1) det(zA) >_1:A( vy + v

homomorphism, where B =

Vg4 — V3 V1 + U V3 — 1U4

It means that the commuting relation Ad o gag(x) = gas(z) holds for each
x € Uy NUg. This completes the proof. O

For the Riemannian analogy of this theorem and other concepts see [13].

3.4 Connection 1-Form on ngmgr(g,g)
If M is a pseudo-Riemannian spin® manifold, then by using the map
: Spin%.(2,2) = ST, U([g, 2]) = 22,
we can construct an associated principal S'-bundle
Pg1 = Pgpine (2,2) X1 St

Let V be the Levi-Civita covariant derivative associated to g on M. Then it is
known that the Levi-Civita covariant derivative V determines an so(2, 2)—valued
connection 1—form w on the principal bundle Pso, (22)- The connection
1—form w can be expressed locally

wy =Y wijEij,
i<j

where {e1,ea,e3,e4} is a local orthonormal frame on open set U C M and
wij = €ig (Ve;, e;). Take an iR—valued connection 1—form A on S'—principal
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bundle Pgi. Now we can define an s0(2,2) @ iR—valued connection 1—form
on the principal bundle Pgo, (2,2)% Ps1 (the fibre product bundle):

wx A: T (Pso, (22)%Ps1) = s0(2,2) @ iR.
This connection can be lift to a connection 1—form Z4 in the principal bundle

Pspmgr(gg) via the 2—fold covering  : Pspmgr(gg) — PSO+(2,2)§P51 and the
following diagram commutes:

A
T (Pspmi(g,g)) — 27 Lie(Spin<.(2,2)) = spin(2,2) & iR

dﬂl Ex

T (Pso, (2,2)% Ps1) 50(2,2) @ iR

where &, : Lie(Spin(2,2)) — s0(2,2) @ iR is the differential of the 2—fold
covering
&= (\1): Spin§.(2,2) = SO4(2,2) x S*.

4 Spinor bundle

Let (Pspini(2’2),A) be a pseudo-Riemannian spin® structure on M. If we
consider the Sping (2, 2) representation

K Sping (2,2) = Aut(As)
then we can construct a new associated complex vector bundle
S = Pspin (2,2) X D22

This complex vector bundle is called spinor bundle for a given spin® structure
on M and sections of S are called spinor fields. One can obtain a covariant
derivative operator V4 on S by using the connection 1—form Z4 and a local
expression of V4 is

1 1
VA\II =dV¥ + 5 E Ei€j Wi K (eiej) U+ §A\I/,
1<J

where g, = g (e;,e;) and VU is a local section of S over the open set U C M
(see [5, 7]).
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The composite map 7o A : Sping (2,2) — Aut (R4) is a representation of
Spin$ (2,2) on R* and gives

TM = PSpinj'r(2,2) XroX R4a

where 7 : SO (2,2) — Aut(R?*) is the canonical representation. Such interpre-
tations of tangent bundle enable us to product the elements of spinor bundle
with tangent vectors by the formula

[p, 0] - [p, ¥] = [p, s (v) ]

where p € PSpinﬁr(2,2)7 v € R*, ¢ € C*. This product is bilinear and we extend
it to the tensor product space

TM®S — S
[p,v]®@[p,d] = [p,r(v)Y],

and denote it as a map k : TM ® S — S and call it Clifford multiplication.
Also we obtain a bundle map

k:TM — End(S).

Some authors call the bundle map « as the spin® structure ([15]). Generally
the Clifford multiplication  (X) (¥) is denoted by X - ¥. One can endow
S with an indefinite Hermitian inner product by using the inner product on
Az and denote it again by (, )5, . The covariant derivative operator vA
is compatible with ( , ) - and Clifford multiplication in the following sense

(see [7)):
Proposition 2. For all X, Y € T'(TM) and ¥, ¥, ¥y € T'(S5),
Lo(X Wy, Wa)y, = (1) (U1, X W)y,
2.V (X-¥) =X -V$(¥) + (VyX) ¥,
5 X (U1, W)y, , = (VR Ua) o+ (01, VD),
5 Seiberg-Witten Like Equations on pseudo-Riemannian
spin® manifolds
The spinor bundle S splits into the sum of subbundles S+, S~:

S=S5tes, St= PSpini(Q,Q) XjeE Aét,?
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The subbundles S* can be endowed with indefinite Hermitian inner prod-
uct by Proposition 2. The indefinite Hermitian inner product on

+_ +
ST = Psping (2.2) Xt Do o

is crucial for the interpretation of second Seiberg-Witten equation on M. Since
kT takes value in U(1,1), we can endow ST with an indefinite Hermitian inner
product of type (1,1) and we denote it by <, > ;.

Moreover the covariant derivative operator V4 on S preserves the sub-
bundles ST and S~—. So V4 induces covariant derivative operators on these
subbundles and we denote both of them with same symbol V4.

5.1 The Dirac Equation

Now we want to define a Dirac operator on S. Note that the covariant deriva-
tive operator V4 can be thought as a linear map

VAT (S) =T (T*"M ®S)
satisfying the Leibnitz rule:
VA(fO) = (df) @ ¥ + fVAD.

Definition 1. The composite map

A g K
Di=koVA:T(S) LT (T"M®S) 2T (TM ® S) 5T (S5)
is called Dirac operator on pseudo-Riemannian spin® manifold M.

In a space and time oriented local orthonormal frame {eq, ez, e3,e4}, the
covariant derivative operator V4 can be written as

4
VAT = “gie; @ VAT,

i=1

Then a local expression of D4 is

4
DA‘I/ = Zeiei . Vé‘lf

i=1

Obviously the operator D 4 is first order differential operator. The Dirac oper-
ator splits into two pieces Dy = DX @ D, with respect to the decomposition
S=58%® S, where D} : T(St) - T'(S7) and D : T(S7) — I'(S+).
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We are ready to express the first Seiberg-Witten equation, the Dirac equa-
tion, on a pseudo-Riemannian manifold with neutral metric. The first Seiberg-
Witten equation associated to the pair (A, ¥) is

Diw =0 (2)
where A is an iR—valued connection 1—form on the principal bundle Pg: and
V¥ is a positive spinor field on M, i.e. a section of ST.

5.2 The Curvature Equation

We need some other concepts for the second Seiberg-Witten equation. We
consider the situation in local form firstly. We can define an action of the
space of 2—forms A?(R?2)* on the spinor space S. Let Co be the set of the
second order elements of the Clifford algebra Cl3 5 and consider the linear map

ANR22) G
n= Zm-jel ANel — Z €i€MNij€i€5
1<j 1<j

where €; = g(e;, ;). If we compose this map with the spinor representation ,
then we obtain a map p : A2(R*?)* — End(C*) by

p(z nijet Nel) = Zeisjmjn(ei)n(ej).
1<j 1<j
The half-spinor spaces Aétg are invariant under p(n) for every n € A%2(R%2)*,
so we obtain the following maps by restriction

pE(n) = p(n)|s=.

Now we calculate the explicit forms of the maps p(1)) and p(n)* for arbitrary
2-form 7 € A%(R%2)*.

p(n) = P(;_m‘jeiA@j)

maki(e1)r(e2) — mak(er)r(es) — nar(er)r(es) — nazk(ea)r(es)
—naak(e2)k(eq) + n3ar(es)k(eq

The left upper block of p(n) represents p*(n), so it is given by
pT(n) = (m2 +n34)(i03) + (=13 — 124)(—02) + (=114 + 723) 01

i(ma2 + 134) —N1a + N2z — (M3 + N24)
= —ma+ns +i(ms+n24) —i(ma2 + n34) )
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similarly the right lower block of p(n) represents p~(n), so it is given by

p~(n) = (=ma2 +n34)(i03) + (M3 — N24)(—02) + (14 + M23)01

_ i(—m2 + 134) Ma + M23 +i(Mm3 — 124)
Ma + 123 — (M3 — N24) (=112 + 734) '

Proposition 3. Let n € A2(R??)* be a 2-form, then

i)  is anti-self-dual if and only if p™(n) = 0.

it) m is self-dual if and only if p~(n) = 0.

iii) The space of self-dual 2—forms AT is isomorphic to su(1,1)

iv) The space of complez valued self-dual 2—forms AT @ C is isomorphic to
E’ndo(Aiz)

Since M is a spin® manifold, globalizing above concepts is possible. We
pointed out the global map, a bundle map, x : TM — End(S) in Section 4,
similarly we can define bundle map

p: A*(M) — End(S)
and complexified map
p: A*(M)®C — End(S).

The restriction of this map to the complex valued self-dual 2—forms gives the
following bundle map

pt AT ®C — Endy(ST)

where Endy(S) denotes the space of traceless endomorphisms of the bundle
S*. Now we can write down the second Seiberg-Witten equation. Let A be
an iR—valued connection 1—form on the S principal bundle Pg: and F4 be
its curvature 2—form, which is ‘R valued 2—form on Pg:. It is known that
such curvature 2—forms are in one to one correspondence with the iR—valued
2—forms on M (see [5]). We denote the corresponding 2—form on M with
the same symbol Fj. Let F{ be the self-dual part of Fa, then p*(F}) is a
traceless endomorphism of the bundle ST. On the other hand any positive
spinor field ¥ determines an endomorphism ¥W¥* of S* by the formula

(DT (D) =< U, & >, U

where <, > is indefinite Hermitian inner product on S* and @ is a spinor
field on ST. The traceless part of ¥W* is denoted by (P¥*)y. Then the second
Seiberg-Witten equation for the pair (A, ¥) is

pr(FR) = (T ). (3)
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5.3 Seiberg-Witten Equations on R??2

Now we write down Seiberg-Witten equations on 4—dimensional flat space
with neutral metric. Explicit interpretations of original Seiberg-Witten equa-
tions on flat Euclidean flat space R* and some properties of them can be found
in [14] and [15]). For the explicit interpretations of these equations in the neu-
tral case we use the spinor representation x given in Section 2. In this case
S=R>*2x Ny, ST =R*? x A, and S~ = R*»? x A;,. The sections of the
subbundles S £ can be expressed as follows

L(S*) = {(¥1,42,0,0) | d1,¢2 € CF (R*?,C)},
L(S7) = {(0,0,9s,94) | ¥3,¢4 € C™ (R**,C)} .

Since Pg1 = R%*2 x S', the iR—valued connection 1—form on Pg: is given by
4
A=>"Ajdz; € Q' (R*?,iR)
j=1

where A; : R%?—iR are smooth maps. The associated spin® connection
V = V4 on R?? is given by

where ¥ : R%2 — C? . Then the Dirac equation in flat case is given by

DA\I/ = 61-V61\I!+62~V62\11763'V63\Ilfe4-ve4\11
4
= ) ein(e)(Ve,¥)
i=1
4 Oy )
+Aﬂ/}1

= K(e; o

izjl ( >< 82+Aﬂ/12>

( zfi + Ay + %(‘31’2’ + Aathe) + (31’5 + Agth) + Z22 + Ayihy

8$4

Lo 4 Ayt — (52 + Agthr) — (522 + Agn) + S + Authy

The explicit form of Dirac equation:

gwl + A Jrz(gi + Agp) +z(8w2 + Asibo) + aw + Aspr =0
ng + Ay — 2(81/’1 + Agtpr) — z( ¢1 —|—A31/J1) + a¢1 + Ay = 0.

)

(

0
0

).
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The curvature 2-form F4 is given by

Fu=dA= ZFijei ANel € Q* (R*?,R),
i<y
where Fj; = aa%f — gﬁ; fori,j=1,....4.
The matrix form of ¥¥* with respect to the frame E; = (1,0), B2 = (0,1)

is given by P o
*\ 7#17 _¢1¢2
(P9 = ( Yoty —|1hal? )

The traceless part of WWU* is

A —wm)_l 2(1 o>
(v m-(wm e ) e (g

_ ( 3 (11 f? + [92]?) — 11y )
Yoty — (|1 ]? + [¥2?)
Now we can interpret the curvature equation by p™ (F1) = (¥¥*),. Then
we obtain following set of equations

Fio+ Fay = —5([9n? + [2]?)
Foz3 —Fuu = 5(¥1t2 —1ta) (4)
Fis+F3y = —5(U1s + 11)o)

which are consistent and similar to the classical Seiberg-Witten equations on
R* with Euclidean metric.
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