Stability of generalized Newton difference equations*

Zhihua Wang and Yong-Guo Shi*

Abstract

In the paper we discuss a stability in the sense of the generalized Hyers-Ulam-Rassias for functional equations $\Delta_{(p, c)}^{n} \varphi(x)=h(x)$, which is called generalized Newton difference equations, and give a sufficient condition of the generalized Hyers-Ulam-Rassias stability. As corollaries, we obtain the generalized Hyers-Ulam-Rassias stability for generalized forms of square root spirals functional equations and general Newton functional equations for logarithmic spirals.

1 Introduction

In 1940, S.M. Ulam [24] posed the stability problem of functional equations: When is it true that a mapping satisfying a functional equation approximately must be close to the solution of the given functional equation? For Banach spaces, the problem was solved by D. H. Hyers [7] in the case of approximately additive mappings. Thereafter, such idea of stability is called the Hyers-Ulam stability of functional equations. This concept is also generalized in [22]. As in $[8,13,14]$ we say a functional equation

$$
\begin{equation*}
E_{1}(\varphi)=E_{2}(\varphi) \tag{1.1}
\end{equation*}
$$

[^0]has the generalized Hyers-Ulam-Rassias stability if for an approximate solution φ_{s} such that
$$
\left|E_{1}\left(\varphi_{s}\right)(x)-E_{2}\left(\varphi_{s}\right)(x)\right| \leq \phi(x)
$$
for some fixed function ϕ, there exists a solution φ of equation (1.1) such that $\left|\varphi_{s}(x)-\varphi(x)\right| \leq \Phi(x)$ for some fixed function Φ depending only on ϕ. For some results on the stability of functional equations have been discussed extensively in many references, e.g., $[1,2,3,4,5,9,10,16,17,18,19,20,21]$.

For the linear functional equation

$$
\begin{equation*}
\varphi(f(x))=g(x) \varphi(x)+h(x) \tag{1.2}
\end{equation*}
$$

in some classes of special function, where f, g, h are given functions and φ is an unknown function, M. Kuczma, B. Choczewski and R. Ger [15] gave some results in details on nonnegative solutions, monotonic solutions, convex and regularly varying solutions, and regular solutions of equation (1.2). The generalized Hyers-Ulam-Rassias stability of equation (1.2) was discussed by T. Trif [23]. The functional equation of square root spiral

$$
\begin{equation*}
\varphi\left(\sqrt{x^{2}+1}\right)=\varphi(x)+\arctan \frac{1}{x} \tag{1.3}
\end{equation*}
$$

is a special case of equation (1.2). K. J. Heuvers, D. S. Moak and B. Boursaw [6] presented the general solution without additional regularity of equation (1.3). After that, the generalized Hyers-Ulam-Rassias stability of equation (1.3) was proved by S.-M. Jung and P. K. Sahoo [11]. One generalization of equation (1.3) is the linear functional equation

$$
\begin{equation*}
\varphi\left(p^{-1}(p(x)+c)\right)=\varphi(x)+h(x), \tag{1.4}
\end{equation*}
$$

where p, h are given functions, p^{-1} is the inverse of p, φ is an unknown function and $c \neq 0$ is a constant. The paper [25] gave the general solution of equation (1.4), also proved the generalized Hyers-Ulam-Rassias stability and the stability in the sense of Ger for homogeneous equations of equation (1.4).

For convenience, let n be a fixed positive integer, \mathbb{K} be either the field \mathbb{R} of reals numbers or the field \mathbb{C} of complex numbers, $\mathbb{R}_{+}:=(0, \infty), \mathbb{R}_{+}^{*}:=[0, \infty)$, and X stand for a Banach space over \mathbb{K}. Suppose that $p: \mathbb{K} \rightarrow \mathbb{K}$ is bijective, $c \in \mathbb{K}$ and $c \neq 0$. By \mathscr{F} we denote the set of all functions $\varphi: \mathbb{K} \rightarrow X$. Let $\Delta_{(p, c)}$ be the difference operator defined by

$$
\begin{equation*}
\left(\Delta_{(p, c)} \varphi\right)(x)=\varphi\left(p^{-1}(p(x)+c)\right)-\varphi(x), \quad \forall x \in \mathbb{K} \tag{1.5}
\end{equation*}
$$

for all $\varphi \in \mathscr{F}$. And we define an operator $\Delta_{(p, c)}^{n}: \mathscr{F} \rightarrow \mathscr{F}$ by

$$
\begin{equation*}
\left(\Delta_{(p, c)}^{n} \varphi\right)(x)=\left(\Delta_{(p, c)}\left(\Delta_{(p, c)}^{n-1} \varphi\right)\right)(x), \quad \forall x \in \mathbb{K} \tag{1.6}
\end{equation*}
$$

for all $\varphi \in \mathscr{F}$, where $\Delta_{(p, c)}^{0} \varphi=\varphi$. For instance, we see that

$$
\begin{align*}
\left(\Delta_{(p, c)}^{2} \varphi\right)(x) & =\varphi\left(p^{-1}(p(x)+2 c)\right)-2 \varphi\left(p^{-1}(p(x)+c)\right)+\varphi(x) \\
\left(\Delta_{(p, c)}^{3} \varphi\right)(x) & =\varphi\left(p^{-1}(p(x)+3 c)\right)-3 \varphi\left(p^{-1}(p(x)+2 c)\right) \\
& +3 \varphi\left(p^{-1}(p(x)+c)\right)-\varphi(x) \tag{1.7}
\end{align*}
$$

For the case $p=\mathrm{id}, c=1$, S.-M. Jung and J. M. Rassias [12] proved the generalized Hyers-Ulam-Rassias stability of the so-called Newton difference equations

$$
\begin{equation*}
\Delta_{(i d, 1)}^{n} \varphi(x)=A \ln R_{n}(x) \tag{1.8}
\end{equation*}
$$

where $A>0, R_{1}(x)=\frac{x+1}{x}, R_{k}(x)=\frac{R_{k-1}(x+1)}{R_{k-1}(x)}, k \in\{2,3, \ldots, n\}$, and applied their results to the functional equation for logarithmic spirals.

In this paper, we consider the following functional equation

$$
\begin{equation*}
\Delta_{(p, c)}^{n} \varphi(x)=h(x), \tag{1.9}
\end{equation*}
$$

for all $x \in X$ and some fixed integer $n>0, h$ is a given function, φ is an unknown function. We refer to equation (1.9) as the generalized Newton difference equation. In fact, if we set $n=1$, then (1.9) is transformed into equation (1.4). If we set $p(x)=x, h(x)=A \ln R_{n}(x), c=1$, then (1.9) becomes to (1.8). We prove the generalized Hyers-Ulam-Rassias stability of equation (1.9), and give a sufficient condition on the generalized Hyers-Ulam-Rassias stability. Applying the result of (1.9), we give the generalized Hyers-UlamRassias stability of equations (1.4) and (1.8) as corollaries.

2 Main results

In the following theorem, we prove the generalized Hyers-Ulam-Rassias stability of (1.9).

Theorem 2.1. Suppose that $c \in \mathbb{K}, c \neq 0, p: \mathbb{K} \rightarrow \mathbb{K}$ is bijective, $h: \mathbb{K} \rightarrow X$ is a given function. If $\varphi: \mathbb{K} \rightarrow X$ satisfies

$$
\begin{equation*}
\left\|\Delta_{(p, c)}^{n} \varphi(x)-h(x)\right\| \leq \phi_{n}(x), \quad \forall x \in \mathbb{K} \tag{2.1}
\end{equation*}
$$

where function $\phi_{n}: \mathbb{K} \rightarrow \mathbb{R}_{+}$satisfies the condition

$$
\begin{equation*}
\Phi_{n}(x):=\sum_{k=0}^{\infty} \phi_{n}\left(p^{-1}(p(x)+k c)\right)<\infty, \quad \forall x \in \mathbb{K} \tag{2.2}
\end{equation*}
$$

for some integer $n \in \mathbb{N}$, then there exists a unique function $\Psi_{n}: \mathbb{K} \rightarrow X$ such that $\Delta_{(p, c)} \Psi_{n}(x)=h(x)$ and

$$
\begin{equation*}
\left\|\Psi_{n}(x)-\Delta_{(p, c)}^{n-1} \varphi(x)\right\| \leq \Phi_{n}(x), \quad \forall x \in \mathbb{K} \tag{2.3}
\end{equation*}
$$

Proof. It follows from (2.1) that

$$
\begin{align*}
& \left\|\Delta_{(p, c)}^{n} \varphi(x)-h(x)\right\| \leq \phi_{n}(x) \\
& \left\|\Delta_{(p, c)}^{n} \varphi\left(p^{-1}(p(x)+c)\right)-h\left(p^{-1}(p(x)+c)\right)\right\| \leq \phi_{n}\left(p^{-1}(p(x)+c)\right) \\
& \quad \vdots \tag{2.4}\\
& \left\|\Delta_{(p, c)}^{n} \varphi\left(p^{-1}(p(x)+(m-1) c)\right)-h\left(p^{-1}(p(x)+(m-1) c)\right)\right\| \\
& \leq \phi_{n}\left(p^{-1}(p(x)+(m-1) c)\right)
\end{align*}
$$

for $x \in \mathbb{K}$ and $m \in \mathbb{N}$. In view of triangular inequalities, the above inequalities yield

$$
\begin{equation*}
\left\|\sum_{k=0}^{m-1} \Delta_{(p, c)}^{n} \varphi\left(p^{-1}(p(x)+k c)\right)-\sum_{k=0}^{m-1} h\left(p^{-1}(p(x)+k c)\right)\right\| \leq \sum_{k=0}^{m-1} \phi_{n}\left(p^{-1}(p(x)+k c)\right) \tag{2.5}
\end{equation*}
$$

Substitute $p^{-1}(p(x)+\ell c)$ for x in (2.5) and then substitute k for $k+\ell$ in the resulting inequality to obtain

$$
\begin{equation*}
\left\|\sum_{k=\ell}^{\ell+m-1} \Delta_{(p, c)}^{n} \varphi\left(p^{-1}(p(x)+k c)\right)-\sum_{k=\ell}^{\ell+m-1} h\left(p^{-1}(p(x)+k c)\right)\right\| \leq \sum_{k=\ell}^{\ell+m-1} \phi_{n}\left(p^{-1}(p(x)+k c)\right) \tag{2.6}
\end{equation*}
$$

for all $x \in \mathbb{K}$ and $\ell, m \in \mathbb{N}$.
By some manipulation, we further have

$$
\begin{align*}
& \| \sum_{k=0}^{\ell+m-1} \Delta_{(p, c)}^{n} \varphi\left(p^{-1}(p(x)+k c)\right)-\sum_{k=0}^{\ell+m-1} h\left(p^{-1}(p(x)+k c)\right)+\Delta_{(p, c)}^{n-1} \varphi(x) \\
& -\sum_{k=0}^{\ell-1} \Delta_{(p, c)}^{n} \varphi\left(p^{-1}(p(x)+k c)\right)+\sum_{k=0}^{\ell-1} h\left(p^{-1}(p(x)+k c)\right)-\Delta_{(p, c)}^{n-1} \varphi(x) \| \\
& \leq \sum_{k=\ell}^{\ell+m-1} \phi_{n}\left(p^{-1}(p(x)+k c)\right) \tag{2.7}
\end{align*}
$$

for all $x \in \mathbb{K}$ and $\ell, m \in \mathbb{N}$. Thus, considering (2.2), we see that the sequence

$$
\begin{equation*}
\left\{\sum_{k=0}^{m-1}\left[\Delta_{(p, c)}^{n} \varphi\left(p^{-1}(p(x)+k c)\right)-h\left(p^{-1}(p(x)+k c)\right)\right]+\Delta_{(p, c)}^{n-1} \varphi(x)\right\}_{m=1}^{\infty} \tag{2.8}
\end{equation*}
$$

is a Cauchy sequence for all $x \in \mathbb{K}$. Hence, we can define a function $\Psi_{n}: \mathbb{K} \rightarrow$ X by

$$
\begin{equation*}
\Psi_{n}(x)=\sum_{k=0}^{\infty}\left[\Delta_{(p, c)}^{n} \varphi\left(p^{-1}(p(x)+k c)\right)-h\left(p^{-1}(p(x)+k c)\right)\right]+\Delta_{(p, c)}^{n-1} \varphi(x) \tag{2.9}
\end{equation*}
$$

By (2.9), we obtain

$$
\begin{align*}
\Delta_{(p, c)} \Psi_{n}(x) & =\Psi_{n}\left(p^{-1}(p(x)+c)\right)-\Psi_{n}(x) \\
& =\sum_{k=1}^{\infty}\left[\Delta_{(p, c)}^{n} \varphi\left(p^{-1}(p(x)+k c)\right)-h\left(p^{-1}(p(x)+k c)\right)\right] \\
& +\Delta_{(p, c)}^{n-1} \varphi\left(p^{-1}(p(x)+c)\right) \\
& -\sum_{k=0}^{\infty}\left[\Delta_{(p, c)}^{n} \varphi\left(p^{-1}(p(x)+k c)\right)-h\left(p^{-1}(p(x)+k c)\right)\right]-\Delta_{(p, c)}^{n-1} \varphi(x) \\
& =h(x) \tag{2.10}
\end{align*}
$$

for all $x \in \mathbb{K}$. In view of (2.2) and (2.9), if we let m go to infinity in (2.5), then we obtain (2.3).

It only remains to prove the uniqueness of the function Ψ_{n}. If a function $H: \mathbb{K} \rightarrow X$ satisfies $\Delta_{(p, c)} H(x)=h(x)$ for each $x \in \mathbb{K}$, then we can easily show that

$$
\begin{equation*}
H\left(p^{-1}(p(x)+m c)\right)-H(x)=\sum_{k=0}^{m-1} h\left(p^{-1}(p(x)+k c)\right) \tag{2.11}
\end{equation*}
$$

for all $x \in \mathbb{K}$ and $m \in \mathbb{N}$. Now, assume that $G_{n}: \mathbb{K} \rightarrow X$ satisfies $\Delta_{(p, c)} G_{n}(x)=$ $h(x)$ and the inequality (2.3) in place of Ψ_{n}. By (2.2), (2.3) and (2.11), we get

$$
\begin{aligned}
\left\|\Psi_{n}(x)-G_{n}(x)\right\| & =\left\|\Psi_{n}\left(p^{-1}(p(x)+m c)\right)-G_{n}\left(p^{-1}(p(x)+m c)\right)\right\| \\
& \leq 2 \Phi_{n}\left(p^{-1}(p(x)+m c)\right) \longrightarrow 0, \text { as } m \longrightarrow \infty,(2.12)
\end{aligned}
$$

for all $x \in \mathbb{K}$, which proves the uniqueness of Ψ_{n}. This completes the proof.
Now we give a sufficient condition of the generalized Hyers-Ulam-Rassias stability of (1.9).
Corollary 2.1. Suppose that $c \in \mathbb{K}, c \neq 0, p: \mathbb{K} \rightarrow \mathbb{K}$ is bijective, and $h: \mathbb{K} \rightarrow X$ is a given function. If $\varphi: \mathbb{K} \rightarrow X$ satisfies $\left\|\Delta_{(p, c)}^{n} \varphi(x)-h(x)\right\| \leq$ $\phi_{n}(x)$ for all $x \in \mathbb{K}$, where function $\phi_{n}: \mathbb{K} \rightarrow \mathbb{R}_{+}$is a fixed function, for some integer $n \in \mathbb{N}$. If

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \frac{\phi_{n}\left(p^{-1}(p(x)+(k-1) c)\right)}{\phi_{n}\left(p^{-1}(p(x)+k c)\right)}>1, \quad \forall x \in \mathbb{K} \tag{2.13}
\end{equation*}
$$

then equation (1.9) has the generalized Hyers-Ulam-Rassias stability.
Proof. Consider the sequence $\left\{U_{k}(x)\right\}$ defined by $U_{k}(x):=\phi_{n}\left(p^{-1}(p(x)+\right.$ $k c)$). By (2.13), we have

$$
\begin{aligned}
\limsup _{k \rightarrow \infty} \frac{U_{k}}{U_{k-1}} & =\limsup _{k \rightarrow \infty} \frac{\phi_{n}\left(p^{-1}(p(x)+k c)\right)}{\phi_{n}\left(p^{-1}(p(x)+(k-1) c)\right)} \\
& =\frac{1}{\liminf _{k \rightarrow \infty} \frac{\phi_{n}\left(p^{-1}(p(x)+(k-1) c)\right)}{\phi_{n}\left(p^{-1}(p(x)+k c)\right)}} \\
& <1, \quad \forall x \in \mathbb{K} .
\end{aligned}
$$

By ratio test we see that the series (2.2) converges for all $x \in \mathbb{K}$. By Theorem 2.1 we get the generalized Hyers-Ulam-Rassias stability. This completes the proof of the corollary.

By Theorem 2.1, we can obtain directly the generalized Hyers-Ulam-Rassias stability of equations (1.4) and (1.8).

Corollary 2.2. (cf.[25]). Suppose that $c \in \mathbb{K}, c \neq 0, p: \mathbb{K} \rightarrow \mathbb{K}$ is bijective, $h: \mathbb{K} \rightarrow X$ is a given function. If $\varphi_{s}: \mathbb{K} \rightarrow X$ satisfies

$$
\begin{equation*}
\left\|\varphi_{s}\left(p^{-1}(p(x)+c)\right)-\varphi_{s}(x)-h(x)\right\| \leq \phi(x), \quad \forall x \in \mathbb{K} \tag{2.14}
\end{equation*}
$$

where function $\psi: \mathbb{K} \rightarrow \mathbb{R}_{+}$satisfies

$$
\begin{equation*}
\Phi(x):=\sum_{k=0}^{\infty} \phi\left(p^{-1}(p(x)+k c)\right)<\infty, \quad \forall x \in \mathbb{K} \tag{2.15}
\end{equation*}
$$

then there exists a unique solution $\varphi: \mathbb{K} \rightarrow X$ of equation (1.4) such that

$$
\begin{equation*}
\left\|\varphi(x)-\varphi_{s}(x)\right\| \leq \Phi(x), \quad \forall x \in \mathbb{K} . \tag{2.16}
\end{equation*}
$$

Corollary 2.3. (cf.[12]). If a function $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ satisfies

$$
\begin{equation*}
\left|\Delta_{(i d, 1)}^{n} \varphi(x)-A \ln R_{n}(x)\right| \leq \gamma_{n}(x), \quad \forall x \in \mathbb{R}_{+} \tag{2.17}
\end{equation*}
$$

and some integer $n \in \mathbb{N}$, where $\gamma_{n}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}^{*}$ is a function which satisfies

$$
\begin{equation*}
\Upsilon_{n}(x):=\sum_{k=0}^{\infty} \gamma_{n}(x+k)<\infty, \quad \forall x \in \mathbb{R}_{+} \tag{2.18}
\end{equation*}
$$

then there exists a unique function $\Psi_{n}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ such that $\Delta_{(i d, 1)} \Psi_{n}(x)=$ $A \ln R_{n}(x)$ and

$$
\begin{equation*}
\left|\Psi_{n}(x)-\Delta_{(i d, 1)}^{n-1} \varphi(x)\right| \leq \Upsilon_{n}(x), \quad \forall x \in \mathbb{R}_{+} \tag{2.19}
\end{equation*}
$$

References

[1] R. P. Agarwal, B. Xu and W. Zhang, Stability of functional equations in single variable, J. Math. Anal. Appl. 288(2003), 852-869.
[2] M. Amyari and M. S. Moslehian, Approximately ternary semigroup homomorphisms, Lett. Math. Phys. 77(2006), 1-9.
[3] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2(1950), 64-66.
[4] G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50(1995), 143-190.
[5] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184(1994), 431-436.
[6] K. J. Heuvers, D. S. Moak and B. Boursaw, The functional equation of the square root spiral, In Functional Equations and Inequalities, (Edited by Th. M. Rassias), Kluwer, 2000, pp. 111-117.
[7] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27(1941), 222-224.
[8] S.-M. Jung, Hyers-Ulam-Rassias stability of functional equations, Dynam. Systems Appl. 6(1997), 541-566.
[9] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011.
[10] S.-M. Jung and P. K. Sahoo, Hyers-Ulam stability of the quadratic equation of Pexider type, J. Korean Math. Soc. 38(2001), 645-656.
[11] S.-M. Jung and P. K. Sahoo, Stability of a functional equation for square root spirals, Appl. Math. Lett. 15(2002), 435-438.
[12] S.-M. Jung and J. M. Rassias, Stability of general Newton functional equations for logarithmic spirals, Advances in Difference Equations, Volume 2008, Article ID 143053, 5 pages.
[13] G. H. Kim, B. Xu and W. Zhang, Notes on stability of the generalized gamma functional equation, Internat. J. Math. Math. Sci. 32(2002), 5763.
[14] G. H. Kim, On the Hyers-Ulam-Rassias stability of functional equations in n-variables, J. Math. Anal. Appl. 299(2004), 375-391.
[15] M. Kuczma, B. Choczewski and R. Ger, Iterative Functional Equations, Encyclopedia Math. Appl. Vol. 32, Cambridge Univ. Press, 1990.
[16] M. Mirzavaziri and M. S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc. 37(3)(2006), 361-376.
[17] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy versions of Hyers-UlamRassias theorem, Fuzzy Sets and Systems 159(2008), 720-729.
[18] M. S. Moslehian, K. Nikodem and D. Popa, Asymptotic aspect of the quadratic functional equation in multi-normed spaces, J. Math. Anal. Appl. 355(2009), 717-724.
[19] A. Najati and M. B. Moghimi, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl. 337(2008), 399-415.
[20] K. Nikodem, The stability of the Pexider equations, Ann. Math. Sil. 5(1991), 91-93.
[21] Ch. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasiBanach algebras, Bull. Sci. Math. 132(2008), 87-96.
[22] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(1978), 297-300.
[23] T. Trif, On the stability of a general gamma-type functional equation, Publ. Math. Debrecen 60(2002), 47-61
[24] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964.
[25] Z. Wang, X. Chen and B. Xu, Generalization of functional equation for the square root spiral, Appl. Math. Comput. 182(2006), 1355-1360.

Zhihua Wang,

School of Science, Hubei University of Technology,
Wuhan, Hubei 430068, P.R. China
Email: matwzh2000@126.com
Yong-Guo Shi,
Key Laboratory of Numerical Simulation of Sichuan Province,
College of Mathematics and Information Science, Neijiang Normal University,
Neijiang, Sichuan 641112, P.R. China
Email: scumat@163.com

[^0]: Key Words: Functional equation, Square root spiral, Logarithmic spiral, Hyers-UlamRassias stability.

 2010 Mathematics Subject Classification: 39B82, 39B52.
 Received: May, 2011.
 Accepted: September, 2011.
 *Supported by NSFC (China) grant.
 *Corresponding author, E-mail addresses: matwzh2000@126.com(Z.H.Wang); scumat@163.com (Y.G. Shi)

