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On some lacunary difference sequence spaces

defined by a sequence of Orlicz functions and

q-lacunary ∆
n
m-statistical convergence

Binod Chandra Tripathy and Hemen Dutta

Abstract

In this article, we introduce the lacunary difference sequence spaces
w0(M , θ,∆n

m, p, q), w1(M , θ,∆n

m, p, q) and w∞(M , θ,∆n

m, p, q) using a
sequence M = (Mk) of Orlicz functions and investigate some relevant
properties of these spaces. Then, we define and study the notion of q-
lacunary ∆n

m-statistical convergent sequences. Further, we study the re-
lationship between q-lacunary ∆n

m-statistical convergent sequences and
the spaces w0(M , θ,∆n

m, p, q) and w1(M , θ,∆n

m, p, q).

1 Introduction

The notion of difference sequence space was introduced by Kizmaz [10], who
studied the difference sequence spaces ℓ∞(∆), c(∆) and c0(∆). The notion
was further generalized by Et and Colak [4] by introducing the spaces ℓ∞(∆n),
c(∆n) and c0(∆

n). Another type of generalization of the difference sequence
spaces is due to Tripathy and Esi [23], who studied the spaces ℓ∞(∆m), c(∆m)
and c0(∆m).

Tripathy, Esi and Tripathy [24] generalized the above notions and unified
these as follows:
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Let m, n be non-negative integers, then for Z a given sequence space we
have

Z(∆n
m) = {x = (xk) ∈ w : (∆n

mxk) ∈ Z},

where ∆n
mx = (∆n

mxk) = (∆n−1
m xk − ∆n−1

m xk+m) and ∆0
mxk = xk, for all

k ∈ N , which is equivalent to the following binomial representation:

∆n
mxk =

n
∑

v=0

(−1)v
(

n

v

)

xk+mv.

The notion of difference sequences was investigated from different aspects
by Tripathy [16], Tripathy, Altin and Et [17], Tripathy and Baruah [18], Tri-
pathy and Borgogain [20], Tripathy, Choudhary and Sarma [21], Tripathy and
Dutta [22], Tripathy and Mahanta [27] are a few to be named.

The notion of statistical convergence was studied at the initial stage by Fast
[5] and Schoenberg [13] independently. Later on, it was further investigated
by Fridy [6], Rath and Tripathy [12], Šalàt [14], Tripathy ([15], [16]), Tripathy
and Baruah [19], Tripathy and Sarma [28], Tripathy and Sen [32] and many
others.

A subset E of N is said to have density δ(E) if δ(E) = lim
n→∞

1
n

n
∑

k=1

χE(k)

exists, where χE is the characteristic function of E.
A sequence (xk) is said to be statistically convergent to L if for every ε > 0,

δ({k ∈ N : |xk − L| ≥ ε}) = 0. For L = 0, we say (xk) is statistically null.
By a lacunary sequence θ = (kr); r = 1, 2, 3, . . . , where k0 = 0, we mean

an increasing sequence of non-negative integers with hr = (kr − kr−1) → ∞
as r → ∞. We denote Ir = (kr−1, kr] and ηr = kr

kr−1
, for r = 1, 2, 3, . . . . The

space of lacunary strongly convergent sequence Nθ was defined by Freedman,
Sember and Raphael [7] as follows:

Nθ = {x = (xk) : lim
r→∞

1

hr

∑

k∈Ir

|xk − L| = 0, for some L}.

The space Nθ is a BK-space with the norm

‖x‖θ = sup
r

1

hr

∑

k∈Ir

|xk|.

N0
θ denotes the subset of those sequences in Nθ for which L = 0. (N0

θ , ‖.‖θ)
is also a BK-space. Freedman, Sember and Raphael [7] also defined the space
|σ1| of strongly Cesàro summable sequences as follows:

|σ1| = {x = (xk) : lim
n→∞

1

n

n
∑

k=1

|xk − L| = 0, for some L}.
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In the special case when θ = (2r), Nθ = |σ1|.
The notion of lacunary convergence has been investigated by Colak, Tri-

pathy and Et [2], Tripathy and Baruah [19], Tripathy and Mahanta [27] and
many others.

An Orlicz function is a function M : [0,∞) −→ [0,∞), which is continuous,
non-decreasing and convex with M(0) = 0, M(x) > 0, for x > 0 and M(x) →
∞, as x → ∞.

Lindenstrauss and Tzafriri [11] used the Orlicz function and introduced
the sequence space ℓM as follows:

ℓM =

{

(xk) ∈ w :

∞
∑

k=1

M

(

|xk|

ρ

)

< ∞, for some ρ > 0

}

.

They proved that ℓM is a Banach space normed by

‖(xk)‖ = inf

{

ρ > 0 :

∞
∑

k=1

M

(

|xk|

ρ

)

≤ 1

}

.

In the recent past the notion of Orlicz function was investigated from differ-
ent aspects and sequence spaces have been studied by Altin, Et and Tripathy
[1], Et, Altin, Choudhary and Tripathy [3], Hudzik, Kamińska and Mastylo
[8], Isik, Et and Tripathy [9], Tripathy, Altin and Et [17], Tripathy and Bor-
gogain [20], Tripathy and Dutta [22], Tripathy and Hazarika [26], Tripathy
and Mahanta [27], Tripathy and Sarma ([29], [30], [31]) and many others.

Remark 1.1. An Orlicz function M satisfies the inequality M(λx) ≤ λM(x),
for all λ with 0 < λ < 1.

The following inequality will be used throughout the article. Let p = (pk)
be a positive sequence of real numbers with 0 < pk ≤ sup pk = G, D =
max(1, 2G−1). Then for all ak, bk ∈ C for all k ∈ N , we have

|ak + bk|
pk ≤ D {|ak|

pk + |bk|
pk} .

The notion of paranormed sequences has been investigated from sequence
space point of view and linked with summability theory by Rath and Tripa-
thy [12], Tripathy [16], Tripathy and Dutta [22], Tripathy and Hazarika [25],
Tripathy and Sen ([32], [33]) and many others.

Definition 1.1. Two non-negative functions f, g are called equivalent, when-
ever C1f ≤ g ≤ C2f , for some Cj > 0, j = 1, 2 and in this case we write
f ≈ g.
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2 Definition and Preliminaries

Lemma 2.1. (I şik, Et and Tripathy [9], Lemma1.1) Let p and q be semi-

norms on a linear space X. Then p is stronger than q if and only if there

exists a constant M such that q(x) ≤ Mp(x) for all x ∈ X.

Let M=(Mk) be a sequence of Orlicz functions, p = (pk) be a bounded
sequence of positive real numbers and X be a seminormed space over the field
C of complex numbers with the seminorm q. w(X) denotes the space of all
sequences x = (xk), where xk ∈ X, for all k ∈ N . We define the following
sequence spaces:

w0(M , θ,∆n
m, p, q) = {x ∈ w(X) : lim

r→∞

1
hr

∑

k∈Ir

[

Mk

(

q
(

∆n
mxk

ρ

))]pk

= 0,

for some ρ > 0},

w1(M , θ,∆n
m, p, q) = {x ∈ w(X) : lim

r→∞

1
hr

∑

k∈Ir

[

Mk

(

q
(

∆n
mxk−L

ρ

))]pk

= 0, for some ρ > 0 and L ∈ X},

w∞(M , θ,∆n
m, p, q) = {x ∈ w(X) : sup

r

1
hr

∑

k∈Ir

[

Mk

(

q
(

∆n
mxk

ρ

))]pk

< ∞,

for some ρ > 0}.

If Mk(x) = x, for all x ∈ [0,∞), for all k ∈ N , pk = 1, for all k ∈ N ,
X = C, q(x) = |x|, for all x ∈ X and n = 0 so that ∆0

mxk = xk, for all k ∈ N ,
then w1(M , θ,∆n

m, p, q) = Nθ and w0(M , θ,∆n
m, p, q) = N0

θ . If in addition,
we take θ = (2r), then w1(M , θ,∆n

m, p, q) = |σ1|.

3 Main Results

In this section, we investigate the results of this paper involving the spaces
w0(M , θ,∆n

m, p, q), w1(M , θ,∆n
m, p, q) and w∞(M , θ,∆n

m, p, q).

Theorem 3.1. Let M = (Mk) be a sequence of Orlicz functions. Then

w0(M, θ,∆n
m, p, q) ⊂ w1(M, θ,∆n

m, p, q) ⊂ w∞(M, θ,∆n
m, p, q).

Proof. It is obvious that w0(M , θ,∆n
m, p, q) ⊆ w1(M , θ,∆n

m, p, q). We shall
prove that w1(M , θ,∆n

m, p, q) ⊆ w∞(M , θ,∆n
m, p, q).
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Let (xk) ∈ w1(M , θ,∆n
m, p, q). Then there exist some ρ > 0 and L ∈ X

such that

lim
r→∞

1

hr

∑

k∈Ir

[

Mk

(

q

(

∆n
mxk − L

ρ

))]pk

= 0.

On taking ρ1 = 2ρ, we have

1
hr

∑

k∈Ir

[

Mk

(

q
(

∆n
mxk

ρ1

))]pk

≤ D
hr

∑

k∈Ir

[

1
2Mk

(

q
(

∆n
mxk−L

ρ

))]pk

+ D
hr

∑

k∈Ir

[

1
2Mk

(

q
(

L
ρ

))]pk

≤ D
hr

∑

k∈Ir

[

1
2Mk

(

q
(

∆n
mxk−L

ρ

))]pk

+Dmax

(

1, sup
[

1
2Mk

(

q
(

L
ρ

))]H
)

,

where sup
k

pk = G, H = max(1, G) and D = max(1, 2G−1).

Thus we get (xk) ∈ w∞(M , θ,∆n
m, p, q).

The inclusions are strict follows from the following examples.

Example 3.1. Let m = n = 2, θ = (3r), pk = 1, for all k ∈ N , X = C2,
q(x) = max(|x1|, |x2|), for x = (x1, x2) ∈ C2 and Mk(x) = x2, for all x ∈
[0,∞) and k ∈ N . Consider the sequence (xk) defined by xk = (k2, k2) for each
fixed k ∈ N . Then (xk) ∈ w1(M, θ,∆n

m, p, q), but (xk) /∈ w0(M, θ,∆n
m, p, q).

Example 3.2. Let m = n = 2, θ = (2r), pk = 2, for all k odd and pk = 3, for
all k even, X = C3, q(x) = max(|x1|, |x2|, |x3|), for x = (x1, x2, x3) ∈ C3 and
Mk(x) = x4, for all x ∈ [0,∞) and k ∈ N . Consider the sequence (xk) defined
by xk = (k, k, k) for each fixed k ∈ N . Then (xk) ∈ w∞(M, θ,∆n

m, p, q), but
(xk) /∈ w1(M, θ,∆n

m, p, q).

Corollary 3.2. w0(M, θ,∆n
m, p, q) and w1(M, θ,∆n

m, p, q) are nowhere dense

subsets of w∞(M, θ,∆n
m, p, q).

Proof. Proof is a consequence of Theorem 3.1.

Proof of the following theorem is easy, so omitted.

Theorem 3.3. The spaces w0(M, θ,∆n
m, p, q), w1(M, θ,∆n

m, p, q) and
w∞(M, θ,∆n

m, p, q) are linear.

Theorem 3.4. The spaces w0(M, θ,∆n
m, p, q), w1(M, θ,∆n

m, p, q) and
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w∞(M, θ,∆n
m, p, q) are paranormed spaces paranormed by

g(x) =
mn
∑

i=1

q(xi) + inf

{

ρ
pr
H : sup

k

[

Mk

(

q

(

∆n
mxk

ρ

))]

≤ 1, ρ > 0, r ∈ N

}

,

where H = max(1, sup
r

pr).

Proof. Clearly g(x) = g(−x). Since Mk(0) = 0, for all k ∈ N , we get
inf

{

ρ
pr
H

}

= 0 for x = θ. Now let x, y ∈ w0(M , θ,∆n
m, p, q) and choose ρ1, ρ2 >

0 such that

sup
k

k

[

Mk

(

q

(

∆n
mxk

ρ1

))]

≤ 1 and sup
k

[

Mk

(

q

(

∆n
myk
ρ2

))]

≤ 1

Let ρ = ρ1 + ρ2. Then we have

sup
k

[

Mk

(

q
(

∆n
m(xk+yk)

ρ

))]

≤
(

ρ1

ρ1+ρ2

)

sup
k

[

Mk

(

q
(

∆n
mxk

ρ1

))]

+
(

ρ2

ρ1+ρ2

)

sup
k

[

Mk

(

q
(

∆n
myk

ρ2

))]

≤
(

ρ1

ρ1+ρ2

)

+
(

ρ2

ρ1+ρ2

)

= 1.

Hence g(x+ y) ≤ g(x) + g(y).

Finally let λ be a given non-zero scalar, then the continuity of the scalar
multiplication follows from the following equality

g(λx) =
mn
∑

i=1

q(λxi) + inf

{

ρ
pr
H : sup

k

[

Mk

(

q
(

∆n
m(λxk)

ρ

))]

≤ 1

}

= |λ|
mn
∑

i=1

q(xi) + inf

{

(|λ|s)
pr
H : sup

k

[

Mk

(

q
(

∆n
m(xk)
s

))]

≤ 1

}

, where s =

ρ
|λ| .

This completes the proof.

Proof of the following result is easy, so omitted.

Theorem 3.5. Let M = (Mk) and T = (Tk) be sequences of Orlicz functions

and Z = w0, w1 and w∞. Then for any two sequences p = (pk) and t = (tk)
of bounded positive real numbers and for any two seminorms q1 and q2, we

have

(i) If q1 is stronger than q2, then Z(M, θ,∆n
m, p, q1) ⊂ Z(M, θ,∆n

m, p, q2),
(ii) Z(M, θ,∆n

m, p, q1)
⋂

Z(M, θ,∆n
m, p, q2) ⊂ Z(M, θ,∆n

m, p, q1 + q2),
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(iii) Z(M, θ,∆n
m, p, q1)

⋂

Z(T, θ,∆n
m, p, q1) ⊂ Z(M+T, θ,∆n

m, p, q1),
(iv) Z(M, θ,∆n

m, p, q1)
⋂

Z(M, θ,∆n
m, t, q2) 6= φ,

(v) The inclusions Z(M, θ,∆n−1
m , p, q1) ⊂ Z(M, θ,∆n

m, p, q1) are strict. In

general Z(M, θ,∆i
m, p, q1) ⊂ Z(M, θ,∆n

m, p, q1) for i = 1, 2, . . . , n-1 and the

inclusion is strict.

Theorem 3.6. Let Z = w0, w1 and w∞. Then we have the followings.

(i) Let 0 < inf pk ≤ pk ≤ 1. Then Z(M, θ,∆n
m, p, q) ⊂ Z(M, θ,∆n

m, q),
(ii) Let 1 ≤ pk sup pk < ∞. Then Z(M, θ,∆n

m, q) ⊂ Z(M, θ,∆n
m, p, q),

(iii) Let 0 < pk ≤ tk and
(

pk

tk

)

be bounded. Then Z(M, θ,∆n
m, t, q) ⊆

Z(M, θ,∆n
m, p, q).

Proof. Proof of the parts (i) and (ii) is easy and so omitted. We prove the
part (iii) for Z = w1 and for Z = w0, w∞, it will follow on applying similar
technique.

We write Sk =
[

Mk

(

q
(

∆n
mxk−L

ρ

))]t

k
and µk = pk

tk
so that 0 < µ ≤ µk ≤ 1.

Define S
′

k = Sk if Sk ≥ 1 S
′′

k = 0 if Sk ≥ 1
= 0 if Sk < 1, = Sk if Sk < 1

Then Sk = S
′

k + S
′′

k , S
µk

k = S
′µk

k + S
′′µk

k .

Now it follows that S
′µk

k ≤ S
′

k ≤ Sk, S
′′µk

k ≤ S
′′µ
k .

We have the following inequality

1
hr

∑

k∈Ir

Sµk

k ≤ 1
hr

∑

k∈Ir

Sk + 1
hr

∑

k∈Ir

S
′′µ
k .

Therefore if (xk) ∈ w1(M, θ,∆n
m, t, q), then (xk) ∈ w1(M, θ,∆n

m, p, q).

The following Theorem is a direct consequence of Definition 1.1.

Theorem 3.7. Let M = (Mk) and T = (Tk) be two sequences of Orlicz func-

tions such that Mk ≈ Tk, for each k ∈ N . Then for Z = w0, w1 and w∞, we

have Z(M, θ,∆n
m, p, q)=Z(T, θ,∆n

m, p, q).

Theorem 3.8. Let M = (Mk) be a sequence of Orlicz functions and Z =

w0, w1 and w∞. Then Z(M, θ,∆n
m, p, q)=Z(θ,∆n

m, p, q), if the following con-

ditions hold
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lim
t→0

Mk(t)
t > 0 and lim

t→0

Mk(t)
t < ∞, for each k ∈ N .

Proof. If the given conditions are satisfied, we have Mk(t) = t, for each k ∈ N .
Then the proof from using Theorem 3.7.

4 q-Lacunary ∆
n

m
-Statistical Convergence

In this section, we define the notion of q-lacunary ∆n
m-statistical convergence

and investigate some of its properties. Further, we establish some relations be-
tween q-lacunary ∆n

m-statistical convergence and the spaces w0(M , θ,∆n
m, p, q)

and w1(M , θ,∆n
m, p, q).

Definition 4.1. Let θ be a lacunary sequence, then the sequence x = (xk)
is said to be q-lacunary ∆n

m-statistical convergent to the number L provided
that for every ε > 0,

lim
r→∞

1
hr
.card {k ∈ Ir : q (∆n

mxk − L) ≥ ε} = 0.

In this case, we write xk → L (Sq
θ (∆

n
m)) or Sq

θ (∆
n
m)-limxk = L and we

define
Sq
θ (∆

n
m) = {x ∈ w(X) : Sq

θ (∆
n
m)− limxk = L, for some L}.

In the case θ = (2r), we write Sq(∆n
m) instead of Sq

θ (∆
n
m).

If X = C, q(x) = |x|, we write Sθ(∆
n
m) instead of Sq

θ (∆
n
m) and if θ = (2r)

we write S(∆n
m) instead of Sθ(∆

n
m).

In the special case L = 0, we denote it by Sq
0θ(∆

n
m).

Theorem 4.1. Let θ be a lacunary sequence and 0 < p < ∞.

(i) If xk → L(wq
θ(∆

n
m)), then xk → L(Sq

θ (∆
n
m)),

(ii) If x ∈ ℓ∞(q,∆n
m) and xk → L(Sq

θ (∆
n
m)), then xk → L(wq

θ(∆
n
m)),

where ℓ∞(q,∆n
m)=x ∈ w(X) : sup

k
q(∆n

mxk) < ∞ and

wq
θ(∆

n
m)=

{

x ∈ w(X) : lim
r

1
hr

∑

k∈Ir

(q (∆n
mxk − L))

p
= 0, for some L

}

.

(iii) ℓ∞(q,∆n
m) ∩ Sq

θ (∆
n
m)=ℓ∞(q,∆n

m) ∩ wq
θ(∆

n
m).

Proof. (i) Let xk → L(wq
θ(∆

n
m)) and ε > 0. Then we have

∑

k∈Ir

(q (∆n
mxk − L))

p
≥ εpcard{k ∈ Ir : q (∆n

mxk − L) ≥ ε}.
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Hence xk → L(Sq
θ (∆

n
m)).

(ii) Suppose x ∈ ℓ∞(q,∆n
m) and xk → L(Sq

θ (∆
n
m)). Let ε > 0 be given and

n0(ε) ∈ N such that
1
hr
card

{

k ∈ Ir : q (∆n
mxk − L) ≥

(

ε
2

)
1
p

}

< ε
2Kp for all r > n0(ε), where K =

sup
k

(q (∆n
mxk − L)) and we set Lr =

{

k ∈ Ir : q (∆n
mxk − L) ≥

(

ε
2

)
1
p

}

.

Now for all r > n0, we have

1
hr

∑

k∈Ir

(q (∆n
mxk − L))

p
= 1

hr

∑

k∈Ir,k∈Lr

(q (∆n
mxk − L))

p

+ 1
hr

∑

k∈Ir,k/∈Lr

(q (∆n
mxk − L))

p

≤ 1
hr

(

hrε
2Kp

)

Kp + 1
hr
hr

(

ε
2

)

= ε.

Hence xk → L(wq
θ(∆

n
m)).

(iii) The proof follows from (i) and (ii).

Theorem 4.2. Let θ be a lacunary sequence.

(i) If lim infr ηr > 1, then Sq(∆n
m) ⊆ Sq

θ (∆
n
m),

(ii) If lim supr ηr < ∞, then Sq
θ (∆

n
m) ⊆ Sq(∆n

m),
(iii) If 1 < lim infr ηr ≤ lim supr ηr < ∞, then Sq

θ (∆
n
m) = Sq(∆n

m).

Proof. (i) If lim infr ηr > 1, then there exists a δ > 0 such that 1 + δ ≤ ηr
for sufficiently large r. Since hr = kr − kr−1, we have kr

hr
≤ 1+δ

δ . Let
(xk) ∈ L (Sq(∆n

m)). Then for every ε > 0, we have

1
kr
card{k ≤ kr : q (∆n

mxk − L) ≥ ε} ≥ 1
kr
card{k ∈ Ir : q (∆n

mxk − L) ≥ ε}

≥
(

δ
δ+1

)

1
hr
card{k ∈ Ir : q (∆n

mxk − L) ≥ ε}.

Thus xk → L (Sq
θ (∆

n
m)). Hence Sq(∆n

m) ⊆ Sq
θ (∆

n
m).

(ii) Suppose lim supr ηr < ∞. Then there exists M > 0 such that ηr < M
for all r ≥ 1.

Let xk → L (Sq
θ (∆

n
m)) and ε > 0. SupposeEr =card{k ∈ Ir : q (∆n

mxk − L) ≥ ε},
then there exists n0 ∈ N such that 1

hr
Er < ε for all r > n0. LetK = max

1≤r≤n0

Er

and choose n such that kr−1 < n ≤ Kr, then we have
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1
ncard{k ≤ n : q (∆n

mxk − L) ≥ ε} ≤ 1
kr−1

card{k ≤ kr : q (∆n
mxk − L) ≥ ε}

≤ 1
kr−1

{E1 + · · ·+ En0
+ · · ·+ Er}

≤ K
kr−1

n0 +
1

kr−1

{

En0+1

hn0+1
hn0+1 + · · ·+ Er

hr
hr

}

≤ K
kr−1

n0 +
1

kr−1

(

sup
r>n0

Er

hr

)

{hn0+1 + · · ·+ hr}

≤ K
kr−1

n0 + ε
kr−kn0

kr−1

≤ K
kr−1

n0 + εηr

≤ K
kr−1

n0 + εM .

Since kr−1 → ∞ as n → ∞, it follows that xk → L (Sq(∆n
m)). Hence

Sq
θ (∆

n
m) ⊆ Sq(∆n

m).

(iii) The proof follows from (i) and (ii).

Theorem 4.3. (i) w1(M, θ,∆n
m, p, q) ⊆ Sq

θ (∆
n
m),

(ii) w0(M, θ,∆n
m, p, q) ⊆ Sq

0θ(∆
n
m).

Proof. (i) Let (xk) ∈ w1(M , θ,∆n
m, p, q). Then there exist some ρ > 0 and

L ∈ X such that

lim
r→∞

1

hr

∑

k∈Ir

[

Mk

(

q

(

∆n
mxk − L

ρ

))]pk

= 0.

Let ε > 0 be given and
∑

1
denote the sum over k ∈ Ir such that q(∆n

m−L) ≥ ε

and
∑

2
denote the sum over k ∈ Ir such the q(∆n

m − L) < ε. Then

1
hr

∑

k∈Ir

[

Mk

(

q
(

∆n
mxk−L

ρ

))]pk

= 1
hr

∑

1

[

Mk

(

q
(

∆n
mxk−L

ρ

))]pk

+ 1
hr

∑

2

[

Mk

(

q
(

∆n
mxk−L

ρ

))]pk

≥ 1
hr

∑

1
[Mk(ε1)]

pk , where ε
ρ = ε1

≥ 1
hr

∑

1
min

{

[Mk(ε1)]
inf pk , [Mk(ε1)]

G
}

≥ 1
hr
card{k ∈ Ir : q(∆n

mxk − L) ≥ ε}min
{

[Mk(ε1)]
inf pk , [Mk(ε1)]

G
}

.

Hence (xk) ∈ Sq
θ (∆

n
m).

(ii) Proof is similar to that of part (i).
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Theorem 4.4. (i) ℓ∞(q,∆n
m) ∩ Sq

θ (∆
n
m) = ℓ∞(q,∆n

m) ∩ w1(M, θ,∆n
m, p, q),

(ii) ℓ∞(q,∆n
m) ∩ Sq

0θ(∆
n
m) = ℓ∞(q,∆n

m) ∩ w0(M, θ,∆n
m, p, q).

Proof. (i) Using Theorem 4.3, it is enough to show that ℓ∞(q,∆n
m) ∩ Sq

θ (∆
n
m)

⊆ ℓ∞(q,∆n
m) ∩ w1(M , θ,∆n

m, p, q). Let (xk) ∈ ℓ∞(q,∆n
m) ∩ Sq

θ (∆
n
m) and tk

= (∆n
mxk − L) → 0 (Sq

θ (∆
n
m)). Let

∑

1
and

∑

2
be the same as in the proof of

the previous Theorem. Since (xk) ∈ ℓ∞(q,∆n
m), there exists K > 0 such that

Mk

(

q
(

tk
ρ

))

≤ K for all k ∈ N . Then given ε > 0, we have

1

hr

∑

k∈Ir

Mk

(

q

(

tk
ρ

))

=
1

hr

∑

1

Mk

(

q

(

tk
ρ

))

+
1

hr

∑

2

Mk

(

q

(

tk
ρ

))

≤ K
hr
card{k ∈ Ir : q(tk) ≥ ερ}+ 1

hr

∑

k∈Ir

Mk

(

ε
ρ

)

.

Hence (xk) ∈ ℓ∞(q,∆n
m) ∩ w1(M , θ,∆n

m, p, q).

(ii) Proof is similar to that of part (i).
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