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Quasi-Einstein Manifolds
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Abstract

We give characterizations of generalized quasi-Einstein manifolds for
both even and odd dimensions.

1 Introduction

A Riemannian manifold (M, g), (n > 2), is said to be an Einstein manifold if
its Ricci tensor S satisfies the condition S = -g, where r denotes the scalar
curvature of M. The notion of a quasi-Einstein manifold was introduced by
M. C. Chaki and R. K. Maity in [2]. A non-flat Riemannian manifold (M, g),
(n > 2), is defined to be a quasi-Finstein manifold if the condition

S(X,Y)=ag(X,Y) + BAX)A®Y) (1)

is fulfilled on M, where o and § are scalars of which 5 £ 0 and A is a non-zero
1-form such that

9(X,§) = A(X), (2)
for every vector field X ; ¢ being a unit vector field. If [ = 0, then the

manifold reduces to an Einstein manifold.
The relation (1) can be written as follows

Q=al+PARE,
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where @ is the Ricci operator and I is the identity function.

Quasi-Einstein manifolds arose during the study of exact solutions of the
Einstein field equations as well as during considerations of quasi-umbilical
hypersurfaces. For instance, the Robertson-Walker space-times are quasi-
Einstein manifolds. For more information about quasi-Einstein manifolds see
[7], [8] and [9].

A non-flat Riemannian manifold is called a generalized quasi-Finstein man-
ifold (see [6]), if its Ricci tensor S satisfies the condition

S(X,Y) = ag(X,Y) + BAX)A(Y) +vB(X)B(Y), (3)

where «, 8 and «y are certain non-zero scalars and A, B are two non-zero 1-
forms. The unit vector fields &; and & corresponding to the 1-forms A and B
are defined by

9(X, &) = A(X) , 9(X, &) = B(X), (4)

respectively, and the vector fields & and &, are orthogonal, i.e., g(&1,&2) = 0.
If v=0, then the manifold reduces to a quasi-Einstein manifold.
The generalized quasi-Einstein condition (3) can be also written as

Q=al+PARE +vB® &.

In [6], U. C. De and G. C. Ghosh showed that a 2-quasi umbilical hypersur-
face of an Euclidean space is a generalized quasi-Einstein manifold. In [11], the
present authors generalized the result of De and Ghosh and they proved that
a 2-quasi umbilical hypersurface of a Riemannian space of constant curvature
M"™*1(c) is a generalized quasi-Einstein manifold.

Let M be an m-dimensional, m > 3, Riemannian manifold and p € M.
Denote by K(m) or K (u A v) the sectional curvature of M associated with a
plane section m C T, M, where {u, v} is an orthonormal basis of 7. For any
n-dimensional subspace L C T,M, 2 < n < m, its scalar curvature T(L) is
denoted by

T(L)= Y K(eihey)

1<i<j<n
where {e1,...,e,} is any orthonormal basis of L [4]. When L = T,M, the

scalar curvature 7(L) is just the scalar curvature 7(p) of M at p.

The well-known characterization of 4-dimensional Einstein spaces was given
by I. M. Singer and J. A. Thorpe in [12] as follows:

Theorem 1.1. A Riemannian 4-manifold M is an Einstein space if and only
if K(r) = K(nt) for any plane section = C T,M, where © denotes the
orthogonal complement of m in T,M.
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As a generalization of the Theorem 1.1, in [4], B.Y. Chen, F. Dillen,
L.Verstraelen and L.Vrancken gave the following result:

Theorem 1.2. A Riemannian 2n-manifold M is an Einstein space if and
only if (L) = 7(L*) for any n-plane section L C T,M, where L+ denotes the
orthogonal complement of L in T,M, at p € M.

On the other hand, in [10] D. Dumitru obtained the following result for
odd dimensional Einstein spaces:

Theorem 1.3. A Riemannian (2n + 1)-manifold M is an FEinstein space if
and only if T(L) + % = 7(L*) for any n-plane section L C T,M, where L
denotes the orthogonal complement of L in T,M, at p € M.

Theorem 1.2 and Theorem 1.3 were generalized by C.L. Bejan in [1] as
follows:

Theorem 1.4. Let (M,g) be a Riemannian (2n + 1)-manifold, with n > 2.
Then M s quasi-FEinstein if and only if the Ricci operator Q has an eigenvector
field &€ such that at any p € M, there exist two real numbers a,b satisfying
7(P) +a = 7(Pt) and 7(N) +b = 7(N*1), for any n-plane section P and
(n + 1)-plane section N, both orthogonal to § in T,M, where Pt and N+
denote respectively the orthogonal complements of P and N in T, M.

Theorem 1.5. Let (M, g) be a Riemannian 2n-manifold, with n > 2. Then
M is quasi-Finstein if and only if the Ricci operator @ has an eigenvector
field & such that at any p € M, there exist two real numbers a,b satisfying
7(P) + ¢ = 7(P1), for any n-plane section P orthogonal to & in T,M, where
Pt denotes the orthogonal complement of P in T,M.

Motivated by the above studies, as generalizations of quasi-Einstein man-
ifolds, we give characterizations of generalized quasi-Einstein manifolds for
both even and odd dimensions.

2 Characterizations of Generalized Quasi-Einstein Man-
ifolds

Now, we consider two results which characterize generalized quasi-Einstein
spaces in even and odd dimensions, by generalizing the characterizations of
quasi-Einstein spaces given in [1] :

Theorem 2.1. Let (M, g) be a Riemannian (2n + 1)-manifold, with n > 2.
Then M 1is generalized quasi-Einstein if and only if the Ricci operator Q has
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eigenvector fields &1 and & such that at any p € M, there exist three real
numbers a,b and c satisfying

T(P)+a=7(Pt); &,6& € TpPJ‘

7(N)+b=71(N1); & €T,N,& € T,N*
and

7(R) +c=71(RY); & €T,R & e TR

for any n-plane sections P, N and (n+1)-plane section R, where P+, N* and

Rt denote the orthogonal complements of P, N and R in T,M, respectively,
(atfty) ¢ (a=f+y) . _ (h=a=f)
2 2 2

and a = c

Proof. Assume that M is a (2n + 1)-dimensional generalized quasi-Einstein
manifold, such that

S(X,Y) = ag(X,Y) + BAX)A(Y) + vB(X)B(Y), (5)
for any vector fields X,Y holds on M, where A and B are defined by

The equation (5) shows that &; and &3 are eigenvector fields of Q.

Let P C T, M be an n-plane orthogonal to §; and &; and let {eq,...,e,} be
an orthonormal basis of it. Since &; and &; are orthogonal to P, we can take an
orthonormal basis {€,41, ..., €2n, €an11} of PL such that ey, = & and ey, 11 =
&a, respectively. Thus, {e1,...,€n, €nt1, .-y €2, €241} is an orthonormal basis
of T, M. Then taking X =Y =e¢; in (5), we can write

2n+1 a, 1<1<2n—-1
S(ei,e;) = ZR(ej,ei,ei,ej) = a+ B, i=2n
j=1 a+y, 1=2n+1

By the use of (5) for any 1 <4 < 2n+ 1, we can write
S(el, 61) = K(€1A€2)+K(61/\63)+...+K(€1/\62n_1)—|—K(€1/\§1)+K(61/\€2) = «,

5(627 62) = K(eg/\el)+K(62/\63)+...+K(62/\62n_1)+K(62/\€1)+K(62/\§2) = qQ,

S(ean—1,€2m-1) = K(ean—1Ae1)+K (ean_1Ae2)+... 4+ K (e2,_1A\&1 )+ K (e2,_1AE2) = a,
S(&,6) =K ne)+ K& Neg)+ ...+ K(§1 Nean—1) + K(§1 N &) = a+ 5,
S(&,&) = K(&aNe)+ K(EaNeg)+ ...+ K(a Neap—1) + K(Ea AE) = a+ 1.
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Now, by summing up the first n-equations, we get

27(P) + Z K(e; Nej) = na. (6)

1<i<n<j<2n+1

By summing up the last (n 4 1)-equations, we also get

2P+ S Kleihe)=(m+Datfry (]
1<j<n+1<i<2n+1

Then, by substracting the equation (6) from (7), we obtain

r(P) - 7(p) = EHIED), 0
Similarly, let N C T,,M be an n-plane orthogonal to & and let {eq, ...,e,—1,€n}
be an orthonormal basis of it. Since &3 is orthogonal to N, we can take an
orthonormal basis {€,41,...,2n,€2n4+1} of N+ orthogonal to &1, such that
en =& and egnt1 = &o, respectively. Thus, {e1, ..., €n, €nt1, -, €2n, €2nt1} 1S
an orthonormal basis of T, M. By making use of the above (2n + 1) equations
for S(ei,e;), 1 <i < 2n+1, from the sum of the first n-equations we obtain

2r(N) + > K(eihej) =na+p, (9)
1<i<n<j<2n+1

and from the sum of the last (n + 1)-equations, we have

2r(N+) + > K(e; Aej) = (n+1)a+1. (10)

1<j<n+1<i<2n+1
By substracting the equation (9) from (10), we find

F(NY) = 7(N) = W

Analogously, let R C T,M be an (n + 1)-plane orthogonal to & and let
{e1,...,en,ens1} be an orthonormal basis of it. Since & is orthogonal to R,

we can take an orthonormal basis {2, ..., €25, €241} Of Rt orthogonal to &7,

such that e, 1 = & and e 41 = &2, respectively. Thus, {eq, ..., €n, €n41, o) €20, €2nt1}
is an orthonormal basis of T, M. Similarly writing again the above (2n + 1)-
equations for S(e;,e;), 1 < i < 2n + 1, from the sum of the first (n + 1)-
equations we get

27(R) + > K(ei Aej) = (n+1a+ 8, (11)

1<i<n+1<j<2n+1



412 SIBEL SULAR aAND CraaN OZGUR

and from the sum of the last n-equations, we have

27(R*) + > K(eiNej) =na+7. (12)

1<j<n<i<2n+1
Again by substracting (11) from (12), it follows that

—a-p)

r(RY) - 7(R) = 15

Therefore the direct statement is satisfied for

(=a=p)

and c¢=

= (a+/.23+7), h— (a—§+’y)

Conversely, let v be an arbitrary unit vector of T, M, at p € M, orthogonal
to & and &. We take an orthonormal basis {e, ..., e, €nt1, ..., €2n, €241} Of
T, M such that v = eq, e,41 = &1 and ez 1 = &. We consider n-plane section
N and (n + 1)-plane section R in T,M as follows

N = span{es,...,ent1}
and
R= Span{eh ceey 6n+1}7

respectively. Then we have

1
N~ = span{e1, €nt2, .-y €20, €241}
and
1
R = span{enJer -0y €21y 62n+1}~

After some calculations we get

S(v,v) = [K(e1Neg)+ K(ex Aes)+ ...+ K(ep Aepyr)]

+[K(e1 Aepga) + ... + K(er Neap) + K(er Aeant)]

[F(R) = > K(eihe)]+[r(N*") - Y. K(eihe)
2<i<j<n+1 n+2<i<j<2n+1

= RYH —c—7(N)]+T(N)+b—7(RY)]=b—c

Therefore S(v,v) = b — ¢, for any unit vector v € T, M, ortohogonal to &; and
&. Then we can write for any 1 <1¢ < 2n + 1,

S(ei,e;) =b—c.
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Since S(v,v) = (b — ¢)g(v,v) for any unit vector v € T, M orthogonal to &
and &, it follows that

S(X,X)=(0b-0)g(X,X)+ (a—b)AX)A(X) (13)
and
SY,Y)=(0b—-c)gY,Y)+ (a+¢)B(Y)B(Y), (14)

for any X € [span{& }]t and Y € [span{&}]t, where A and B denote dual
forms of &; and & with respect to g, respectively.

In view of the equations (13) and (14), we get from their symmetry that S
with tensors (b—c¢)g+ (a—b)A® A and (b—¢)g+ (a+ ¢)B ® B must coincide
on the complement of £; and &5, respectively, that is,

S(X,)Y)=0b-0)g(X,Y)+ (a—0)AX)AY) + (a+¢)B(X)B(Y), (15)

for any X,Y € [span{&y, &}t
Since & and &, are eigenvector fields of @), we also have

S(X7£1) =0
and
S(Y,é-?) = Oa

for any X,Y € T, M orthogonal to &; and £». Thus, we can extend the equation
(15) to

S(X,Z2)=0b-0)g(X,Z2)+ (a—b)AX)A(Z)+ (a + ¢)B(X)B(Z), (16)

for any X € [span{&1, &}t and Z € T,M.
Now, let consider the n-plane section P and (n + 1)-plane section R in
T,M as follows

P = span{ey,....,en}

and
R = span{ey, ...,en, &1},

respectively. Then we have
PJ_ = Span{gl, En42y ey €2n+1}

and
1
R~ = span{ent2, ..., €an, €2n41 }-
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Similarly after some calculations we obtain

S(&1,61) = [K(&GAhe)+K(E Nex)+ ...+ K (& Aeyp)]

HE(§1 A enta) + oo+ K (1 Aean) + K(§1 A eantr)]

[F(R) = Y K(einey)]+[r(Ph) - > K(eihe)
1<i<j<n n+2<i<j<2n+1

= [f(RY)—c—7(P)]+[r(P)+a—7(R")]=a—c

Then, we can write

S(€1,&) = (b—1c)g(&1,61) + (a = b)A(&)A(&). (17)
Analogously, let consider n-plane sections P and N in T, M as follows
P = span{ey,...,en}

and

N = span{eni1, ..., €an },
respectively. Therefore we have

PL = span{en_;,_l, ceey 62n7§2}

and

N+t = span{ey, ..., en, &2}
Similarly after some calculations we get
S(fg,fg) = [K(fg/\el)+K(§2/\€2)+...+K(52/\6n)]

+[K(€2 A en+1) +.t K(€2 A e2n)]
= [f(NY = D Klare)+[r(PH)— > Kleine))

1<i<j<n n+1<i<j<2n

= [f(N)+b—7(P)]+[r(P)+a—T7(N)=a+b.
Then we may write

5(82,62) = (b= 0)g(&2,&2) + (a + ) B(§2) B(&2)- (18)

By making use of the equations (16), (17) and (18), we obtain from the sym-
metry of the Ricci tensor S

S(X,)Y)=(0b-0)g(X,Y)+ (a—b)AX)AY) + (a+ ¢)B(X)B(Y),

for any X,Y € T,M . Thus, M is a generalized quasi-Einstein manifold for
a=b—c, B =a—0bandy = a+c, which finishes the proof of the theorem. [J
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Similar to the proof of Theorem 2.1, we can give the following theorem for
an even dimensional generalized quasi-Einstein manifold:

Theorem 2.2. Let (M, g) be a Riemannian 2n-manifold, withn > 2. Then M
1s generalized quasi-Finstein if and only if the Ricci operator QQ has eigenvector
fields & and & such that at any p € M, there exist three real numbers a,b and
¢ satisfying

T(P)+a=7(Pt); &,& e T,Pt

T(N)+b=71(N1L); &,6 € TpNJ‘

and

T(R)+c=71(RY); & €T,R,& € T,R+

for any n-plane sections P , R and (n—1)-plane section N, where P-, N+ and

Rt denote the orthogonal complements of P, N and R in T, M, respectively
a = (ﬁ;—v), b= (20¢+25+'y)7 c = (v;ﬁ).

and

Proof. Let P and R be n-plane sections and N be an (n — 1)-plane section
such that
P = span{ey,...,en}
R = Span{en+1a B3] 6271}7
and

N = span{ea,...,en},

respectively. Therefore the orthogonal complements of these sections can be
written as

Pt = span{eni1, ..., €2n}

Rt = spanfey,...,en},

and

Nt = span{ey, €pt1..., €on }.
Then the proof is similar to the proof of Theorem 2.1. O
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