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A Category of Control Systems

Rory Biggs and Claudiu C. Remsing

Abstract

We construct the concrete category LiCS of left-invariant control
systems (on Lie groups) and point out some very basic properties. Mor-
phisms in this category are examined briefly. Also, covering control sys-
tems are introduced and organized into a (comma) category associated
with LiCS.

1 Introduction

Category theory provides a convenient framework for studying various prob-
lems in systems and control theory. Such an approach has been proved use-
ful, for instance, in the study of quotients of nonlinear control systems [17],
bisimulations (for dynamical, control and hybrid systems) [5], [16] as well as
mechanical control systems [9]. Various aspects of the problem of reduction of
control affine systems (like factorisation, equivalence and classification) were
investigated by Elkin [3] (within an appropriate category AS). Other concrete
categories (of nonlinear control systems), like Con, CAS, ACCS or AConl,
have been constructed and studied by several authors in the last decade or so
(see, e.g., [16], [17], [9], [15]).

In this paper we shall construct the concrete category LiCS of left-invariant
control systems evolving on (real, finite-dimensional) Lie groups. Morphisms
in this category are transformations relating trajectories of one system to an-
other. We investigate which transformations propagate trajectories, as well as
the relationship between such transformations and Lie group homomorphisms.
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It turns out that a subclass of such transformations can be effectively char-
acterised by dynamics-preserving Lie algebra homomorphisms. Furthermore,
(covering systems and) covering morphisms are naturally introduced to relate
systems with similar dynamics on different Lie groups, but with the same Lie
algebra. (These are particularly useful when the Lie group under consideration
has no matrix representation.)

The paper is organized as follows. In section 2 we review some basic
facts regarding left-invariant control systems and associated structures such as
trajectories, attainable sets and orbits. In section 3 we construct the category
LiCS of left-invariant control systems and then examine briefly the (special)
morphisms in this category. In section 4 we extend the notion of a covering
of a Lie group to a covering of a LiCS-object. Also, we introduce a universal
covering system and show that the covering morphisms preserve the attainable
set. A few remarks conclude the paper.

2 Invariant control systems

Control systems come in many flavours. We take the view that a (smooth)
control system is given by a (smooth) dynamical polysystem (M,X), together
with a class U of “admissible inputs” (cf. [14]). Here, the state space M is a
(smooth) manifold, the dynamics (or dynamical law) X = (Xu)u∈U consists
of (smooth) vector fields on M, and the admissible controls u(·) : I → U may
be (Lebesgue) measurable or piecewise constant, or of some regularity type
between these two possibilities (on some interval I ⊆ R). The control set (or
input space) U is usually equipped with a separable metric space structure.
(This assumption includes the frequently occurring cases where U = R

ℓ or
where U is a compact convex subset of R

ℓ.)
Invariant control systems on Lie groups were first considered in 1972 by

Brockett [2] and by Jurdjevic and Sussmann [7]. A left-invariant control sys-
tem is a control system evolving on some (real, finite-dimensional) Lie group
G, whose dynamics Ξ : G×U → TG is invariant under left translations. (The
tangent bundle TG can be trivialized by left translations; hence TG will be
identified with G × g, where g = T1G denotes the associated Lie algebra.)
Such a control system is described as follows (cf. [6], [1], [13], [12])

ġ = Ξ (g, u), g ∈ G, u ∈ U

where Ξ (g, u) = g Ξ (1, u) ∈ TgG. (The notation g Ξ (1, u) stands for the
image of the element Ξ(1, u) ∈ g under the tangent map of the left translation
dLg = T1Lg : g → TgG.) For the purposes of this paper, we assume that U is a
smooth manifold (of dimension ℓ). Also, admissible controls will be piecewise
continuous U -valued maps, defined on compact intervals [0, T ]. Note that the
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family X = (Ξu = Ξ (·, u))u∈U consists of left-invariant vector fields on G. To
avoid degeneracies, we further assume that the (regular) parametrisation map
Ξ (1, ·) : U → g is an embedding. Since submanifolds are precisely the images
of embeddings, the condition above says, equivalently, that the image set Γ =
imΞ (1, ·) ⊆ g is a submanifold of g. We shall refer to this (parametrised)
submanifold as the trace of Σ. By identifying (the left-invariant vector field)
Ξ (·, u) ∈ XL(G) with Ξ (1, u) ∈ g, we have that Γ = {Ξu |u ∈ U}.

A trajectory for an admissible control u(·) : [0, T ] → U is an absolutely
continuous curve g(·) : [0, T ] → G such that ġ(t) = g(t) Ξ(1, u(t)) for almost
every t ∈ [0, T ]. The Carathéodory existence and uniqueness theorem of or-
dinary differential equations implies the local existence and global uniqueness
of trajectories. A remarkable property of left-invariant systems is that a left
translation of a trajectory is a trajectory.

The attainable set (from the identity 1 ∈ G ) is the set A of all terminal
points g(T ) of all trajectories g(·) : [0, T ] → G starting at 1. We say that
a system Σ is controllable if for any g0, g1 ∈ G, there exists a T ≥ 0 and a
trajectory g(·) : [0, T ] → G such that g(0) = g0 and g(T ) = g1. A system is
controllable if and only if A = G. Necessary conditions for controllability are
that the group G be connected and that the Lie algebra Lie (Γ) generated by
the trace Γ ⊆ g be the whole space g.

The orbit (through the identity 1) is the unique connected virtual Lie
subgroup O of the state space G with Lie algebra Lie (Γ) (cf. [4]). We
then have that A ⊆ O. An orbit may be described as the smallest connected
virtual Lie subgroup containing the attainable set. We have the following
characterisation of points in the orbit.

Proposition 1. Let Σ be a system with orbit O. Then g ∈ O if and only if
there exists a piecewise constant function v(·) : [0, T ] → {−1, 1}, an admissible
control u(·) : [0, T ] → U and an absolutely continuous mapping g(·) : [0, T ] →
G such that g(0) = 1, g(T ) = g and

ġ(t) = v(t) Ξ (g(t), u(t))

for almost every t ∈ [0, T ].

This follows as the collection of endpoints g(T ) form a path connected sub-
group of G and as such is the unique connect virtual Lie subgroup of G with
Lie algebra Lie (Γ), namely O. Closure of the group product is proven by
concatenation, and inversion by reverse traversing curves.
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3 The category LiCS

We define now the concrete category LiCS of left-invariant control systems.
An object in LiCS is a pair Σ = (G,Ξ), where the state space G is a (real,
finite-dimensional) Lie group and the dynamics Ξ : G × U → TG is left-
invariant; that is, for any g ∈ G, the diagram

G× U
Lg×idU

//

Ξ

��

G× U

Ξ

��

TG
TLg

// TG

commutes. This means that, for any g ∈ G and any u ∈ U , Ξ (g, u) =
g Ξ (1, u). The map Ξ(1, ·) : U → g is a (smooth) embedding (hence, the trace
Γ is a submanifold of the Lie algebra g). A morphism Φ = (φ, ϕ) : Σ → Σ′

in LiCS is a mapping

Φ : G× U → G
′ × U ′, (g, u) 7→ (φ(g), ϕ(g, u))

where the state component φ : G → G
′ and the feedback component ϕ :

G× U → U ′ are smooth maps such that the diagram

G× U

Ξ

��

Φ
// G

′ × U ′

Ξ′

��

TG
Tφ

// TG′

commutes. The “invariance condition” is equivalent to the condition that, for
any LiCS-object Σ = (G,Ξ) and any g ∈ G, Lg × idU is a LiCS-morphism.

Remark. The category LiCS may be viewed as an “extension” of the category
LGrp of (real, finite dimensional) Lie groups (in the sense that it has a
subcategory functorially isomorphic to it).

Henceforth, we shall refer to a LiCS-object simply as a system and to
a LiCS-morphism as a morphism. We shall customarily call the surjective
morphisms, epimorphisms and the bijective morhisms, bimorphisms. For a
morphism Φ = (φ, ϕ), we will say that (the feedback component) ϕ is G-
invariant if it does not depend on G explicitly.

We say that a system Σ = (G,Ξ) is connected if its state space G is
connected. Also, such a system has full rank if its trace generates the Lie
algebra g (i.e., Lie (Γ) = g).
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Remark. The left-invariant control affine systems form a full subcategory of
LiCS, denoted by LiCAS. A LiCAS-object is a system Σ = (G,Ξ) whose
parametrisation map is affine:

Ξ(1, ·) : Rℓ → g, u 7→ A+ u1B1 + · · ·+ uℓBℓ.

Any system with an affine trace is isomorphic to a LiCAS-object by means of
a reparametrisation of the trace (see proposition 6). A pertinent specialisation
is that the feedback component of a morphism in LiCAS be affine (cf. [15]).
This means that, if Φ = (φ, ϕ) : Σ → Σ′ is a morphism in LiCAS, then

ϕ(g, u) = ϕ(g, 0) + Λ(g) · u

where (for each g ∈ G) Λ(g) ∈ L(Rℓ,Rℓ′).

We shall investigate some basic properties of the morphisms. We start
with a few observations, collected up in the next proposition. The proof is
easy and will be omitted.

Proposition 2. Let Σ and Σ′ be two systems.

(i) If Φ = (φ, ϕ) : Σ → Σ′ is a morphism, then (the feedback component)
ϕ is uniquely determined by

Ξ′ (1, ϕ(g, u)) = T1

(
L(φ(g))−1 ◦ φ ◦ Lg

)
· Ξ (1, u).

(ii) If Φ,Φ′ : Σ → Σ′ are morphisms, then Φ = Φ′ if and only if φ = φ′.

(iii) If φ : G → G
′ is a smooth map such that (for all g ∈ G)

T1

(
L(φ(g))−1 ◦ φ ◦ Lg

)
· Γ ⊆ Γ′

then there exists a (unique) morphism Φ = (φ, ϕ) : Σ → Σ′.

Propagating trajectories from a system to another is a desirable feature
since most properties of control systems are (or, at least, can be related to)
properties of their trajectories. The morphisms in LiCS are precisely those
based on trajectory propagating maps.

Proposition 3. Let Σ = (G,Ξ) and Σ′ = (G′,Ξ′) be two systems and let
φ : G → G

′ be a smooth map. Then there exists a (unique) morphism Φ =
(φ, ϕ) : Σ → Σ′ if and only if φ maps trajectories of Σ to trajectories of Σ′.

Proof. Assume Φ = (φ, ϕ) : Σ → Σ′ is a morphism. Let g(·) : [0, T ] → G be
a trajectory of Σ. Then φ ◦ g(·) : [0, T ] → G

′ is a trajectory of Σ′. Indeed,
we have that (almost everywhere)

d

dt
φ(g(t)) = Tg(t)φ · ġ(t) = Tg(t)φ · Ξ (g(t), u(t)) = Ξ′ (φ(g(t)), ϕ(g(t), u(t))).
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Since the map t 7→ ϕ(g(t), u(t)) : [0, T ] → U ′ is piecewise continuous, it is an
admissible control of Σ′ and hence φ ◦ g(·) is a trajectory of Σ′ .

For the converse, assume that φ maps each trajectory of Σ to a trajectory
of Σ′ . Let g ∈ G , u ∈ U and g(·) : [0, T ] → G be the trajectory of Σ defined
by g(0) = g and ġ(t) = Ξ (g(t), u). Then φ ◦ g(·) is a trajectory of Σ and
hence there exists a (piecewise continuous) control w(·) : [0, T ] → U ′ such that
d
dt
φ(g(t)) = Ξ′ (φ(g(t)), w(t)) implying that T1

(
L(φ(g))−1 ◦ φ ◦ Lg

)
·Ξ (1, u) ∈

Γ′. Thus

T1

(
L(φ(g))−1 ◦ φ ◦ Lg

)
· Γ ⊆ Γ′

and hence (by proposition 2), there exists a (unique) morphism Φ with φ as
state component.

Remark. The above characterisation of trajectory propagating maps is similar
to the one presented in [11] for a class of partially more general control systems.

Corollary. Let Φ = (φ, ϕ) : Σ → Σ′ be a morphism. Then φ(A) ⊆ φ(1)A′.

Corollary. Let Φ = (φ, ϕ) : Σ → Σ′ be a morphism with (the state space
component) φ surjective. If Σ is controllable, then so is Σ′. (Equivalently,
if Σ′ is not controllable, then neither is Σ.)

Of particular interest in the study of (left-invariant control) systems are
diffeomorphisms between the state spaces of the two systems that preserve
left-invariant vector fields. As such, it is of interest to characterise those
morphisms for which the push forward of a left-invariant vector field (by the
state component of the morphism) is also left-invariant.

Proposition 4. Let Φ = (φ, ϕ) : Σ → Σ′ be a morphism such that (the state
component) φ is a diffeomorphism. Then the push forward φ∗Ξu of a left-
invariant vector field Ξu of Σ is a left-invariant vector field on Σ′ if and
only if (the feedback component) ϕ is G-invariant.

Proof. Let u ∈ U and g ∈ G. We have (by the definition of the push forward)

(φ∗Ξu)(φ(g)) = Tgφ · Ξ(g, u) = Ξ′ (φ(g), ϕ(g, u)).

Then (φ∗Ξu)(1) = Bu ∈ Γ′ . Assuming that φ∗Ξu is left invariant, we have
that (φ∗Ξu)(φ(g)) = T1Lφ(g) · Bu. Thus Ξ′ (1, ϕ(g, u)) = Bu for all g ∈ G.
As Ξ′ (1, ·) is injective, the result follows.

Conversely, assuming ϕ is G-invariant, we have that (φ∗Ξu)(φ(g)) =
T1Lφ(g) · Ξ

′ (1, ϕ(1, u)). Thus φ∗Ξu = Ξ′

ϕ(1,u) is a left-invariant vector field.
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Remark. The category LiCS is not balanced (i.e., not every bimorphism is
an isomorphism). Indeed, consider the system Σ = (R,Ξ), where

Ξ(1, ·) : R0 = {0} → R, 0 7→ 0 (here 1 = 0 ∈ R).

Then (φ, ϕ) : Σ → Σ, (x, 0) 7→ (x3, 0) is a bimorphism, but not an isomor-
phism (as x 7→ x3 is not a diffeomorphism).

We do have the following characterisation of isomorphisms in LiCS.

Proposition 5. A morphism Φ = (φ, ϕ) : Σ → Σ′ is an isomorphism if and
only if it is a bimorphism and (the state component) φ has full rank.

Proof. One implication is clearly trivial. For the converse, assume that Φ =
(φ, ϕ) is a bimorphism and that φ has full rank. Then it follows that φ : G →
G
′ is a diffeomorphism. As Φ is an epimorphism, we have that (for g ∈ G)

T1

(
L(φ(g))−1 ◦ φ ◦ Lg

)
· Γ = Γ′.

Hence, we have that (for g′ ∈ G
′)

T1

(
L(φ−1(g′))−1 ◦ φ−1 ◦ Lg′

)
· Γ′ = Γ.

Thus there exists a (unique) morphism Φ′ : Σ′ → Σ with φ−1 as state
component (see proposition 2). It is easy to verify that Φ′ ◦ Φ = idΣ and
Φ ◦ Φ′ = idΣ′ .

Next we show that the reparametrisation of the trace of a system yields
an isomorphic system.

Proposition 6. Let Σ and Σ′ be two systems with the same state space
G and the same trace Γ ⊆ g. Then there exists an isomorphism Φ : Σ →
Σ′, (g, u) 7→ (g, ϕ̄(u)), where ϕ̄ : U → U ′ is a diffeomorphism.

Proof. As Ξ(1, ·) : U → Γ and Ξ′(1, ·) : U ′ → Γ are diffeomorphisms, we
define ϕ̄ to be the (unique) diffeomorphism such that Ξ(1, ·) = Ξ′(1, ϕ̄(·)).
Then we have that T1idG · Ξ (g, u) = Ξ′ (g, ϕ̄(u)) and so (by proposition 5)
idG × ϕ̄ is the required isomorphism.

To conclude this section, we investigate the relationship between mor-
phisms in LGrp (i.e., Lie group homomorphisms) and morphisms in LiCS.

Proposition 7. Let Σ and Σ′ be two systems.

(i) If φ : G → G
′ is a Lie group homomorphism such that T1φ · Γ ⊆ Γ′,

then there exists a unique morphism Φ = (φ, ϕ) : Σ → Σ′ such that (the
feedback component) ϕ is G-invariant.



362 Rory BIGGS and Claudiu C. REMSING

(ii) If Φ = (φ, ϕ) : Σ → Σ′ is a morphism such that φ(1) = 1 and (the
feedback component) ϕ is G-invariant, then φ|O : O → G

′ is a Lie group
homomorphism such that im (φ|O) ⊆ O

′.

Proof. (i) We have that L(φ(g))−1 ◦ φ ◦ Lg = φ, thus (for g ∈ G, u ∈ U )

T1(L(φ(g))−1 ◦ φ ◦ Lg) · Γ = T1φ · Γ ⊆ Γ′.

Then (by proposition 2) there exists a unique morphism (φ, ϕ) : Σ → Σ′ such
that Ξ′(1, ϕ(g, u)) = T1φ · Ξ(1, u). Hence, ϕ is G-invariant.

(ii) As O is an immersed submanifold of G, we have that φ|
O

is smooth.
Let g1, g2 ∈ O. Then there exist Ti > 0, vi(·) : [0, Ti] → {−1, 1}, ui(·) :
[0, Ti] → U and gi(·) : [0, Ti] → G, i = 1, 2 as prescribed in proposition 1.

Hence, we have (almost everywhere) that

d

dt
φ(g1(t)) = Tg1(t)φ · v1(t) Ξ (g1(t), u1(t)) = v1(t) Ξ

′ (φ(g1(t)), ϕ(g1(t), u1(t))).

Since t 7→ ϕ(g1(t), u1(t)) is an admissible control, it follows that φ(g1) ∈ O
′

(by proposition 1) and so im(φ|
O
) ⊆ O

′. We are left to show that φ|
O

is a
group homomorphism. Consider the (concatenated) curves

c1(t) =

{
g1(t) 0 ≤ t ≤ T1

g1 g2(t− T1) T1 < t ≤ T1 + T2

c2(t) =

{
φ(g1(t)) 0 ≤ t ≤ T1

φ(g1)φ(g2(t− T1)) T1 < t ≤ T1 + T2.

Then, as ϕ is G-invariant, we have (almost everywhere) that

d

dt
φ(c1(t)) =

{
v1(t) Ξ

′ (φ(c1(t)), ϕ(1, u1(t))) 0 ≤ t ≤ T1

v2(t) Ξ
′ (φ(c1(t)), ϕ(1, u2(t− T1))) T1 < t ≤ T1 + T2

d

dt
c2(t) =

{
v1(t) Ξ

′ (c2(t), ϕ(1, u1(t))) 0 ≤ t ≤ T1

v2(t) Ξ
′ (c2(t), ϕ(1, u2(t− T1))) T1 < t ≤ T1 + T2.

Thus, as φ ◦ c1(·) and c2(·) solve the same Cauchy problem, we get that they
are equal. Hence φ(g1 g2) = φ(c1(T1 + T2)) = c2(T1 + T2) = φ(g1)φ(g2).

Corollary. Let Σ and Σ′ be full-rank connected systems and φ : G → G
′

be a smooth map such that φ(1) = 1. Then there exists a unique morphism
Φ = (φ, ϕ) : Σ → Σ′ such that (the feedback component) ϕ is G-invariant if
and only if φ is a Lie group homomorphism such that T1φ · Γ ⊆ Γ′.
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4 Covering systems

We say that a connected system Σ′ covers a connected system Σ if there
exists an epimorphism Θ = (θ, ϑ) : Σ′ → Σ such that (the state component)
θ : G′ → G is a Lie group epimorphism with discrete kernel. Such a morphism
is called a covering morphism and the pair (Σ′,Θ) will be referred to as a
covering of Σ. Let us note that, for a covering morphism Θ = (θ, ϑ), the
feedback component ϑ is G

′-invariant (by proposition 7) and T1θ · Γ
′ = Γ.

Remark. The pair (Θ,Σ) is a quotient object of Σ′ in LiCS.

Coverings can be viewed as objects of a comma category. We form a
subcategory of LiCS containing only connected systems and only covering
morphisms as morphisms; we denote the inclusion functor for this subcategory
by I. The comma category (I ↓ Σ) then has coverings of Σ as objects.
Morphisms Θ : (Σ′

1,Θ1) → (Σ′

2,Θ2) in (I ↓ Σ) are covering morphisms
Θ : Σ′

1 → Σ′

2 such that Θ1 = Θ2 ◦Θ (cf. [10]).
Given a connected system Σ = (G,Ξ) and a Lie group covering homomor-

phism θ : G′ → G (with G
′ connected), a covering (Σ′,Θ) of Σ such that θ

is the state component of Θ, can be constructed as follows:

Ξ′ : G′ × U → TG′, (g′, u) 7→ (Tg′θ)−1 · Ξ (θ(g′), u)

Θ : G′ × U → G× U, (g′, u) 7→ (θ(g′), u).

We say that a covering (Σ̃,Θ) of a connected system Σ is a universal

covering if the state space G̃ is simply connected. For any connected system
Σ there is a (universal) Lie group covering homomorphism θ : G̃ → G. Thus

we can always construct a covering (Σ̃,Θ) of a connected system Σ such

that the state space G̃ is simply connected. A universal covering (Σ̃,Θ) may
be viewed as an initial object of the comma category (I ↓ Σ). Thus, in
particular, the category (I ↓ Σ) has initial objects.

Proposition 8. A universal covering (Σ̃,Θ) of a connected system Σ is an
initial object in the comma category (I ↓ Σ).

Proof. Suppose (Σ̃,Θ1) is a universal covering of a connected system Σ. We
need to show that for any object (Σ′,Θ2) in (I ↓ Σ), there exists a unique

morphism Θ : (Σ̃,Θ1) → (Σ′,Θ2) in (I ↓ Σ). We have an isomorphism of

Lie algebras (T1θ2)
−1 · T1θ1 : g̃ → g′. As G̃ is simply connected, there exists

a unique Lie group epimorphism θ : G̃ → G
′ with discrete kernel and tangent

map (T1θ2)
−1 · T1θ1 at identity (see [4], [8]). Now T1θ · Γ̃ = Γ′, thus there

exists (by proposition 7) a unique covering morphism Θ = (θ, ϑ) : Σ̃ → Σ′.
As θ1 = θ2 ◦ θ by the construction of θ, (by proposition 2) we get that
Θ1 = Θ2 ◦Θ.
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As initial objects of a category are unique up to isomorphism, we have the
following corollary.

Corollary. A universal covering (Σ̃,Θ) of a connected system Σ is unique
up to an isomorphism in (I ↓ Σ).

Universal coverings (of connected systems) satisfy the following universal
property.

Proposition 9. Let Σ and Σ′ be two systems. Then, given a morphism Φ :
Σ → Σ′, universal coverings (Σ̃,Θ) and (Σ̃′,Θ′) of Σ and Σ′, respectively,

and elements g̃ ∈ G̃, g̃′ ∈ G̃
′ such that φ(θ(g̃)) = θ′(g̃′), there exists a unique

covering morphism Φ̃ : Σ̃ → Σ̃′ such that φ̃(g̃) = g̃′ and the diagram

G̃× Ũ

Θ

��

Φ̃
// G̃

′ × Ũ ′

Θ′

��

G× U
Φ

// G
′ × U ′

commutes.

Proof. The functorial property of a universal covering for (connected) smooth

manifolds (cf. [4], [8]) implies the existence of a unique smooth map φ̃ : G̃ →

G̃
′ such that φ̃(g̃) = g̃′ and θ′ ◦ φ̃ = φ ◦ θ . Hence, we have (for g̃ ∈ G̃)

Tg̃φ̃ · (Tg̃θ)
−1

· T1Lθ(g̃) · Γ =
(
Tφ̃(g̃)θ

′

)−1

· Tθ(g̃)φ · T1Lθ(g̃) · Γ.

This implies

T1

(
L(φ̃(g̃))

−1 ◦ φ̃ ◦ Lg̃

)
· Γ̃ ⊆ Γ̃′.

Thus (by proposition 2), there exists a unique morphism Φ̃ = (φ̃, ϕ̃) : Σ̃ → Σ̃′

and Θ′◦ Φ̃ = Φ ◦Θ (as the corresponding state components are identical).

Proposition 10. If (Σ′,Θ) is a covering of a connected system Σ, then
θ(A′) = A.

Proof. By the (first) corollary to proposition 3, we have that θ(A′) ⊆ A. For
g ∈ A, there exists a trajectory g(·) : [0, T ] → G with admissible control
u(·) : [0, T ] → U such that g(0) = 1, g(T ) = g and ġ(t) = g(t) Ξ(1, u(t))
almost everywhere. Let u′(·) : [0, T ] → U ′ be defined by

Ξ′ (1, u′(t)) = (T1θ)
−1

· Ξ (1, u(t)).
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Then u′(·) is an admissible control and the Cauchy problem

ġ′(t) = g′(t) Ξ′ (1, u′(t)) and g′(0) = 1

has a unique solution g′(·) : [0, T ] → G
′. Then g′(·) is a trajectory of Σ′ and,

as T1θ ·Ξ
′ (1, u′(t)) = Ξ (1, u(t))), the two trajectories φ◦g′(·) and g(·) solve

the same Cauchy problem. So we get θ ◦ g′(·) = g(·). Hence, as g′(T ) ∈ A
′

and θ(g′(T )) = g, we conclude that A ⊆ θ(A′) .

5 Final remarks

In the study of (left-invariant) control systems, it is natural to restrict our-
selves to controllable systems and transformations of such systems preserving
left-invariant vector fields. We have that controllable systems are necessarily
full-rank connected systems and that a morphism Φ = (φ, ϕ) (between such
systems), preserving left-invariant vector fields, is exactly one whose feedback
component is G-invariant. But this, in turn, is equivalent to the state com-
ponent φ being a Lie group homomorphism such that T1φ · Γ ⊆ Γ′. This
provides a simple algebraic characterisation of the morphisms of interest.

With the basic structure of LiCS in place, it is of interest to study the
(state space and feedback) equivalence of such systems. The discussion above
indicates that these equivalences can be specialised and algebraically charac-
terised in LiCS. These characterisations would then create the possibility
of effectively classifying systems of a certain class (for example, low dimen-
sional LiCAS-objects). In this setting, covering morphisms would serve to
relate locally equivalent systems on different Lie groups, but with the same
Lie algebra. All these are topics for future research.
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