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Iterative methods for zero points of accretive

operators in Banach spaces

Sheng Hua Wang, Sun Young Cho, Xiao Long Qin

Abstract

The purpose of this paper is to consider the problem of approxi-

mating zero points of accretive operators. We introduce and analysis

Mann-type iterative algorithm with errors and Halpern-type iterative

algorithms with errors. Weak and strong convergence theorems are

established in a real Banach space. As applications, we consider the

problem of approximating a minimizer of a proper lower semicontinuous

convex function in a real Hilbert space.

1 Introduction-Preliminaries

Let C be a nonempty closed and convex subset of a Banach space E and
E∗ the dual space of E. Let 〈·, ·〉 denote the pairing between E and E∗. The
normalized duality mapping J : E → 2E

∗

is defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}

for all x ∈ E. In the sequel, we use j to denote the single-valued normalized
duality mapping. Let U = {x ∈ E : ‖x‖ = 1}. E is said to be smooth or said
to be have a Gâteaux differentiable norm if the limit

lim
t→0

‖x+ ty‖ − ‖x‖

t
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exists for each x, y ∈ U . E is said to have a uniformly Gâteaux differentiable
norm if for each y ∈ U , the limit is attained uniformly for all x ∈ U . E is said
to be uniformly smooth or said to be have a uniformly Fréchet differentiable
norm if the limit is attained uniformly for x, y ∈ U. It is known that if the
norm of E is uniformly Gâteaux differentiable, then the duality mapping J

is single valued and uniformly norm to weak∗ continuous on each bounded
subset of E.

The modulus of convexity of E is defined by

δ(ǫ) = inf{1−
‖x+ y‖

2
: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ǫ}

for every ǫ with 0 ≤ ǫ ≤ 2. A Banach space E is said to be uniformly convex
if δ(ǫ) > 0 for every ǫ > 0. If E is uniformly convex, then

∥

∥

∥

x+ y

2

∥

∥

∥
≤ r

(

1− δ(
ǫ

r
)
)

for every x, y ∈ E with ‖x‖ ≤ r, ‖y‖ ≤ r and ‖x− y‖ ≥ ǫ.
In this paper, → and ⇀ denote strong and weak convergence, respectively.
A Banach space E is said to satisfy Opial’s condition [13] if for any sequence

{xn} ⊂ E, xn ⇀ y implies that

lim inf
n→∞

‖xn − y‖ < lim inf
n→∞

‖xn − z‖

for all z ∈ E with z 6= y.

Recall that a mapping T : C → C is said to be nonexpanisve if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

In this paper, we use F (T ) to denote the set of fixed points of T . A closed
convex subset C of E is said to have the fixed point property for nonexpansive
mappings if every nonexpansive mapping of a bounded closed convex subset
D of C into itself has a fixed point in D.

A mapping P of C into itself is called a retraction if P 2 = P . If a mapping
P of C into itself is a retraction, then Pz = z for all z ∈ R(P ), where R(P ) is
the range of P . A subset D of C is called a nonexpansive retract of C if there
exists a nonexpansive retraction from C onto D.

Let I denote the identity operator on E. An operator A ⊂ E × E with
domain D(A) = {z ∈ E : Az 6= ∅} and range R(A) = ∪{Az : z ∈ D(A)} is
said to be accretive if for each xi ∈ D(A) and yi ∈ Axi, i = 1, 2, there exists
j(x1 − x2) ∈ J(x1 − x2) such that

〈y1 − y2, j(x1 − x2)〉 ≥ 0.
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An accretive operator A is said to satisfy the range condition if

D(A) ⊂ ∩r>0R(I + rA),

where D(A) denote the closure of D(A). An accretive operator A is said to
be m-accretive if R(I + rA) = E for all r > 0. In a real Hilbert space, an
operator A is m-accretive if and only if A is maximal monotone.

For an accretive operator A, we can define a nonexpansive single-valued
mapping Jr : R(I + rA) → D(A) by

Jr = (I + rA)−1

for each r > 0, which is called the resolvent of A. We also define the Yosida
approximation Ar by

Ar =
1

r
(I − Jr).

It is known that Arx ∈ AJrx for all x ∈ R(I + rA) and ‖Arx‖ ≤ inf{‖y‖ : y ∈
Ax} for all x ∈ D(A) ∩R(I + rA).

One of classical methods of studying the problem 0 ∈ Ax, where A ⊂ E×E

is an accretive operator, is the following:

x0 ∈ E, xn+1 = Jrnxn, n ≥ 0, (∆)

where Jrn = (I + rnA)
−1 and {rn} is a sequence of positive real numbers.

The convergence of (∆) has been studied by many authors; see, for exam-
ple, Benavides, Acedo and Xu [1], Brézis and Lions [2], Bruck [3], Bruck and
Passty [4], Bruck and Reich [5], Cho, Zhou and Kim [7], Ceng, Wu and Yao [8],
Kamimur and Takahashi [10,11], Pazy [14], Qin, Kang and Cho [15], Qin and
Su [16], Rockafellar [17], Reich [19-22], Takahashi and Ueda [23], Takahashi
[24], Xu [26] and Zhou [27].

In this paper, motivated by the research work going on in this direction,
we introduce and analysis Mann-type iterative algorithms with errors and
Halpern-type iterative algorithms with errors. Weak and strong convergence
theorems are established in a real Banach space.

In order to prove our main results, we need the following lemmas.

Lemma 1.1 ([21],[23]). Let E be a real reflexive Banach space whose norm is

uniformly Gâteaux differentiable and A ⊂ E × E be an accretive operator.

Suppose that every weakly compact convex subset of E has the fixed point

property for nonexpansive mappings. Let C be a nonempty, closed and convex

subset of E such that D(A) ⊂ C ⊂ ∩t>0R(I + tA). If A−1(0) 6= ∅, then the

strong limit limt→∞ Jtx exists and belongs to A−1(0) for all x ∈ C, where

Jt = (I + tA)−1 is the resolvent of A for all t > 0.
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Lemma 1.2 ([12]). Let {an}, {bn} and {cn} be three nonnegative real se-

quences satisfying

an+1 ≤ (1− tn)an + bn + cn, n ≥ 0,

where {tn} is a sequence in [0, 1]. Assume that the following conditions are

satisfied

(a)
∑∞

n=0 tn = ∞ and bn = o(tn);

(b)
∑∞

n=0 cn < ∞.

Then limn→∞ an = 0.

Lemma 1.3 ([6]). Let C be a nonempty closed and convex subset of a uni-

formly convex Banach space E and T : C → C a nonexpansive mapping. If

a sequence {xn} in C converges weakly to z ∈ C and {xn − Txn} converges

strongly to 0 as n → ∞, then Tz = z.

Lemma 1.4 ([25]). Let {an} and {bn} be sequences of positive numbers sat-

isfying

an+1 ≤ an + bn, n ≥ 0.

If
∑∞

n=0 bn < ∞, then the limit of {an} exists.

Lemma 1.5 ([9]). In a Banach space E, there holds the inequality

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉, x, y ∈ E,

where j(x+ y) ∈ J(x+ y).

2 Main results

Theorem 2.1. Let E be a real reflexive Banach space with a uniformly

Gâteaux differentiable norm and C a nonempty closed and convex subset of E.

Let P be a nonexpansive retraction of E onto C and A ⊂ E × E an accretive

operator with A−1(0) 6= ∅. Assume that D(A) ⊂ C ⊂ ∩r>0R(I + rA). Let

{xn} be a sequence generated by the following manner:

x0 ∈ E, xn+1 = αnu+ βnJrn(xn + en+1) + γnPfn, n ≥ 0, (Υ)

where u ∈ C is a fixed point, {fn} ⊂ E is a bounded sequence, {αn}, {βn}
and {γn} are sequences in (0, 1), {en} is a sequence in E, {rn} ⊂ (0,∞) and

Jrn = (I+rnA)
−1. Suppose that every weakly compact convex subset of E has

the fixed point property for nonexpansive mappings. Assume that the following

conditions are satisfied
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(a) αn + βn + γn = 1;

(b) limn→∞ αn = 0 and
∑∞

n=0 αn = ∞;

(c)
∑∞

n=0 γn < ∞ and
∑∞

n=1 ‖en‖ < ∞;

(d) rn → ∞ as n → ∞.

Then the sequence {xn} generated by (Υ) converges strongly to a zero of A.

Proof. First, we show that the sequence {xn} is bounded. Fixing p ∈ A−1(0),
we have

‖x1 − p‖ = ‖α0u+ β0Jr0(x0 + e1) + γ0Pf0 − p‖
≤ α0‖u− p‖+ β0‖Jr0(x0 + e1)− p‖+ γ0‖Pf0 − p‖
≤ α0‖u− p‖+ β0‖(x0 + e1)− p‖+ γ0‖f0 − p‖
≤ α0‖u− p‖+ β0(‖x0 − p‖+ ‖e1‖) + γ0‖f0 − p‖
≤ K,

where K = ‖u− p‖+ ‖x0 − p‖+ ‖e1‖+ ‖f0 − p‖ < ∞. Putting

M = max{K, sup
n≥0

‖fn − p‖},

we prove that

‖xn − p‖ ≤ M +
n
∑

i=1

‖ei‖, ∀n ≥ 1. (2.1)

It is easy to see that the result holds for n = 1. We assume that the result
holds for some n. It follows that

‖xn+1 − p‖ = ‖αnu+ βnJrn(xn + en+1) + γnPfn − p‖
≤ αn‖u− p‖+ βn‖Jrn(xn + en+1)− p‖+ γn‖Pfn − p‖
≤ αn‖u− p‖+ βn‖(xn + en+1)− p‖+ γn‖fn − p‖
≤ αn‖u− p‖+ βn‖xn − p‖+ ‖en+1‖+ γn‖fn − p‖
≤ αnM + βn(M +

∑n

i=0 ‖ei‖) + ‖en+1‖+ γnM

= M +
∑n+1

i=1 ‖ei‖.

This shows that (2.1) holds. From the condition
∑∞

i=1 ‖ei‖ < ∞, we see that
the sequence {xn} is bounded.

Next, we show that lim supn→∞〈u − z, J(xn+1 − z)〉 ≤ 0, where z =
limt→∞ Jtu, which is guaranteed by Lemma 1.1. Note that u−Jtu

t
∈ AJtu,

Arnxn ∈ AJrnxn and A is accretive. It follows that

〈Arnxn −
u− Jtu

t
, J(Jrnxn − Jtu)〉 ≥ 0.
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This implies that

〈u− Jtu, J(Jrnxn − Jtu)〉 ≤ 〈tArnxn, J(Jrnxn − Jtu)〉. (2.2)

On the other hand, we have

lim
n→∞

‖Arnxn‖ = lim
n→∞

‖
xn − Jrnxn

rn
‖ = 0.

In view of (2.2), we arrive at

lim sup
n→∞

〈u− Jtu, J(Jrnxn − Jtu)〉 ≤ 0, ∀t ≥ 0. (2.3)

Since z = limt→∞ Jtu and the norm of E is uniformly Gâteaux differentiable,
for any ǫ > 0, there exists t0 > 0 such that

|〈z − Jtu, J(Jrnxn − Jtu)〉| ≤
ǫ

2

and
|〈u− z, J(Jrnxn − Jtu)− J(Jrnxn − z)〉| ≤

ǫ

2

for all t ≥ t0 and n ≥ 0. It follows that

|〈u− Jtu, J(Jrnxn − Jtu)〉 − 〈u− z, J(Jrnxn − z)〉|
≤ |〈u− Jtu, J(Jrnxn − Jtu)〉 − 〈u− z, J(Jrnxn − Jtu)〉|

+|〈u− z, J(Jrnxn − Jtu)〉 − 〈u− z, J(Jrnxn − z)〉|
= |〈z − Jtu, J(Jrnxn − Jtu)〉|+ |〈u− z, J(Jrnxn − Jtu)− J(Jrnxn − z)〉|
≤ ǫ

(2.4)
for all t ≥ t0 and n ≥ 0. It follows from (2.3) and (2.4) that

lim sup
n→∞

〈u− z, J(Jrnxn − z)〉 ≤ lim sup
n→∞

〈u− Jtu, J(Jrnxn − Jtu)〉+ ǫ ≤ ǫ.

Since ǫ is arbitrary, we see that

lim sup
n→∞

〈u− z, J(Jrnxn − z)〉 ≤ 0. (2.5)

Note that
‖Jrnxn − Jrn(xn + en+1)‖ ≤ ‖en+1‖.

This implies that

lim
n→∞

‖Jrnxn − Jrn(xn + en+1)‖ = 0.
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Since E has a uniformly Gâteaux differentiable norm, we arrive at

lim sup
n→∞

〈u− z, J(Jrn(xn + en+1)− z)〉 ≤ 0. (2.6)

On the other hand, , we see from the iterative (Υ) that

xn+1 − Jrn(xn + en+1) = αn[u− Jrn(xn + en+1)] + γn[Pfn − Jrn(xn + en+1)].

That is,

‖xn+1−Jrn(xn+en+1)‖ ≤ αn‖u−Jrn(xn+en+1)‖+γn‖Pfn−Jrn(xn+en+1)‖.

From the conditions (b) and (c), we obtain that

lim sup
n→∞

‖xn+1 − Jrn(xn + en+1)‖ = 0,

which combines with (2.6) yields that

lim sup
n→∞

〈u− z, J(xn+1 − z)〉 ≤ 0. (2.7)

From the algorithm (Υ), we see that

xn+1 − z = αn(u− z) + βn[Jrn(xn + en+1)− z] + γn(Pfn − z)
= (1− αn)[Jrn(xn + en+1)− z] + αn(u− z) + γn[Pfn − Jrn(xn + en+1)].

It follows from Lemma 1.5 that

‖xn+1 − z‖2

≤ (1− αn)
2‖Jrn(xn + en+1)− z‖2 + 2αn〈u− z, J(xn+1 − z)〉

+2γn〈Pfn − Jrn(xn + en+1), J(xn+1 − z)〉
≤ (1− αn)‖(xn + en+1)− z‖2 + 2αn〈u− z, J(xn+1 − z)〉

+2γn‖Pfn − Jrn(xn + en+1)‖‖xn+1 − z‖
≤ (1− αn)(‖xn − z‖2 − 2〈en+1, J [(xn + en+1)− z]〉) + 2αn〈u− z, J(xn+1 − z)〉
+2γn‖fn − Jrn(xn + en+1)‖‖xn+1 − z‖

≤ (1− αn)(‖xn − z‖2 + 2‖en+1‖‖(xn + en+1)− z‖) + 2αn〈u− z, J(xn+1 − z)〉
+2γn‖fn − Jrn(xn + en+1)‖‖xn+1 − z‖

≤ (1− αn)‖xn − z‖2 + 2αn〈u− z, J(xn+1 − z)〉
+2γn‖fn − Jrn(xn + en+1)‖‖xn+1 − z‖+ 2‖en+1‖‖(xn + en+1)− z‖

≤ (1− αn)‖xn − z‖2 + 2αn〈u− z, J(xn+1 − z)〉+ (γn + ‖en+1‖)B,

where B is an appropriate constant such that

B ≥ max{sup
n≥0

{2‖fn − Jrn(xn + en+1)‖‖xn+1 − z‖}, sup
n≥0

{2‖(xn + en+1)− z‖}}
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Let λn = max{〈u − z, J(xn+1 − z)〉, 0}. Next, we show that limn→∞ λn = 0.
Indeed, from (2.7), for any give ǫ > 0, there exists a positive integer n1 such
that

〈u− z, J(xn+1 − z)〉 < ǫ, ∀n ≥ n1.

This implies that 0 ≤ λn < ǫ ∀n ≥ n1. Since ǫ > 0 is arbitrary, we see that
limn→∞ λn = 0. Put an = ‖xn − z‖, bn = 2αnλn, cn = (γn + ‖en+1‖)B
and tn = αn. In view of Lemma 1.2, we can obtain the desired conclusion
immediately. This completes the proof.

In a real Hilbert space, Theorem 2.1 is reduced to the following.

Corollary 2.2. Let H be a real Hilbert space and C a nonempty, closed

and convex subset of H. Let P be a metric projection of H onto C and

A ⊂ H ×H a monotone operator with A−1(0) 6= ∅. Assume that D(A) ⊂ C ⊂
∩r>0R(I + rA). Let {xn} be a sequence generated by the following manner:

x0 ∈ H, xn+1 = αnu+ βnJrn(xn + en+1) + γnPfn, n ≥ 0,

where u ∈ C is a fixed point, {fn} ⊂ H is a bounded sequence, {αn}, {βn}
and {γn} are sequences in (0, 1), {en} is a sequence in H, {rn} ⊂ (0,∞) and
Jrn = (I + rnA)

−1. Assume that the following conditions are satisfied

(a) αn + βn + γn = 1;

(b) limn→∞ αn = 0 and
∑∞

n=0 αn = ∞;

(c)
∑∞

n=0 γn < ∞ and
∑∞

n=1 ‖en‖ < ∞;

(d) rn → ∞ as n → ∞.

Then the sequence {xn} converges strongly to a zero of A.

Theorem 2.3. Let E be a real uniformly convex Banach space which satisfies

Opial’s condition and C a nonempty closed and convex subset of E. Let P be

a nonexpansive retraction of E onto C and A ⊂ E × E an accretive operator

with A−1(0) 6= ∅. Assume that D(A) ⊂ C ⊂ ∩r>0R(I + rA). Let {xn} be a

sequence generated by the following manner:

x0 ∈ C, xn+1 = αnxn + βnJrn(xn + en+1) + γnPfn, n ≥ 0, (ΥΥ)

where {fn} ⊂ E is a bounded sequence, {αn}, {βn} and {γn} are sequence in

(0, 1), {en} is a sequence in E, {rn} ⊂ (0,∞) and Jrn = (I+rnA)−1. Assume

that the following conditions are satisfied

(a) αn + βn + γn = 1;
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(b) lim supn→∞ αn < 1;

(c)
∑∞

n=0 γn < ∞ and
∑∞

n=1 ‖en‖ < ∞;

(d) lim infn→∞ rn > 0.

Then the sequence {xn} generated by (ΥΥ) converges weakly to a zero of A.

Proof. First, we show that the sequence {xn} is bounded. Fixing p ∈ A−1(0),
we have

‖x1 − p‖ = ‖α0x0 + β0Jr0(x0 + e1) + γ0Pf0 − p‖
≤ α0‖x0 − p‖+ β0‖Jr0(x0 + e1)− p‖+ γ0‖Pf0 − p‖
≤ α0‖x0 − p‖+ β0‖(x0 + e1)− p‖+ γ0‖f0 − p‖
≤ α0‖x0 − p‖+ β0(‖x0 − p‖+ ‖e1‖) + γ0‖f0 − p‖
≤ K ′,

where K ′ = ‖x0 − p‖+ ‖e1‖+ ‖f0 − p‖ < ∞. Putting

M ′ = max{K, sup
n≥0

‖fn − p‖},

we prove that

‖xn − p‖ ≤ M ′ +

n
∑

i=1

‖ei‖, ∀n ≥ 1. (2.8)

It is easy to see that the result holds for n = 1. We assume that the result
holds for some n. It follows that

‖xn+1 − p‖ = ‖αnxn + βnJrn(xn + en+1) + γnPfn − p‖
≤ αn‖xn − p‖+ βn‖Jrn(xn + en+1)− p‖+ γn‖Pfn − p‖
≤ αn‖xn − p‖+ βn‖(xn + en+1)− p‖+ γn‖fn − p‖
≤ αn‖xn − p‖+ βn‖xn − p‖+ ‖en+1‖+ γn‖fn − p‖
≤ αnM + βn(M +

∑n

i=0 ‖ei‖) + ‖en+1‖+ γnM

= M +
∑n+1

i=1 ‖ei‖.

This shows that (2.8) holds. From the condition
∑∞

i=1 ‖ei‖ < ∞, we see that
the sequence {xn} is bounded.

Next, we show that limn→∞ ‖xn − x∗‖ exists for any x∗ ∈ A−1(0). In fact,
we have

‖xn+1 − x∗‖ = ‖αnxn + βnJrn(xn + en+1) + γnPfn − x∗‖
≤ αn‖xn − x∗‖+ βn‖Jrn(xn + en+1)− x∗‖+ γn‖Pfn − x∗‖
≤ αn‖xn − x∗‖+ βn‖(xn + en+1)− x∗‖+ γn‖fn − x∗‖
≤ ‖xn − x∗‖+ λn,
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where λn = ‖en+1‖ + γn‖fn − x∗‖ for each n ≥ 0. From the assumption, we
see that

∑∞
n=0 λn < ∞. It follows from Lemma 1.4 that limn→∞ ‖xn − x∗‖

exists for any x∗ ∈ A−1(0). Put d = limn→∞ ‖xn − x∗‖ for any x∗ ∈ A−1(0).
We may, without loss of generality, assume that d > 0. Since A is accretive
and E is uniformly convex, we have

‖Jrnxn − x∗‖ ≤ ‖Jrnxn − x∗ + rn
2 (Arnxn − 0)‖

= ‖Jrnxn − x∗ + 1
2 (xn − Jrnxn)‖

= ‖xn+Jrn
xn

2 − x∗‖

≤ ‖xn − x∗‖[1− δ(
‖xn−Jrn

xn‖
‖xn−x∗‖ )].

(2.9)

Note that

‖xn+1 − x∗‖
= ‖αnxn + βnJrn(xn + en+1) + γnPfn − x∗‖
≤ αn‖xn − x∗‖+ βn‖Jrn(xn + en+1)− x∗‖+ γn‖Pfn − x∗‖
≤ αn‖xn − x∗‖+ βn‖Jrn(xn + en+1)− Jrnxn‖+ βn‖Jrnxn − x∗‖+ γn‖Pfn − x∗‖
≤ αn‖xn − x∗‖+ βn‖en+1‖+ βn‖Jrnxn − x∗‖+ γn‖Pfn − x∗‖
≤ αn‖xn − x∗‖+ ‖en+1‖+ (1− αn)‖Jrnxn − x∗‖+ γn‖Pfn − x∗‖.

This is,

−(αn‖xn−x∗‖+‖en+1‖+(1−αn)‖Jrnxn−x∗‖+γn‖Pfn−x∗‖) ≤ −‖xn+1−x∗‖.
(2.10)

It follows from (2.9) and (2.10) that

(1− αn)‖xn − x∗‖δ(‖xn−Jrn
xn‖

‖xn−x∗‖ )

≤ (1− αn)(‖xn − x∗‖ − ‖Jrnxn − x∗‖)
= ‖xn − x∗‖ − (αn‖xn − x∗‖+ (1− αn)‖Jrnxn − x∗‖)
= ‖xn − x∗‖ − (αn‖xn − x∗‖+ ‖en+1‖+ (1− αn)‖Jrnxn − x∗‖+ γn‖Pfn − x∗‖)

+‖en+1‖+ γn‖Pfn − x∗‖
≤ ‖xn − x∗‖ − ‖xn+1 − x∗‖+ ‖en+1‖+ γn‖Pfn − x∗‖.

From the conditions (b), (c) and limn→∞ ‖xn − x∗‖ = d > 0, we arrive at

δ(
‖xn − Jrnxn‖

‖xn − x∗‖
) → 0

as n → ∞. This implies that

lim
n→∞

‖xn − Jrnxn‖ = 0. (2.11)
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On the other hand, we have

‖Jrnxn − J1Jrnxn‖ = ‖(I − J1)Jrnxn‖
= ‖A1Jrnxn‖
≤ inf{‖u‖ : u ∈ AJrnxn}
≤ ‖Arnxn‖

= ‖xn−Jrn
xn

rn
‖.

From (2.11) and the condition (d), we obtain that

lim
n→∞

‖Jrnxn − J1Jrnxn‖ = 0. (2.12)

Letting v ∈ C be a weak subsequential limit of {xn} such that xni
⇀ v.

From (2.11), we see that Jrni
xni

⇀ v. In view of Lemma 1.3, we obtain that

v ∈ F (J1) = A−1(0). Since the space satisfies Opial’s condition (see [18]), we
see that the desired conclusion holds. This completes the proof.

In a real Hilbert space, Theorem 2.3 is reduced to the following.

Corollary 2.4. Let H be a real Hilbert space and C a nonempty, closed and

convex subset of E. Let P be a metric projection of E onto C and A ⊂ H×H

a monotone operator with A−1(0) 6= ∅. Assume that D(A) ⊂ C ⊂ ∩r>0R(I +
rA). Let {xn} be a sequence generated by the following manner:

x0 ∈ C, xn+1 = αnxn + βnJrn(xn + en+1) + γnPfn, n ≥ 0,

where {fn} ⊂ H is a bounded sequence, {αn}, {βn} and {γn} are sequence

in (0, 1), {en} is a sequence in H, {rn} ⊂ (0,∞) and Jrn = (I + rnA)−1.

Assume that the following conditions are satisfied

(a) αn + βn + γn = 1;

(b) lim supn→∞ αn < 1;

(c)
∑∞

n=0 γn < ∞ and
∑∞

n=1 ‖en‖ < ∞;

(d) lim infn→∞ rn > 0.

Then the sequence {xn} converges weakly to a zero of A.

3 Applications

In this section, as applications of main Theorems 2.1 and 2.3, we consider
the problem of finding a minimizer of a convex function f .
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Let H be a Hilbert space and h : H → (−∞,+∞] be a proper convex
lower semi-continuous function. Then the subdifferential ∂h of h is defined as
follows:

∂h(x) = {y ∈ H : h(z) ≥ h(x) + 〈z − x, y〉, z ∈ H}, ∀x ∈ H.

Theorem 3.1. Let H be a real Hilbert space and h : H → (−∞,+∞] a

proper convex lower semi-continuous function such that ∂h(0) 6= ∅. Let {xn}
be a sequence generated by the following manner:







x0 ∈ H,

yn = argminx∈H{h(x) + 1
2rn

‖x− xn − en+1‖
2},

xn+1 = αnu+ βnyn + γnfn, n ≥ 0,

where u ∈ H is a fixed point, {fn} ⊂ H is a bounded sequence, {αn}, {βn}
and {γn} are sequences in (0, 1), {en} is a sequence in H and {rn} ⊂ (0,∞).
Assume that the following conditions are satisfied

(a) αn + βn + γn = 1;

(b) limn→∞ αn = 0 and
∑∞

n=0 αn = ∞;

(c)
∑∞

n=0 γn < ∞ and
∑∞

n=1 ‖en‖ < ∞;

(d) rn → ∞ as n → ∞.

Then the sequence {xn} converges strongly to a minimizer of h.

Proof. Since h : H → (−∞,+∞] is a proper convex lower semi-continuous
function, we have that the subdifferential ∂h of h is maximal monotone by
Rockafellar [18]. Notice that

yn = argmin
x∈H

{h(x) +
1

2rn
‖x− xn − en+1‖

2}

is equivalent to the following

0 ∈ ∂h(yn) +
1

rn
(yn − xn − en+1).

It follows that

xn + en+1 ∈ yn + rn∂h(yn), ∀n ≥ 0.

By Theorem 2.1, we can obtain the desired conclusion immediately.
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Theorem 3.2. Let H be a real Hilbert space and h : H → (−∞,+∞] a

proper convex lower semi-continuous function such that ∂h(0) 6= ∅. Let {xn}
be a sequence generated by the following manner:







x0 ∈ H,

yn = argminx∈H{h(x) + 1
2rn

‖x− xn − en+1‖
2},

xn+1 = αnxn + βnyn + γnfn, n ≥ 0,

where {fn} ⊂ H is a bounded sequence, {αn}, {βn} and {γn} are sequence in

(0, 1), {en} is a sequence in H and {rn} ⊂ (0,∞). Assume that the following

conditions are satisfied

(a) αn + βn + γn = 1;

(b) lim supn→∞ αn < 1;

(c)
∑∞

n=0 γn < ∞ and
∑∞

n=1 ‖en‖ < ∞;

(d) lim infn→∞ rn > 0.

Then the sequence {xn} converges weakly to a minimizer of h.

Proof. We can easily obtain from the proof of Theorem 2.3 and Theorem 3.1
the desired conclusion.
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