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Abstract

The purpose of this paper is to consider the problem of approxi-
mating zero points of accretive operators. We introduce and analysis
Mann-type iterative algorithm with errors and Halpern-type iterative
algorithms with errors. Weak and strong convergence theorems are
established in a real Banach space. As applications, we consider the
problem of approximating a minimizer of a proper lower semicontinuous
convex function in a real Hilbert space.

1 Introduction-Preliminaries

Let C be a nonempty closed and convex subset of a Banach space E and
E* the dual space of E. Let (-,-) denote the pairing between E and E*. The
normalized duality mapping J : E — 2P is defined by

J(x)={f € E*: z, f) = ||l=II* = | f]*}
for all x € E. In the sequel, we use j to denote the single-valued normalized
duality mapping. Let U = {x € E : ||z|| = 1}. E is said to be smooth or said
to be have a Gateaux differentiable norm if the limit
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exists for each z,y € U. F is said to have a uniformly Gateaux differentiable
norm if for each y € U, the limit is attained uniformly for all x € U. E is said
to be uniformly smooth or said to be have a uniformly Fréchet differentiable
norm if the limit is attained uniformly for x,y € U. It is known that if the
norm of F is uniformly Gateaux differentiable, then the duality mapping J
is single valued and uniformly norm to weak® continuous on each bounded
subset of E.
The modulus of convexity of E is defined by

5(e) = inf{1 — 12 F vl ;r yl

el < 1 llylh < 1l = yll > €}

for every e with 0 < e¢ < 2. A Banach space F is said to be uniformly convex
if 6(¢) > 0 for every € > 0. If E is uniformly convex, then

e EMCL)

r

for every z,y € E with ||z|| <7, |ly|| < r and ||z — y| > e
In this paper, — and — denote strong and weak convergence, respectively.
A Banach space E is said to satisfy Opial’s condition [13] if for any sequence
{zn} C E, x, — y implies that

liminf ||z, — y|| < liminf ||z, — z||
n— oo n— 00

for all z € E with z # y.
Recall that a mapping T : C' — C is said to be nonexpanisve if

In this paper, we use F(T') to denote the set of fixed points of T. A closed
convex subset C' of F is said to have the fixed point property for nonexpansive
mappings if every nonexpansive mapping of a bounded closed convex subset
D of C into itself has a fixed point in D.

A mapping P of C into itself is called a retraction if P? = P. If a mapping
P of C into itself is a retraction, then Pz = z for all z € R(P), where R(P) is
the range of P. A subset D of C'is called a nonexpansive retract of C' if there
exists a nonexpansive retraction from C onto D.

Let I denote the identity operator on E. An operator A C E x E with
domain D(A) = {z € E : Az # 0} and range R(A) = U{Az: z € D(A)} is
said to be accretive if for each z; € D(A) and y; € Ax;, i = 1,2, there exists
j(x1 — x2) € J(x1 — x2) such that

(Y1 —y2,J(x1 —22)) > 0.



ITERATIVE METHODS FOR ZERO POINTS OF ACCRETIVE OPERATORS 331

An accretive operator A is said to satisfy the range condition if

D(A) - ﬂ7»>0R(I + TA),
where D(A) denote the closure of D(A). An accretive operator A is said to
be m-accretive if R(I + rA) = E for all » > 0. In a real Hilbert space, an
operator A is m-accretive if and only if A is maximal monotone.
For an accretive operator A, we can define a nonexpansive single-valued
mapping J, : R(I +rA) — D(A) by

Jr=T+rA)~"

for each r > 0, which is called the resolvent of A. We also define the Yosida

approximation A, by
1

T
It is known that A,z € AJ,x for all x € R(I +rA) and |4,z| < inf{||y| : vy €
Az} for all z € D(A) N R(I + rA).

One of classical methods of studying the problem 0 € Ax, where A C ExX E
is an accretive operator, is the following:

A==(I—J,).

x0€E, zpy1=J,z,, n>0, (A)

where J,, = (I +r,A)~! and {r,} is a sequence of positive real numbers.

The convergence of (A) has been studied by many authors; see, for exam-
ple, Benavides, Acedo and Xu [1], Brézis and Lions [2], Bruck [3], Bruck and
Passty [4], Bruck and Reich [5], Cho, Zhou and Kim [7], Ceng, Wu and Yao [§],
Kamimur and Takahashi [10,11], Pazy [14], Qin, Kang and Cho [15], Qin and
Su [16], Rockafellar [17], Reich [19-22], Takahashi and Ueda [23], Takahashi
[24], Xu [26] and Zhou [27].

In this paper, motivated by the research work going on in this direction,
we introduce and analysis Mann-type iterative algorithms with errors and
Halpern-type iterative algorithms with errors. Weak and strong convergence
theorems are established in a real Banach space.

In order to prove our main results, we need the following lemmas.

Lemma 1.1 ([21],[23]). Let E be a real reflexive Banach space whose norm is
uniformly Gateaux differentiable and A C E X E be an accretive operator.
Suppose that every weakly compact convexr subset of E has the fixed point
property for nonexpansive mappings. Let C be a nonempty, closed and convex
subset of E such that D(A) C C C MisoR(I + tA). If A=Y(0) # 0, then the
strong limit lim;_, o, Jyx ewists and belongs to A=1(0) for all x € C, where
Jy = (I +tA)~! is the resolvent of A for all t > 0.
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Lemma 1.2 ([12]). Let {a,}, {bn} and {c,} be three nonnegative real se-
quences satisfying

Ap+41 S (1_tn)an+bn+cn7 TZZ 0;

where {t,} is a sequence in [0,1]. Assume that the following conditions are
satisfied

(a) Yoo gtn =00 and b, = o(ty,);
(b) D0 en < 0.
Then lim,, o a, = 0.

Lemma 1.3 ([6]). Let C be a nonempty closed and convex subset of a uni-
formly convex Banach space E and T : C — C' a nonexpansive mapping. If
a sequence {x,} in C converges weakly to z € C and {x,, — Tx,} converges
strongly to 0 as n — oo, then Tz = z.

Lemma 1.4 ([25]). Let {a,} and {b,} be sequences of positive numbers sat-
isfying
An41 S an + bna n Z 0.

If 3°0° o bn < 00, then the limit of {a,} exists.
Lemma 1.5 ([9]). In a Banach space E, there holds the inequality
lz +ylI” < ||zl +2(y, j(x +y)), =,y€E,

where j(z +y) € J(x + y).
2 Main results

Theorem 2.1. Let E be a real reflexive Banach space with a uniformly
Gateauzx differentiable norm and C' a nonempty closed and convex subset of E.
Let P be a nonexpansive retraction of E onto C and A C E X E an accretive
operator with A=*(0) # (0. Assume that D(A) C C C NpsoR(I + rA). Let
{zn} be a sequence generated by the following manner:

To € E7 Tpt+1 = QpU + BnJrn (-Tn + en+1) + Vnanv n > 07 (T)

where w € C' is a fized point, {f,} C E is a bounded sequence, {ou,}, {Bn}
and {v} are sequences in (0,1), {en} is a sequence in E, {r,} C (0,00) and
Jr, = (I +r,A)~L. Suppose that every weakly compact convex subset of E has
the fized point property for nonexpansive mappings. Assume that the following
conditions are satisfied
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(a an+5n + v =1;
(

)
b) limy, o0 0, =0 and Y, oty = 00;
(€) Yomeo¥n <00 and 307 lenl| < oo;
(d) r, = 00 as n— oo.

Then the sequence {x,} generated by (T) converges strongly to a zero of A.

Proof. First, we show that the sequence {x,,} is bounded. Fixing p € A=1(0),
we have

lz1 —pl| = [laou + BoJr, (zo + €1) + 0P fo — Dl
< aollu = pl| + BollJre (o + €1) — Pl + Y0l P fo — p|
< apllu = pll + Boll(zo + €1) — p|| +v0ll.fo — pll
< apllu = pll + Bo([[zo — pll + llerl]) + ol fo — pll
S K7

where K = ||u — p|| + ||lzo — p|| + |le1|l + || fo — p|| < oo. Putting

M = maX{K, sup ||fn 7p||}7
n>0

we prove that

o —pl <M+ feill, 1. (2.1)
i=1
It is easy to see that the result holds for n = 1. We assume that the result
holds for some n. It follows that

||xn+1 _pH = Hanu + 6nJrn (xn + en+1) +'7nan _p”
< apllu = pl| + BullJr, (5 + €nt1) = pll + Yl P fr — |
< an||u _p” + /BnH(xn + €n+1) _p” +’Yn||fn _p”
< anllu = pll + Bullzn = pll + llent1ll + vall fo — pll
< oM+ B (M + 350, lleill) + llentall + M
=M+ 22_11 leill-

This shows that (2.1) holds. From the condition >_;; [le;|| < 0o, we see that
the sequence {x,} is bounded.

Next, we show that limsup,,_,. (v — z,JJ(Tn+1 — 2)) < 0, where z =
lim; . Jyu, which is guaranteed by Lemma 1.1. Note that “*tﬂ e AJu,
A, xn € AJdy xzy, and A is accretive. It follows that

(A, xp — U—tﬂ, J(Jy 2n — Jyu)) > 0.
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This implies that
(u— Jyu, J(Jp, @y — Jeu)) < (EA. Ty, J( T, p — Jpw)). (2.2)

On the other hand, we have

n Jr n
lim [|A,, z,]| = lim || 222"y — o,
n—oo n—oo T‘n
In view of (2.2), we arrive at
limsup(u — Jeu, J(Jy, n — Jyu)) <0, Vt > 0. (2.3)

n—oo

Since z = limy_, o, Jyu and the norm of E is uniformly Gateaux differentiable,
for any € > 0, there exists tg > 0 such that

|(z = Jyu, J (I, xp — Ju))| <

[\ e

and
(u— 2, J(Jr, xn — Jyu) = J(Jp, 70 — 2))| <

N

for all t > tg and n > 0. It follows that

(u — Jew, J( T, xp — Jpw)) — (u — 2, J(Jyp, xp — 2))|
< Wu — Jyu, J(Jp, xp, — Jpw)) — (u — 2, J(Jyp, @n — Jew))]
+{u =z, J(Jp, xn, — Jpw)) — (u — 2, J(Jp, X, — 2))]
= |z — Jeu, J(Jr, 2p — Ju))| + [{(u — 2z, J(Jp, @y — Jeu) — J(Jp, 20y — 2))|
<e
(2.4)
for all t >ty and n > 0. Tt follows from (2.3) and (2.4) that

lim sup(u — z, J(J,, xp, — 2)) < limsup(u — Jeu, J(Jy, n — Jpu)) +€ < e.

n—oo n—oQ

Since € is arbitrary, we see that

limsup(u — z, J(J,., x, — 2)) <0. (2.5)

n— oo

Note that
@0 — Ir, (Tn + ens1)|| < llentall-

This implies that

lim ||Jy, 2n — Jr, (@n + €ns1)| = 0.

n— oo
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Since F has a uniformly Gateaux differentiable norm, we arrive at

limsup{u — z, J(Jp, (, + €nt1) — 2)) < 0. (2.6)

n—oo "
On the other hand, , we see from the iterative (T) that
Tnt1 = Ir, (Tn + ent1) = anfu— Jr, (20 + enp1)] + WP fn = Jp, (@0 + eny)]-

That is,

|Znt1—Jr, (@ntent1)| < anllu—Jr, (Tn+ent ) |+90 | P fr—Jr, (Tn+ent1)]]-

From the conditions (b) and (c), we obtain that

limsup [|2n11 — Jp, (Zn + €ny1)| =0,
n—oo

which combines with (2.6) yields that

lim sup(u — z, J(xp4+1 — 2)) < 0. (2.7)

n— oo

From the algorithm (T), we see that

an(u = 2) + BulJr, (Tn + €nt1) — 2] + V(P fn — 2)
(1 - an)[']rn (xn + en+l) - Z] + an(u - Z) + 'Yn[an —Jr, (xn + €n+1)]-

Tpn+1 — R

It follows from Lemma 1.5 that

[y

< (1= an)?[r, (zn + eng1) — 2| + 200 (u — 2, (@41 — 2))
+29n (P fr. — Jr, (Tn + €nt1), J (Tng1 — 2))

< (1= an)l[(@n +ent1) = 2[1* + 20 (u — 2, (241 — 2))
2%l P fr = Jr, (@0 + €ng1)|[[2n+1 — 2|

< (1= ) (lrm — 2117 = 20em 1, T[(n + ens1) = 2) + 2 — 2, I @ns - 2)
29 fn = I (@0 + ent) [l 2ns1 — 2|

< (1= on)([lzn — 2l + 2llenta |l (@n + ensr) = 2lI) + 200 (u = 2, J (@41 = 2))
29 lfn = I (@0 + eng) [l Tn41 — 2|

< (1= an)llon = 2)? + 200 (u — 2, J (Tp41 — 2))
29l fn = Jr (@0 + eny ) lzna — 2l + 2llensa[lll(zn + enta) — ]|

< (1= an)llan = 2)1? + 200 (u — 2, J (@41 = 2)) + (v + [lensa ) B,

where B is an appropriate constant such that

B 2 max{sup{2|fn = Jr, (zn + ens1)llllents = 2|}, sup{2ll(@n +entr) = 2[1}}
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Let A, = max{{u — z, J (41 — 2)),0}. Next, we show that lim, , A, = 0.
Indeed, from (2.7), for any give € > 0, there exists a positive integer n; such
that

(u—z,J(Xpy1 — 2)) <€, VYn>mny.

This implies that 0 < A, < € Vn > ny. Since € > 0 is arbitrary, we see that
lim, 400 An = 0. Put a, = [|zn — 2|, b = 2anA\n, ¢n = (Vn + |lent1]])B
and t, = a,. In view of Lemma 1.2, we can obtain the desired conclusion
immediately. This completes the proof.

In a real Hilbert space, Theorem 2.1 is reduced to the following.

Corollary 2.2. Let H be a real Hilbert space and C' a nonempty, closed
and convexr subset of H. Let P be a metric projection of H onto C and
A C Hx H a monotone operator with A=(0) # (). Assume that D(A) C C C
NrsoR(I +1A). Let {z,} be a sequence generated by the following manner:

Ty € H; Tn+1 = OpU + ﬂnJrn (xn + en—i—l) + ’Ynana n Z 07

where u € C is a fized point, {fn} C H is a bounded sequence, {an}, {Bn}
and {7y} are sequences in (0,1), {e,} is a sequence in H, {r,} C (0,00) and
Jp,, = (I +1r,A)~ . Assume that the following conditions are satisfied

( Qp + ﬂn + v =1;
(

b) lim, o0 o, =0 and Y, oty = 00;

(c
(d

Then the sequence {x,} converges strongly to a zero of A.

D oneo ¥ <00 and 307 [lenl| < o0o;

)
)
)
) Th — 00 as n — oo.

Theorem 2.3. Let E be a real uniformly convexr Banach space which satisfies
Opial’s condition and C' a nonempty closed and convex subset of E. Let P be
a nonexpansive retraction of E onto C and A C E X E an accretive operator
with A=1(0) # 0. Assume that D(A) C C C NysoR(I +1A). Let {x,} be a
sequence generated by the following manner:

Tg € Oa Tpi1 = QpTp + BnJrn (zn + 6n+1) + 'anfna n >0, (TT)

where {fn} C E is a bounded sequence, {a,}, {Bn} and {y,} are sequence in
(0,1), {en} is a sequence in E, {r,} C (0,00) and J,, = (I+r,A)~ . Assume
that the following conditions are satisfied

(a) an"’ﬂn""'yn =1;
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(b) limsup,,_,., o < 1;

(€) Yoo n <00 and 307 lenl| < oo;
(d) liminf, o 7y > 0.

Then the sequence {x,,} generated by (YY) converges weakly to a zero of A.

Proof. First, we show that the sequence {x,} is bounded. Fixing p € A71(0),
we have

|lz1 —pl| = llaozo + BoJr, (xo +e1) + 0P fo — Dl
< agllzo — pll + BollJro (zo + €1) — pll + 70l Pfo — pll
< al|lzo — p|| + Boll(zo + 1) — p|l + 0l fo — Pl
< agllzo — pl| + Bo(llzo — pll + llexll) + voll fo — pll

<K',
where K’ = ||zg — p|| + |lex]] + || fo — p|| < co. Putting

M' = max{K, Slilé | fn = plI},

we prove that
lon —pl < M+ |leill, ¥n> 1. (2.8)
i=1

It is easy to see that the result holds for n = 1. We assume that the result
holds for some n. It follows that

Hxn—i-l - p” = ”O‘nxn + Bnt]rn (In + €n+1) + ’Ynan - p”
< anllzn = pll + BullJr, (T + ent1) = pll + ¥l P fr — p|
< apllzn = pll + Bull(@n + ent1) = pll + vl fr — 2l
< anll@n = pll + Bnllzn — pll + lentall + nll fr — P
< anM + B (M + 350 lleill) + lensall + v M
=M+ eill.

This shows that (2.8) holds. From the condition > ;- ||e;]| < oo, we see that
the sequence {z,} is bounded.

Next, we show that lim,, s ||, — 2*| exists for any 2* € A=1(0). In fact,
we have

[Zn1 — 2| = llan®n + Budr, (Tn + €nt1) + P fr — 27|
< anllzn — 2| + Bull Jr, (Tn + €nt1) — || + Yl [P fr — 27|
< anllzn — ¥ + Bull(Tn + ent1) — || + yull fo — 27|
S H-’I;n - .’13*” + )\na
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where A\, = |lent1]| + Vol fn — 2*|| for each n > 0. From the assumption, we
see that > > (A, < oo. It follows from Lemma 1.4 that lim, .« ||z, — 2*||
exists for any z* € A=1(0). Put d = lim,, s ||z, — 2*|| for any 2* € A~1(0).
We may, without loss of generality, assume that d > 0. Since A is accretive
and F is uniformly convex, we have

| Jrpzn — || < ||Jp, 20 — 2" + %(Arnxn - 0)|l
= ||Jrn%n_x*+%($n_Jrn$n)|| (2.9)
= || gt — x*Hu = Trgal |
< o — 271 — 6(Lz=Zeazl )
Note that
[Zn41 — 27|

= ||04najn + BnJrn (xn + €n+1) + 'Ynan - :L'*”

< apllzn — ¥ + BullJr, (0 + €nt1) — || + Wl P fr — ™|

< apllzn — ¥ + BullJr, (T + ent1) = T @l + Ball e, 2 — ¥ + | P fr — 27|
< apllzn — 2| + Bullentall + BullJr, 2 — || + Y|P fr — 2% ||

< anllzn — 2| + lensall + (1 — an) | Jr, @0 — 2| + [P fr — 27|

This is,

—(anllzn=2"|[+llensrll+(T=an) [ Jr, 2n =" [+ynl| P fo=2"]) < —[2nt1—27].
(2.10)
It follows from (2.9) and (2.10) that

(1= an)wn — 2*[[o(Lop=Ttaly

< (1= an)(|zn = 2| = || Jr, @0 — 2*)

= Jlon — || = (an]lon — || + (1 = an) | Jr, 20 — 2*]))

= Jlon = 2*[| = (nllon — 2| + lentall + (1= an) |l Jr, 20 — 2*[| + 3| P fn = 2*])
+||en+1H +'7n||an - x*”

< zn = 2| = llentr — 2| + llentall + Wl Pfr — 27|

From the conditions (b), (c¢) and lim,_,« ||z, — 2*|| = d > 0, we arrive at

|zn — Jf’nan

o( )—0

[ — 2]
as n — oo. This implies that

nh_)ngo |xn — Jp, xn|| = 0. (2.11)
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On the other hand, we have

”Jrnxn - JlJmiEnH =l - Jl)‘]ml"nH
= || A1y, mnl|
< inf{||lu|| : v € AT, x,}
< |[|Ar, w4

= || e featn |
Tn :

From (2.11) and the condition (d), we obtain that

ILm T, n — J1Jr, zp| = 0. (2.12)

Letting v € C be a weak subsequential limit of {z,} such that z,, — wv.
From (2.11), we see that J,., ¥, — v. In view of Lemma 1.3, we obtain that
v € F(J;) = A71(0). Since the space satisfies Opial’s condition (see [18]), we
see that the desired conclusion holds. This completes the proof.

In a real Hilbert space, Theorem 2.3 is reduced to the following.

Corollary 2.4. Let H be a real Hilbert space and C' a nonempty, closed and
convez subset of E. Let P be a metric projection of E onto C and A C Hx H
a monotone operator with A=1(0) # 0. Assume that D(A) C C C NysoR(I +
rA). Let {x,} be a sequence generated by the following manner:

Zo € C; Tnt+1 = OpTp + ﬁnJrn (xn + en+1) + ’anfn» n 2 0;

where {fn} C H is a bounded sequence, {an,}, {Bn} and {y.} are sequence
in (0,1), {en} is a sequence in H, {r,} C (0,00) and J,, = (I +r,A)~L.
Assume that the following conditions are satisfied

(@) an+ fBn+vm=1;

(b) limsup,, ., an < 1;

(€) Yontovn < oo and 32,7 [lenl| < oo;
)

(d) liminf, o, > 0.

Then the sequence {x,} converges weakly to a zero of A.
3 Applications

In this section, as applications of main Theorems 2.1 and 2.3, we consider
the problem of finding a minimizer of a convex function f.
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Let H be a Hilbert space and h : H — (—o00,+0o0] be a proper convex
lower semi-continuous function. Then the subdifferential Oh of h is defined as
follows:

Oh(x)={ye€ H:h(z) > h(x)+ (2 —=x,y), z€ H}, VzeH

Theorem 3.1. Let H be a real Hilbert space and h : H — (—o00,4+00] a
proper convex lower semi-continuous function such that Oh(0) # 0. Let {x,}
be a sequence generated by the following manner:

Tg € H,
yn = argmingep {h(z) + 51— [ — 20 — ensa|*},
Tn+1 = QU + 6nyn + ’Ynfnv n = 07

where u € H is a fized point, {f,} C H is a bounded sequence, {an}, {Bn}
and {vn} are sequences in (0,1), {e,} is a sequence in H and {r,} C (0,00).
Assume that the following conditions are satisfied

(@) an+Bn+vm=1;

(b) lim, oo o, =0 and Y,y oty = 00;
(€) Yoo n <00 and 377 leal| < oo;
(d) rp, = 00 as n — oo.

Then the sequence {x,} converges strongly to a minimizer of h.

Proof. Since h : H — (—00,400] is a proper convex lower semi-continuous
function, we have that the subdifferential Oh of h is maximal monotone by
Rockafellar [18]. Notice that

yn = arg min{h(z) + |z — 2 — ens1|®}
xeH

2ry,

is equivalent to the following

1
0€e ah(yn) + 7(yn — Tp — en+1)'
Tn
It follows that
Ty + €nt1 € Yn + 100M(yn), Yn>0.

By Theorem 2.1, we can obtain the desired conclusion immediately.
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Theorem 3.2. Let H be a real Hilbert space and h : H — (—o00,4+o0] a
proper convex lower semi-continuous function such that Oh(0) # 0. Let {z,}
be a sequence generated by the following manner:

Tg € H,
Yn = argmingep{h(z) + ﬁHx — zn — ent1l’},
Tn+1 = Opdy + Bnyn + 'Ynfny n Z Oa

where {fn} C H is a bounded sequence, {a,}, {8n} and {v,} are sequence in
(0,1), {en} is a sequence in H and {r,} C (0,00). Assume that the following
conditions are satisfied

(a) on + /Bn + Yn = 1;
(b
(c

(d) liminf, o 7y > 0.

limsup,,_, o an < 1;

)
) ZZO:O Y < 00 and 220:1 llen ]| < oo;
)

Then the sequence {x,} converges weakly to a minimizer of h.

Proof. We can easily obtain from the proof of Theorem 2.3 and Theorem 3.1
the desired conclusion.
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