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Fixed points of Kannan mappings in metric
spaces endowed with a graph

Florin Bojor

Abstract

Let (X, d) be a metric space endowed with a graph G such that the
set V (GQ) of vertices of G coincides with X. We define the notion of
G-Kannan maps and obtain a fixed point theorem for such mappings.

1 Introduction

Let T be a selfmap of a metric space (X, d). Following Petrusel and Rus [10],
we say that T is a Picard operator (abbr., PO) if T has a unique fixed point

z* and lim 7"z = z* for all z € X and is a weakly Picard operator (abbr.
n—oo

WPO) if the sequence (7" ), .y converges , for all # € X and the limit (which
may depend on z ) is a fixed point of T'.

Let (X, d) be a metric space. Let A denote the diagonal of the Cartesian
product X x X. Consider a directed graph G such that the set V (G) of its
vertices coincides with X, and the set E (G) of its edges contains all loops,
ie, E(G) O A. We assume G has no parallel edges, so we can identify G
with the pair (V (G), E (G)). Moreover, we may treat G as a weighted graph
(see [[6], p- 309]) by assigning to each edge the distance between its vertices.
By G~! we denote the conversion of a graph G, i.e., the graph obtained from
G by reversing the direction of edges. Thus we have

E(G™") ={(z,y)|(y,2) € G}.
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The letter G denotes the undirected graph obtained from G by ignoring the
direction of edges. Actually, it will be more convenient for us to treat G
as a directed graph for which the set of its edges is symmetric. Under this
convention,

E(é) —E(G)UE (G (1.1)

We call (V', E") a subgraph of G if V! CV (G), E' C E(G) and for any edge
(x,y) € E',x,y e V.

Now we recall a few basic notions concerning the connectivity of graphs.
All of them can be found, e.g., in [6]. If 2 and y are vertices in a graph G, then
a path in G from z to y of length N (N € N) is a sequence (mi)ﬁio of N+1
vertices such that g = z, ay = y and (x,—1,2,) € E(G) for i = 1,...,N.
A graph G is connected if there is a path between any two vertices. G is
weakly connected if G is connected. If G is such that E (G) is symmetric and
x is a vertex in G, then the subgraph G, consisting of all edges and vertices
which are contained in some path beginning at x is called the component of G
containing . In this case V (G;) = [z], where [z], is the equivalence class
of the following relation R defined on V (G) by the rule:

yRz if there is a path in G from y to z.

Clearly, G, is connected.

Recently, two results appeared giving sufficient conditions for f to be a PO
if (X, d) is endowed with a graph. The first result in this direction was given
by J. Jakhymski [5] who also presented its applications to the Kelisky-Rivlin
theorem on iterates of the Bernstein operators on the space C [0, 1].

Definition 1 ([5], Def. 2.1). We say that a mapping f : X — X is a Banach
G-contraction or simply G-contraction if f preserves edges of G, i.e.,

Vr,y € X ((z,y) € E(G) = (f(2), f(y) € E(G)) (1.2)

and f decreases weights of edges of G in the following way:
Ja € (0,1),Ve,y € X ((z,y) € E(G) = d(f(2),f(y) <ad(z,y) (1.3)

Theorem 1 ([5], Th 3.2). Let (X,d) be complete, and let the triple (X,d,G)
have the following property:

for any (v,),cy in X, if 2, = x and (z,,7p41) € E(G) for n € N then
there is a subsequence (zy,,),,cy with (x,,x) € E(G) forn € N.

Let f : X — X be a G-contraction, and Xy = {z € X |(z, fx) € E(G) }.
Then the following statements hold.

1. cardFiz f = card {[z]5 |z € X; }.
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IS

. Fix f # 0iff X; # 0.

8. f has a unique fized point iff there exists xo € Xy such that Xy C [x0]5.

4. For any x € Xy, f

[z]a is a PO.

5. If X¢ # 0 and G is weakly connected, then f is a PO.
6. If X' :=U{[z]g |z € G} then f|x/ is a WPO.
7. If f CE(QG), then f is a WPO.

Subsequently, Bega, Butt and Radojevi¢ extended Theorem 1 for set valued
mappings.

Definition 2 ([1], Def. 2.6). Let F : X ~» X be a set valued mapping
with nonempty closed and bounded values. The mapping F is said to be a
G-contraction if there exists a « € (0,1) such that

D (Fz,Fy) < ad(z,y) for all z,y € E (G)
and if u € Fx and v € Fy are such that
d (u,v) < ad(z,y) + k, for each k >0
then (u,v) € E (G).

Theorem 2 ([1], Th. 3.1). Let (X,d) be a complete metric space and suppose
that the triple (X,d, G) has the property:

for any (v,),cy in X, if z,, = z and (2, 7p41) € E(G) for n € N then
there is a subsequence (xy,, ), oy with (zy,,x) € E(G) forn € N.

Let F: X ~~ X be a G-contraction and

X;={rx€X:(z,u) € E(G)for some u € Fz}.

Then the following statements hold:

~

. Foranyx € Xp, F

2] 5 has a fized point.

. If Xp # 0 and G is weakly connected, then F has a fized point in X.
I X =U {[x]é tx € XF}, then F'|x: has a fized point.

. If F C E(G) then F has a fized point.

v N L

. Fiz F #0 if and only if Xr # 0.
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Definition 3. Let (X,d) be a metric space. T : X — X is called a Kannan
operator if there exists a € [0, %) such that:

d(Tz,Ty) < ald(z,Tx) +d(y,Ty)]
forall x,y € X.

Kannan [7] proved that if X is complete, then every Kannan mapping has
a fixed point. A number of interesting results have been obtained by different
authors for Kannan mappings, see for example [3, 4, 14, 15].

The aim of this paper is to study the existence of fixed points for Kannan
mappings in metric spaces endowed with a graph G by introducing the concept
of G-Kannan mappings.

2 Main Results

Throughout this section we assume that (X,d) is a metric space, and G is
a directed graph such that V (G) = X, E(G) 2 A and the graph G has no
parallel edges. The set of all fixed points of a mapping T is denoted by FixT.

In this section, by using the idea of Jakhymski [5], we will consider the
following concept:

Definition 4. Let (X,d) be a metric space and G a graph. The mapping
T:X — X is said to be a G-Kannan mapping if:

1. Vo,y € X (If (z,y) € E(G) = (Tx,Ty) € E(Q)).

2. there exists a € [0, %) such that:

d(Tz,Ty) < ald(x,Tx) +d (y, Ty)]
for all (z,y) € E(Q).

Remark 1. If T is a G-Kannan mapping, then T is both a G~ '-Kannan
mapping and a G-Kannan mapping.

Example 1. Any Kannan mapping is a Go-Kannan mapping, where the graph
Go is defined by E (Gp) = X x X.

Example 2. Let X = {0,1,3} and the euclidean metric d(x,y) = |z —y|,
Ve,y € X. The mapping T : X — X, Tx =0, for x € {0,1} and Tz =
1, forx = 3 is a G-Kannan mapping with constant a = %, where G =
{(0,1);(1,3);(0,0);(1,1)); (3,3)}, but is not a Kannan mapping because
d(T0,T3) =1 and d(0,T0)+d(3,73) = 2.
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Definition 5. Let (X,d) be a metric space endowed with a graph G and T :
X — X be a mapping. We say that the graph G is T—connected if for all
vertices x,y of G with (x,y) ¢ E (G), there exists a path in G,(xi)ilio from x
to y such that xg = z,xny =y and (x;,Tx;) € E(G) for alli =1,..,N — 1.
A graph G is weakly T—connected if G is T— connected.

Lemma 1. Let (X,d) be a metric space endowed with a graph G and T :
X — X be a G-Kannan mapping with constant a. If the graph G is weakly
T—connected then, given x,y € X, there is r (z,y) = 0 such that

d(T"z, T"y) < ad (T" 'z, T"z)+ (l—a) r(z,y)+ad (T 'y, T"y) (2.1)

for alln € N*.

Proof. Letx,y € X. If (z,y) € E (é) then by induction (T"z,T"y) € E (é)
so (2.1) is true, with 7 (z,y) =0 for all n e N. If (z,y) ¢ E (é) then there is
a path (xi)ij\io in G from z to y, i.e., zo = xz,xny =y with (z;_1,2;) € E (é)
fori=1,..,N and (z;,Tx;) € E (é) fori=1,...,N —1. By Remark 1, T is
a G-Kannan mapping. An easy induction shows (T"z;_1,T"z;) € E (é) for
i1=1,...,N, (T”_lmi,T"xi) eFE (é) and

a

n—1,.. n,..
d(T z;, T mz)é(l_a

n—1

for alln € N* and ¢ = 1,..., N — 1. Hence by the triangle inequality, we get

N
d(T"z, T"y) < Z d(T"w;—1,T"x;)
i=1
N-1
d(T" e, T"x) +2 Y d (T a;, T ;) +d (T 'y, T"y)

i=1

<a

<a

)

n—1N-1
d(T" 'z, T x) 42 (1 - a> Y d(wi, Tay) +d (T 'y, TT)

o i=1

so it suffices to set
N-1

r(z,y) =2(1—a) Z d(x;, Tx;).

i=1
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The main result of this paper is given by the following theorem.

Theorem 3. Let (X,d) be a complete metric space endowed with a graph G
and T : X — X be a G-Kannan mapping. We suppose that:

(i.) G is weakly T—connected;

(i.) for any (vn),cy in X, if 2, — 2 and (Tn,Tny1) € E(G) forn € N then
there is a subsequence (xy,, ), cy with (vx,,7) € E(G) forn € N.

Then T is a PO.
Proof. Let x € X. By Lemma 1, there exists r (z, Tx) such that:

a

d(T"z, T"+1a?) <ad (T"_lﬂé’7 T"z) + ( ) r(z,Tx) + ad (T"z, T"'Hx) )

1—a
for all n € N*. Hence

a
r
(1 _ a)’n—‘rl

%y (T”flx7 T"z) +

T (z,Tx). (2.2)

d (T"ae7 T”+1z) <

Using the relation (2.2) and an elementary calculus we get

a n

x,Tx) (2.3)

1—a

d(Trz,T" ) < ( ) d(z,Tx) + nainﬂr(
(1-a)
for all n € N.
Let b := %, because a € [0, 3) then b € [0,1). Using the relation (2.3)

a’
we have

n

" (2, Tr) —
Z d(Thz, T"z) < d(z,Tx) Zbk + T—a ; k-v*

i=0 =0
_ pn+1 n+2 _ n+1
(2, Tx) 1-9b r(z,Tz) nb (n+1)2b +5b
1-b 1—a (1-0)

Hence Y d (T"z,T""'z) < oo and because

n=0
n—+p n—1
d(TMe, T"Px) < d (T, T '2) = > d (T, T ') -0
i=0 =0

asn — oo and for all p € N, we get (T”x)n>0 is a Cauchy sequence. But (X, d)
is a complete metric space, therefore (T"ﬂc)n>0 converges to some x* € X.
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Let 2,y € X then (T"z),5, — 2 and (T"y),,5, — y*, as n — o0.
By Lemma 1, for all n € N* we get

a

d(T"z,T"y) < ad (T" 'z, T"z) + < ) r(z,y) +ad (T 'y, T y)

l1—a

Letting n — oo obtain that d (z*,y*) < 0, hence z* = y* and for all z € X
there exists a unique z* such that

lim T"z = x*.
n— oo
Now we will prove that z* € FixT. Because the graph G is weakly
T—connected, there is at least xg € X such that (xg,Txg) € E(é) SO

(T”xO,T"'HxO) cFE (é) for all n € N. But lim T"zy = z*, then by (ii.)

n— oo

there is a subsequence (T’“"mo)neN with (Tk"xo,x*) € F(Q) for alln € N.
Then, for all n € N, we get
d(z*,Tx*) <d (x*, Tk"Hx) +d (Tk"Hmo, Ta:*)
<d (x*,Tk"Jrlx) +a [d (Tk"zo,Tk”+1m0) + d(x*,Tz*)} .
Hence

a

d(z*,Txz") <
(27, T27) 1—a

S 1-a

Now, letting n — co, we obtain

d(a*, TF ) + d (T o, T o)

d(z*,Tx*) =0 & o™ = Tz", that is, z* € FixT.

If we have Ty = y for some y € X, then from above, we must have T"y — x*,
so y = z* and therefore, T is a PO.
O

The next example shows that the condition (ii.) is a necessary condition
for G-Kannan mapping to be a PO.

Example 3. Let X := [0, 1] be endowed with the Fuclidean metric dg. Define
the graph G by
E(G) ={(z,y) € (0,1] x (0,1] [z = y} U{(0,0),(0,1)}
Set .
Tx:Z for z € (0,1), and 70 =1

It is easy to verify (X, d) is a complete metric space, G is weakly T— connected
and T is a G-Kannan mapping with a = % Clearly, T"x — 0 for all x € X,
but T has no fized points.
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The next example shows that the graph G must be T'—connected so the
G-Kannan mapping T to be a PO.

Example 4. Let X = N\ {0,1} be endowed with the Euclidean metric and
define T : X — X, Tz =2x. Consider the graph G define by:

V(G)=X and E(G)={(2"n,2(n+1)):ne X, keN}UA

Then T is G-Kannan operator with a = % because
2
di (T2Fn, T2F (n+ 1)) = 28+1 < g2’c (2n +1)
2
== [dr (2n,T2%n) + dp (2 (n+ 1), 72 (n +1))]

for allm € X and for all k € N.
Then (X, d) is a complete metric space, G is weakly connected but not

weakly T— connected because (2,4) ¢ E (é) and the only path in G from 2 to
4 is
Yo =2,y1 =3,y2 = 4 and (3,T3) = (3,6) ¢ E (é)

Clearly, T™x not converge for all x € X and T has no fized points.

From Theorem 3, we obtain the following corollary concerning the fixed
point of Kannan operator in partially ordered metric spaces.

Corollary 1. Let (X,<) be a partially ordered set and d be a metric on X
such that the metric space (X,d) is complete. Let T : X — X be an increasing
operator such that the following three assertions hold:
(i.) There ezist a € [0,1) such that d(Tx,Ty) < ald(z,Tz) +d (y,Ty)] for
each z,y € X with x < y;

(ii.) For each x,y € X, incomparable elements of (X, <), there exists z € X
such that t <z, y < z and 2 < Tz;

(iti.) If an increasing sequence () converges to x in X, then x, < x for all
n € N.

Then T is a PO.
Proof. Consider the graph G with V (G) = X, and
EG) ={(r,y) e X xX|z<y}.

Because the mapping T is increasing and (i.) holds we get the mapping T is
a G—Kannan mapping. By (ii.) the graph G is weakly T'—connected and the
condition (iii.) implies the condition (ii.) from Theorem 3. The conclusion
follows now from Theorem 3. O
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In the next we show the fixed point theorem for cyclic Kannan mapping
proved in [9] by Petric is a consequence of the Theorem 3.

Let p < 2 and {A;})_, be nonempty closed subsets of a complete metric
space X. A mapping T : UY_; A; — UY_| A; is called a cyclical operator if

T(AZ) - Ai+17 for all i € {1,27 7p} (24)
where Ap 1 1= A;.

Theorem 4. Let Ay, As, ..., Ap, Apr1 = A1 be nonempty closed subsets of a
complete metric space (X,d) and suppose T : UY_| A; — UP_| A; is a cyclical
operator, and there exists a € [0, %) such that for each pair (z,y) € A; X Aiy1,
forie {1,2,...,p}, we have

d(Tz,Ty) < ald(z,Tz) +d(y,Ty)].
Then T is a PO.

Proof. Let Y = U!_| A; then (Y, d) is a complete metric space.
Consider the graph G with V (G) =Y, and

E(GQ)={(z,y) e Y xY |Fie{1,2,...,p} such that z € A;andy € A;1}
Because T is a cyclic operator we get
(Tz,Ty) € E(G), forall (z,y) € E(G)

and via hypothesis the operator T is a G-Kannan operator and the graph G is
weakly T'—connected. Now let (), in X, if 2, — 2z and (2, 7 y1) € E(G)
for n € N. Then there is ¢ € {1,2,...,n} such that x € A;. However in view
of (2.4) the sequence {x,} has an infinite number of terms in each A;, for all
i € {1,2,...,p}. The subsequence of the sequence {z,} formed by the terms
which is in A;_; satisfies the condition (ii.) from Theorem 3. In conclusion
the operator T is PO.

O
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