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Fixed points of Kannan mappings in metric
spaces endowed with a graph

Florin Bojor

Abstract

Let (X, d) be a metric space endowed with a graph G such that the
set V (G) of vertices of G coincides with X. We define the notion of
G-Kannan maps and obtain a fixed point theorem for such mappings.

1 Introduction

Let T be a selfmap of a metric space (X, d). Following Petruşel and Rus [10],
we say that T is a Picard operator (abbr., PO) if T has a unique fixed point
x∗ and lim

n→∞
Tnx = x∗ for all x ∈ X and is a weakly Picard operator (abbr.

WPO) if the sequence (Tnx)n∈N converges , for all x ∈ X and the limit (which
may depend on x ) is a fixed point of T .

Let (X, d) be a metric space. Let ∆ denote the diagonal of the Cartesian
product X × X. Consider a directed graph G such that the set V (G) of its
vertices coincides with X, and the set E (G) of its edges contains all loops,
i.e., E (G) ⊇ ∆. We assume G has no parallel edges, so we can identify G
with the pair (V (G) , E (G)). Moreover, we may treat G as a weighted graph
(see [[6], p. 309]) by assigning to each edge the distance between its vertices.
By G−1 we denote the conversion of a graph G, i.e., the graph obtained from
G by reversing the direction of edges. Thus we have

E
(
G−1

)
= {(x, y) | (y, x) ∈ G} .
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The letter G̃ denotes the undirected graph obtained from G by ignoring the
direction of edges. Actually, it will be more convenient for us to treat G̃
as a directed graph for which the set of its edges is symmetric. Under this
convention,

E
(
G̃
)
= E (G) ∪ E

(
G−1

)
(1.1)

We call (V ′, E′) a subgraph of G if V ′ ⊆ V (G) , E′ ⊆ E (G) and for any edge
(x, y) ∈ E′, x, y ∈ V ′.

Now we recall a few basic notions concerning the connectivity of graphs.
All of them can be found, e.g., in [6]. If x and y are vertices in a graph G, then

a path in G from x to y of length N (N ∈ N) is a sequence (xi)
N
i=0 of N + 1

vertices such that x0 = x, xN = y and (xn−1, xn) ∈ E (G) for i = 1, ..., N .
A graph G is connected if there is a path between any two vertices. G is
weakly connected if G̃ is connected. If G is such that E (G) is symmetric and
x is a vertex in G, then the subgraph Gx consisting of all edges and vertices
which are contained in some path beginning at x is called the component of G
containing x. In this case V (Gx) = [x]G, where [x]G is the equivalence class
of the following relation R defined on V (G) by the rule:

yRz if there is a path in G from y to z.

Clearly, Gx is connected.
Recently, two results appeared giving sufficient conditions for f to be a PO

if (X, d) is endowed with a graph. The first result in this direction was given
by J. Jakhymski [5] who also presented its applications to the Kelisky-Rivlin
theorem on iterates of the Bernstein operators on the space C [0, 1].

Definition 1 ([5], Def. 2.1). We say that a mapping f : X → X is a Banach
G-contraction or simply G-contraction if f preserves edges of G, i.e.,

∀x, y ∈ X ((x, y) ∈ E (G) ⇒ (f (x) , f (y)) ∈ E (G)) (1.2)

and f decreases weights of edges of G in the following way:

∃α ∈ (0, 1) , ∀x, y ∈ X ((x, y) ∈ E (G) ⇒ d (f (x) , f (y)) 6 αd (x, y)) (1.3)

Theorem 1 ([5], Th 3.2). Let (X, d) be complete, and let the triple (X, d,G)
have the following property:

for any (xn)n∈N in X, if xn → x and (xn, xn+1) ∈ E (G) for n ∈ N then
there is a subsequence (xkn

)n∈N with (xkn
, x) ∈ E (G) for n ∈ N.

Let f : X → X be a G-contraction, and Xf = {x ∈ X |(x, fx) ∈ E (G)}.
Then the following statements hold.

1. cardFix f = card
{
[x]G̃ |x ∈ Xf

}
.
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2. Fix f ̸= ∅ iff Xf ̸= ∅.

3. f has a unique fixed point iff there exists x0 ∈ Xf such that Xf ⊆ [x0]G̃.

4. For any x ∈ Xf , f
∣∣∣[x]G̃ is a PO.

5. If Xf ̸= ∅ and G is weakly connected, then f is a PO.

6. If X ′ := ∪
{
[x]G̃ |x ∈ G

}
then f |X′ is a WPO.

7. If f ⊆ E (G), then f is a WPO.

Subsequently, Bega, Butt and Radojević extended Theorem 1 for set valued
mappings.

Definition 2 ([1], Def. 2.6). Let F : X  X be a set valued mapping
with nonempty closed and bounded values. The mapping F is said to be a
G-contraction if there exists a α ∈ (0, 1) such that

D (Fx, Fy) 6 αd (x, y) for all x, y ∈ E (G)

and if u ∈ Fx and v ∈ Fy are such that

d (u, v) 6 αd (x, y) + k, for each k > 0

then (u, v) ∈ E (G).

Theorem 2 ([1], Th. 3.1). Let (X, d) be a complete metric space and suppose
that the triple (X, d,G) has the property:

for any (xn)n∈N in X, if xn → x and (xn, xn+1) ∈ E (G) for n ∈ N then
there is a subsequence (xkn)n∈N with (xkn , x) ∈ E (G) for n ∈ N.

Let F : X  X be a G-contraction and

Xf = {x ∈ X : (x, u) ∈ E (G) for some u ∈ Fx} .

Then the following statements hold:

1. For any x ∈ XF , F
∣∣∣[x]G̃ has a fixed point.

2. If XF ̸= ∅ and G is weakly connected, then F has a fixed point in X.

3. If X ′ := ∪
{
[x]G̃ : x ∈ XF

}
, then F |X′ has a fixed point.

4. If F ⊆ E (G) then F has a fixed point.

5. FixF ̸= ∅ if and only if XF ̸= ∅.
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Definition 3. Let (X, d) be a metric space. T : X → X is called a Kannan
operator if there exists a ∈

[
0, 1

2

)
such that:

d (Tx, Ty) 6 a [d (x, Tx) + d (y, Ty)]

for all x, y ∈ X.

Kannan [7] proved that if X is complete, then every Kannan mapping has
a fixed point. A number of interesting results have been obtained by different
authors for Kannan mappings, see for example [3, 4, 14, 15].

The aim of this paper is to study the existence of fixed points for Kannan
mappings in metric spaces endowed with a graph G by introducing the concept
of G-Kannan mappings.

2 Main Results

Throughout this section we assume that (X, d) is a metric space, and G is
a directed graph such that V (G) = X, E (G) ⊇ ∆ and the graph G has no
parallel edges. The set of all fixed points of a mapping T is denoted by FixT .

In this section, by using the idea of Jakhymski [5], we will consider the
following concept:

Definition 4. Let (X, d) be a metric space and G a graph. The mapping
T : X → X is said to be a G-Kannan mapping if:

1. ∀x, y ∈ X (If (x, y) ∈ E (G) ⇒ (Tx, Ty) ∈ E (G)).

2. there exists a ∈
[
0, 1

2

)
such that:

d (Tx, Ty) 6 a [d (x, Tx) + d (y, Ty)]

for all (x, y) ∈ E (G).

Remark 1. If T is a G-Kannan mapping, then T is both a G−1-Kannan
mapping and a G̃-Kannan mapping.

Example 1. Any Kannan mapping is a G0-Kannan mapping, where the graph
G0 is defined by E (G0) = X ×X.

Example 2. Let X = {0, 1, 3} and the euclidean metric d (x, y) = |x− y| ,
∀x, y ∈ X. The mapping T : X → X, Tx = 0, for x ∈ {0, 1} and Tx =
1, for x = 3 is a G-Kannan mapping with constant a = 1

3 , where G =
{(0, 1) ; (1, 3) ; (0, 0) ; (1, 1)) ; (3, 3)}, but is not a Kannan mapping because
d (T0, T3) = 1 and d (0, T0) + d (3, T3) = 2.
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Definition 5. Let (X, d) be a metric space endowed with a graph G and T :
X → X be a mapping. We say that the graph G is T−connected if for all
vertices x, y of G with (x, y) /∈ E (G), there exists a path in G,(xi)

N
i=0 from x

to y such that x0 = x, xN = y and (xi, Txi) ∈ E (G) for all i = 1, ..., N − 1.

A graph G is weakly T−connected if G̃ is T−connected.

Lemma 1. Let (X, d) be a metric space endowed with a graph G and T :
X → X be a G-Kannan mapping with constant a. If the graph G is weakly
T−connected then, given x, y ∈ X, there is r (x, y) > 0 such that

d (Tnx, Tny) 6 ad
(
Tn−1x, Tnx

)
+

(
a

1− a

)n

r (x, y)+ad
(
Tn−1y, Tny

)
(2.1)

for all n ∈ N∗.

Proof. Let x, y ∈ X. If (x, y) ∈ E
(
G̃
)
then by induction (Tnx, Tny) ∈ E

(
G̃
)

so (2.1) is true, with r (x, y) = 0 for all n ∈ N. If (x, y) /∈ E
(
G̃
)
then there is

a path (xi)
N
i=0 in G̃ from x to y, i.e., x0 = x, xN = y with (xi−1, xi) ∈ E

(
G̃
)

for i = 1, ..., N and (xi, Txi) ∈ E
(
G̃
)
for i = 1, ..., N − 1. By Remark 1, T is

a G̃-Kannan mapping. An easy induction shows (Tnxi−1, T
nxi) ∈ E

(
G̃
)
for

i = 1, ..., N ,
(
Tn−1xi, T

nxi

)
∈ E

(
G̃
)
and

d
(
Tn−1xi, T

nxi

)
6

(
a

1− a

)n−1

d (xi, Txi)

for all n ∈ N∗ and i = 1, ..., N − 1. Hence by the triangle inequality, we get

d (Tnx, Tny) 6
N∑
i=1

d (Tnxi−1, T
nxi)

6 a

[
d
(
Tn−1x, Tnx

)
+ 2

N−1∑
i=1

d
(
Tn−1xi, T

nxi

)
+d

(
Tn−1y, Tny

)]

6 a

[
d
(
Tn−1x, Tnx

)
+ 2

(
a

1− a

)n−1 N−1∑
i=1

d (xi, Txi)+d
(
Tn−1y, Tny

)]
,

so it suffices to set

r (x, y) = 2 (1− a)
N−1∑
i=1

d (xi, Txi).
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The main result of this paper is given by the following theorem.

Theorem 3. Let (X, d) be a complete metric space endowed with a graph G
and T : X → X be a G-Kannan mapping. We suppose that:

(i.) G is weakly T−connected;

(ii.) for any (xn)n∈N in X, if xn → x and (xn, xn+1) ∈ E (G) for n ∈ N then
there is a subsequence (xkn)n∈N with (xkn , x) ∈ E (G) for n ∈ N.

Then T is a PO.

Proof. Let x ∈ X. By Lemma 1, there exists r (x, Tx) such that:

d
(
Tnx, Tn+1x

)
6 ad

(
Tn−1x, Tnx

)
+

(
a

1− a

)n

r (x, Tx) + ad
(
Tnx, Tn+1x

)
.

for all n ∈ N∗. Hence

d
(
Tnx, Tn+1x

)
6 a

1− a
d
(
Tn−1x, Tnx

)
+

an

(1− a)
n+1 r (x, Tx) . (2.2)

Using the relation (2.2) and an elementary calculus we get

d
(
Tnx, Tn+1x

)
6

(
a

1− a

)n

d (x, Tx) + n
an

(1− a)
n+1 r (x, Tx) (2.3)

for all n ∈ N.
Let b := a

1−a , because a ∈
[
0, 1

2

)
then b ∈ [0, 1). Using the relation (2.3)

we have

n∑
i=0

d
(
T kx, T k+1x

)
6 d (x, Tx)

n∑
i=0

bk +
r (x, Tx)

1− a

n∑
i=0

k · bk

= d (x, Tx)
1− bn+1

1− b
+

r (x, Tx)

1− a
· nb

n+2 − (n+ 1) bn+1 + b

(1− b)
2

Hence
∞∑

n=0
d
(
Tnx, Tn+1x

)
< ∞ and because

d
(
Tnx, Tn+px

)
6

n+p∑
i=0

d
(
T ix, T i+1x

)
−

n−1∑
i=0

d
(
T ix, T i+1x

)
→ 0

as n → ∞ and for all p ∈ N, we get (Tnx)n>0 is a Cauchy sequence. But (X, d)
is a complete metric space, therefore (Tnx)n>0 converges to some x∗ ∈ X.
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Let x, y ∈ X then (Tnx)n>0 → x∗ and (Tny)n>0 → y∗, as n → ∞.
By Lemma 1, for all n ∈ N∗, we get

d (Tnx, Tny) 6 ad
(
Tn−1x, Tnx

)
+

(
a

1− a

)n

r (x, y) + ad
(
Tn−1y, Tny

)
Letting n → ∞ obtain that d (x∗, y∗) 6 0, hence x∗ = y∗ and for all x ∈ X
there exists a unique x∗ such that

lim
n→∞

Tnx = x∗.

Now we will prove that x∗ ∈ FixT . Because the graph G is weakly

T−connected, there is at least x0 ∈ X such that (x0, Tx0) ∈ E
(
G̃
)

so(
Tnx0, T

n+1x0

)
∈ E

(
G̃
)
for all n ∈ N. But lim

n→∞
Tnx0 = x∗, then by (ii.)

there is a subsequence
(
T knx0

)
n∈N with

(
T knx0, x

∗) ∈ E (G) for alln ∈ N.
Then, for all n ∈ N, we get

d (x∗, Tx∗) 6 d
(
x∗, T kn+1x

)
+ d

(
T kn+1x0, Tx

∗)
6 d

(
x∗, T kn+1x

)
+ a

[
d
(
T knx0, T

kn+1x0

)
+ d (x∗, Tx∗)

]
.

Hence

d (x∗, Tx∗) 6 1

1− a
d
(
x∗, T kn+1x

)
+

a

1− a
d
(
T knx0, T

kn+1x0

)
Now, letting n → ∞, we obtain

d(x∗, Tx∗) = 0 ⇔ x∗ = Tx∗, that is, x∗ ∈ FixT.

If we have Ty = y for some y ∈ X, then from above, we must have Tny → x∗,
so y = x∗ and therefore, T is a PO.

The next example shows that the condition (ii.) is a necessary condition
for G-Kannan mapping to be a PO.

Example 3. Let X := [0, 1] be endowed with the Euclidean metric dE. Define
the graph G by

E (G) = {(x, y) ∈ (0, 1]× (0, 1] |x > y } ∪ {(0, 0) , (0, 1)}

Set
Tx =

x

4
for x ∈ (0, 1] , and T0 = 1

It is easy to verify (X, d) is a complete metric space, G is weakly T−connected
and T is a G-Kannan mapping with a = 3

7 . Clearly, Tnx → 0 for all x ∈ X,
but T has no fixed points.
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The next example shows that the graph G must be T−connected so the
G-Kannan mapping T to be a PO.

Example 4. Let X = N\ {0, 1} be endowed with the Euclidean metric and
define T : X → X, Tx = 2x. Consider the graph G define by:

V (G) = X and E (G) =
{(

2kn, 2k (n+ 1)
)
: n ∈ X, k ∈ N

}
∪∆

Then T is G-Kannan operator with a = 2
5 because

dE
(
T2kn, T2k (n+ 1)

)
= 2k+1 6 2

5
2k (2n+ 1)

=
2

5

[
dE

(
2kn, T2kn

)
+ dE

(
2k (n+ 1) , T2k (n+ 1)

)]
for all n ∈ X and for all k ∈ N.

Then (X, d) is a complete metric space, G is weakly connected but not

weakly T−connected because (2, 4) /∈ E
(
G̃
)
and the only path in G̃ from 2 to

4 is
y0 = 2, y1 = 3, y2 = 4 and (3, T3) = (3, 6) /∈ E

(
G̃
)
.

Clearly, Tnx not converge for all x ∈ X and T has no fixed points.

From Theorem 3, we obtain the following corollary concerning the fixed
point of Kannan operator in partially ordered metric spaces.

Corollary 1. Let (X,6) be a partially ordered set and d be a metric on X
such that the metric space (X, d) is complete. Let T : X → X be an increasing
operator such that the following three assertions hold:

(i.) There exist a ∈
[
0, 1

2

)
such that d (Tx, Ty) 6 a [d (x, Tx) + d (y, Ty)] for

each x, y ∈ X with x 6 y;

(ii.) For each x, y ∈ X, incomparable elements of (X,6), there exists z ∈ X
such that x 6 z, y 6 z and z 6 Tz;

(iii.) If an increasing sequence (xn) converges to x in X, then xn 6 x for all
n ∈ N.

Then T is a PO.

Proof. Consider the graph G with V (G) = X, and

E (G) = {(x, y) ∈ X ×X |x 6 y } .

Because the mapping T is increasing and (i.) holds we get the mapping T is
a G−Kannan mapping. By (ii.) the graph G is weakly T−connected and the
condition (iii.) implies the condition (ii.) from Theorem 3. The conclusion
follows now from Theorem 3.
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In the next we show the fixed point theorem for cyclic Kannan mapping
proved in [9] by Petric is a consequence of the Theorem 3.

Let p 6 2 and {Ai}pi=1 be nonempty closed subsets of a complete metric
space X. A mapping T : ∪p

i=1Ai → ∪p
i=1Ai is called a cyclical operator if

T (Ai) ⊆ Ai+1, for all i ∈ {1, 2, ..., p} (2.4)

where Ap+1 := A1.

Theorem 4. Let A1, A2, ..., Ap, Ap+1 = A1 be nonempty closed subsets of a
complete metric space (X, d) and suppose T : ∪p

i=1Ai → ∪p
i=1Ai is a cyclical

operator, and there exists a ∈
[
0, 1

2

)
such that for each pair (x, y) ∈ Ai×Ai+1,

for i ∈ {1, 2, ..., p}, we have

d (Tx, Ty) 6 a [d (x, Tx) + d (y, Ty)] .

Then T is a PO.

Proof. Let Y = ∪p
i=1Ai then (Y, d) is a complete metric space.

Consider the graph G with V (G) = Y , and

E (G) = {(x, y) ∈ Y × Y |∃ i ∈ {1, 2, ..., p} such that x ∈ Ai and y ∈ Ai+1 }

Because T is a cyclic operator we get

(Tx, Ty) ∈ E (G) , for all (x, y) ∈ E (G)

and via hypothesis the operator T is a G-Kannan operator and the graph G is
weakly T−connected. Now let (xn)n∈N inX, if xn → x and (xn, xn+1) ∈ E (G)
for n ∈ N. Then there is i ∈ {1, 2, ..., n} such that x ∈ Ai. However in view
of (2.4) the sequence {xn} has an infinite number of terms in each Ai, for all
i ∈ {1, 2, ..., p}. The subsequence of the sequence {xn} formed by the terms
which is in Ai−1 satisfies the condition (ii.) from Theorem 3. In conclusion
the operator T is PO.
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[11] D. O’Regan , A. Petruşel Fixed point theorems for generalized contrac-
tions in ordered metric spaces, J. Math. Anal. Appl. 341 (2008) 1241-
1252.

[12] B.E. Rhoades, A comparison of various definitions of contractive map-
pings, Trans. Amer. Math. Soc. 226 (1977) 257-290.

[13] I.A. Rus, Generalized Contractions and Applications, Cluj Univ. Press,
2001.

[14] M. De la Sen, Linking contractive self-mappings and cyclic Meir-Keeler
contractions with Kannan self-mappings, Fixed Point Theory and Appli-
cations, Article Number 572057, 2010,DOI: 10.1155/2010/572057.

[15] J. S. Ume, Existence theorems for generalized distance on complete met-
ric spaces Fixed Point Theory and Applications Article Number 397150,
2010, DOI: 10.1155/2010/397150.




