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Two sufficient conditions for fractional
k-deleted graphs

Xiangyang Lv

Abstract

Let G be a graph, and k a positive integer. A fractional k-factor is
a way of assigning weights to the edges of a graph G (with all weights
between 0 and 1) such that for each vertex the sum of the weights of the
edges incident with that vertex is k. A graph G is a fractional k-deleted
graph if G − e has a fractional k-factor for each e ∈ E(G). In this
paper, we obtain some sufficient conditions for graphs to be fractional
k-deleted graphs in terms of their minimum degree and independence
number. Furthermore, we show the results are best possible in some
sense.

1 Introduction

The graphs considered here will be finite undirected graphs without loops or
multiple edges. Let G be a graph with vertex set V (G) and edge set E(G).
For any x ∈ V (G), we denote by dG(x) the degree of x in G and by NG(x)
the set of vertices adjacent to x in G. For S ⊆ V (G), we denote by G[S] the
subgraph of G induced by S and by G− S the subgraph obtained from G by
deleting vertices in S together with the edges incident to vertices in S. Let
S and T be two disjoint subsets of V (G), we denote by eG(S, T ) the number
of edges with one end in S and the other end in T . A subset S of V (G) is
called an independent set of G if every edge of G is incident with at most one
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vertex of S. We use α(G) and δ(G) to denote the independence number and
minimum degree of G, respectively.

Let k be a positive integer. Then a spanning subgraph F of G is called
a k-factor if dF (x) = k for each x ∈ V (G). If k = 1, then a k-factor is
simply called a 1-factor. A fractional k-factor is a way of assigning weights
to the edges of a graph G (with all weights between 0 and 1) such that for
each vertex the sum of the weights of the edges incident with that vertex is
k. If k = 1, then a fractional k-factor is a fractional 1-factor. A graph G is a
fractional k-deleted graph if G− e has a fractional k-factor for each e ∈ E(G).
If k = 1, then a fractional k-deleted graph is a fractional 1-deleted graph. If
G1 and G2 are disjoint graphs, then the union is denoted by G1 ∪G2 and the
join by G1

∨
G2. The other terminologies and notations not given here can be

found in [1].
Many authors have investigated graph factors [6,7,11,12]. Many authors

have investigated fractional k-factors [2,5,8,13] and fractional k-deleted graphs
[3,9,10]. The following results on k-factors, fractional k-factors and fractional
k-deleted graphs are known.

Theorem 1. [6] Let k ≥ 2 be an integer and G a graph with n vertices.
Assume that if k is odd, then n is even and G is connected. Let G satisfy

n > 4k + 1− 4
√
k + 2,

δ(G) ≥ (k − 1)(n+ 2)

2k − 1
and

δ(G) >
1

2k − 2
((k − 2)n+ 2α(G)− 2).

Then G has a k-factor.

Theorem 2. [13] Let k ≥ 2 be an even integer and G a graph of order n with
n > 4k + 1− 4

√
k + 2. If

δ(G) ≥ (k − 1)(n+ 2)

2k − 1
and

δ(G) >
1

2k − 2
((k − 2)n+ 2α(G)− 2),

then G has a fractional k-factor.

Theorem 3. [13] Let k ≥ 3 be an odd integer and G a graph of order n with
n ≥ 4k − 5. If

δ(G) >
(k − 1)(n+ 2)

2k − 1
and
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δ(G) >
1

2k − 2
((k − 2)n+ 2α(G)− 1),

then G has a fractional k-factor.

Theorem 4. [10] Let k ≥ 2 be an integer, and let G be a graph of order n with
n ≥ 4k − 5. If

bind(G) >
(2k − 1)(n− 1)

k(n− 2)
,

then G is a fractional k-deleted graph.

In this paper, we shall proceed to research the fractional k-deleted graphs
and give some new sufficient conditions for graphs to be fractional k-deleted
graphs in terms of their minimum degree and independence number. Our main
results are the following theorems which are some extensions of Theorem 1,
Theorem 2 and Theorem 3.

Theorem 5. Let k ≥ 2 be an even integer and G a graph of order n with
n > 4k + 1− 4

√
k. If

δ(G) >
(k − 1)(n+ 2) + 1

2k − 1
and

δ(G) >
(k − 2)n+ 2α(G)

2k − 2
,

then G is a fractional k-deleted graph.

Theorem 6. Let k ≥ 3 be an odd integer and G a graph of order n with
n > 4k + 1− 4

√
k − 1. If

δ(G) >
(k − 1)(n+ 2) + 2

2k − 1
and

δ(G) >
(k − 2)n+ 2α(G) + 1

2k − 2
,

then G is a fractional k-deleted graph.

2 The Proofs of Main Theorems

In order to prove our main theorems, we depend heavily on the following
results.
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Lemma 2.1. [4] A graph G is a fractional k-deleted graph if and only if for
any S ⊆ V (G) and T = {x : x ∈ V (G) \ S, dG−S(x) ≤ k}

δG(S, T ) = k|S|+ dG−S(T )− k|T | ≥ ε(S, T ),

where dG−S(T ) =
∑

x∈T dG−S(x) and ε(S, T ) is defined as follows,

ε(S, T ) =

 2, if T is not independent,
1, if T is independent, and eG(T, V (G) \ (S ∪ T )) ≥ 1,
0, otherwise.

Lemma 2.2. [3] Let a, b and c be integers such that a ≥ 2, 2 ≤ b ≤ a − 1,
c = 0 or 1, and let x and y be nonnegative integers. Suppose that

x ≤ (a− b)y + c

2a− b

and

x >
(a− 1)(y + 2) + 1 + c

2a− 1
− h.

Then y ≤ 4a+ 1− 4
√
a− c.

In the following, we shall prove our main theorems.
Proof of Theorem 5. Let G be a graph satisfying the hypothesis of

Theorem 5, we prove the theorem by contradiction. Suppose that G is not
a fractional k-deleted graph. Then by Lemma 2.1, there exists a subset S of
V (G) such that

δG(S, T ) = k|S|+ dG−S(T )− k|T | ≤ ε(S, T )− 1, (1)

where T = {x : x ∈ V (G) \ S, dG−S(x) ≤ k}.
If T = ∅, then ε(S, T ) = 0. Combining this with (1), we have −1 ≥

δG(S, T ) = k|S| ≥ 0, a contradiction. Therefore, T ̸= ∅. In the following, we
define

h = min{dG−S(x) : x ∈ T}

and choose a vertex x1 ∈ T such that

dG−S(x1) = h.

Obviously, 0 ≤ h ≤ k and δ(G) ≤ dG(x1) ≤ dG−S(x1) + |S| = h + |S|. Thus,
we obtain

|S| ≥ δ(G)− h. (2)

We shall consider three cases by the value of h and derive contradictions.
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Case 1. h = 0.
Set X = {x ∈ T : dG−S(x) = 0}, Y = {x ∈ T : dG−S(x) = 1}, Y1 = {x ∈

Y : NG−S(x) ⊆ T} and Y2 = Y − Y1. Then the graph induced by Y1 in G− S
has maximum degree at most 1. Let Z be a maximum independent set of the
graph. Obviously, |Z| ≥ 1

2 |Y1|. According to the definitions, X ∪ Z ∪ Y2 is an
independent set of G. Therefore, we have

α(G) ≥ |X|+ |Z|+ |Y2| ≥ |X|+ 1

2
|Y1|+

1

2
|Y2| = |X|+ 1

2
|Y |. (3)

Using (1), (3) and |S|+ |T | ≤ n, we obtain

1 ≥ ε(S, T )− 1 ≥ δG(S, T ) = k|S|+ dG−S(T )− k|T |
= k|S|+ dG−S(T \ (X ∪ Y ))− k|T |+ |Y |
≥ k|S|+ 2|T − (X ∪ Y )| − k|T |+ |Y |
= k|S|+ 2|T | − k|T | − 2|X| − |Y |

= k|S| − (k − 2)|T | − 2(|X|+ 1

2
|Y |)

≥ k|S| − (k − 2)(n− |S|)− 2(|X|+ 1

2
|Y |)

= (2k − 2)|S| − (k − 2)n− 2(|X|+ 1

2
|Y |)

≥ (2k − 2)|S| − (k − 2)n− 2α(G),

that is,

(2k − 2)|S| − (k − 2)n− 2α(G) ≤ 1. (4)

Note that k is even. Therefore, the left-hand side of (4) is even. Thus, we
obtain

(2k − 2)|S| − (k − 2)n− 2α(G) ≤ 0,

which implies

|S| ≤ (k − 2)n+ 2α(G)

2k − 2
. (5)

On the other hand, from (2), h = 0 and δ(G) > (k−2)n+2α(G)
2k−2 , we get

|S| ≥ δ(G)− h >
(k − 2)n+ 2α(G)

2k − 2
,

which contradicts (5).
Case 2. 1 ≤ h ≤ k − 1.
Claim 1.[12] |S| ≤ (k−h)n

2k−h .
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On the other hand, by (2) and δ(G) > (k−1)(n+2)+1
2k−1 , we get

|S| ≥ δ(G)− h >
(k − 1)(n+ 2) + 1

2k − 1
− h. (6)

If h = 1, then (6) contradicts Claim 1. In the following, we assume that
2 ≤ h ≤ k − 1. Applying Lemma 2.2 with a = k, b = h, c = 0, x = |S| and
y = n, we get

n ≤ 4k + 1− 4
√
k,

which contradicts the hypothesis that n > 4k + 1− 4
√
k.

Case 3. h = k.
It is easy to see that 4k + 1− 4

√
k ≥ 2k − 1. Hence, we have n > 2k − 1.

Thus, we obtain

δ(G) >
(k − 1)(n+ 2) + 1

2k − 1
=

(k − 1)n

2k − 1
+ 1 > k.

In terms of the integrity of δ(G), we obtain

δ(G) ≥ k + 1. (7)

Claim 2. S ̸= ∅.
Proof. If S = ∅, then by (1) and (7) we have

ε(S, T )− 1 ≥ δG(S, T ) = k|S|+ dG−S(T )− k|T |
= dG(T )− k|T | ≥ δ(G)|T | − k|T | ≥ |T | ≥ ε(S, T ),

it is a contradiction. The proof of Claim 2 is complete.
According to Claim 2, h = k and k ≥ 2, we obtain

δG(S, T ) = k|S|+ dG−S(T )− k|T |
≥ k|S|+ h|T | − k|T | = k|S| ≥ k ≥ 2 ≥ ε(S, T ),

which contradicts (1).
From the contradictions above, we deduce that G is a fractional k-deleted

graph. This completes the proof of Theorem 5.
The proof of Theorem 6 is quite similar to that of Theorem 5 and is omitted.

3 Remarks

Remark 1. We now show that the conditions δ(G) > (k−1)(n+2)+1
2k−1 and

δ(G) > (k−2)n+2α(G)
2k−2 in Theorem 5 are best possible. Let k ≥ 2 be an integer
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and G = K2k−2

∨
kK2. We denote by n the order of the graph G. Then

n = 4k − 2 > 4k + 1 − 4
√
k and α(G) = k. Thus, we have δ(G) = 2k − 1 =

(k−1)(n+2)+1
2k−1 and δ(G) = 2k − 1 = (2k−1)(2k−2)

2k−2 = 4k2−6k+2
2k−2 > 4k2−8k+4

2k−2 =
4k2−10k+4+2k

2k−2 = (k−2)(4k−2)+2k
2k−2 = (k−2)n+2α(G)

2k−2 . Let S = V (K2k−2), T =
V (kK2). Then |S| = 2k− 2, |T | = 2k, and dG−S(T ) = 2k. Since T = V (kK2)
is not independent, ε(S, T ) = 2. Thus, we get

δG(S, T ) = k|S|+ dG−S(T )− k|T |
= k(2k − 2) + 2k − k · 2k
= 0 < 2 = ε(S, T ).

Then by Lemma 2.1, G is not a fractional k-deleted graph. In the above sense,

the condition δ(G) > (k−1)(n+2)+1
2k−1 in Theorem 5 is best possible.

Let k ≥ 2 is even. Obviously, k
2 is a positive integer. Put G = K3k−1

∨
(2kK1

∪
k
2K2). We use n to denote the order of the graph G. Then n =

6k − 1 > 4k + 1 − 4
√
k and α(G) = 2k + k

2 = 5k
2 . Thus, δ(G) = 3k −

1 = (3k−1)(2k−2)
2k−2 = 6k2−8k+2

2k−2 = (k−2)(6k−1)+5k
2k−2 = (k−2)n+2α(G)

2k−2 and δ(G) =

3k − 1 = (3k−1)(2k−1)
2k−1 = (k−1)(6k+1)+2

2k−1 = (k−1)(n+2)+2
2k−1 > (k−1)(n+2)+1

2k−1 . Let

S = V (K3k−1), T = V (2kK1

∪
k
2K2). Clearly, |S| = 3k − 1, |T | = 3k, and

dG−S(T ) = k. Since T = V (2kK1

∪
k
2K2) is not independent, ε(S, T ) = 2.

Thus, we have

δG(S, T ) = k|S|+ dG−S(T )− k|T |
= k(3k − 1) + k − k · 3k
= 0 < 2 = ε(S, T ).

Then by Lemma 2.1, G is not a fractional k-deleted graph. In the above sense,

the condition δ(G) > (k−2)n+2α(G)
2k−2 in Theorem 5 is best possible.

Remark 2. We show that the conditions δ(G) > (k−1)(n+2)+2
2k−1 and δ(G) >

(k−2)n+2α(G)+1
2k−2 in Theorem 6 are best possible. Let k ≥ 3 be an odd integer

and G = K3k−2

∨
3k+1

2 K2. Clearly,
3k+1

2 is a positive integer. We denote by n

the order of the graphG. Then n = 6k−1 > 4k+1−4
√
k − 1 and α(G) = 3k+1

2 .

Thus, we have δ(G) = 3k − 1 = (3k−1)(2k−1)
2k−1 = 6k2−5k+1

2k−1 = (k−1)(6k+1)+2
2k−1 =

(k−1)(n+2)+2
2k−1 and δ(G) = 3k − 1 = (3k−1)(2k−2)

2k−2 = 6k2−8k+2
2k−2 > 6k2−10k+4

2k−2 =
(k−2)(6k−1)+3k+2

2k−2 = (k−2)n+2α(G)+1
2k−2 . Let S = V (K3k−2), T = V ( 3k+1

2 K2).

Then |S| = 3k−2, |T | = 3k+1, and dG−S(T ) = 3k+1. Since T = V ( 3k+1
2 K2)
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is not independent, ε(S, T ) = 2. Thus, we obtain

δG(S, T ) = k|S|+ dG−S(T )− k|T |
= k(3k − 2) + 3k + 1− k(3k + 1)

= 1 < 2 = ε(S, T ).

Then by Lemma 2.1, G is not a fractional k-deleted graph. In the above sense,

the condition δ(G) > (k−1)(n+2)+2
2k−1 in Theorem 6 is best possible.

Let k ≥ 3 is odd. Obviously, 5k+1
2 is a positive integer. Put G =

K3k

∨
(2kK1

∪
k+1
2 K2). We use n to denote the order of the graph G. Then

n = 6k + 1 > 4k + 1 − 4
√
k − 1 and α(G) = 2k + k+1

2 = 5k+1
2 . Thus,

δ(G) = 3k = 3k(2k−2)
2k−2 = 6k2−6k

2k−2 = (k−2)(6k+1)+(5k+1)+1
2k−2 = (k−2)n+2α(G)+1

2k−2

and δ(G) = 3k = 3k(2k−1)
2k−1 = (k−1)(6k+3)+3

2k−1 = (k−1)(n+2)+3
2k−1 > (k−1)(n+2)+2

2k−1 .

Let S = V (K3k), T = V (2kK1

∪
k+1
2 K2). Clearly, |S| = 3k, |T | = 3k + 1,

and dG−S(T ) = k + 1. Since T = V (2kK1

∪
k+1
2 K2) is not independent,

ε(S, T ) = 2. Thus, we have

δG(S, T ) = k|S|+ dG−S(T )− k|T |
= k · 3k + k + 1− k(3k + 1)

= 1 < 2 = ε(S, T ).

Then by Lemma 2.1, G is not a fractional k-deleted graph. In the above sense,

the condition δ(G) > (k−2)n+2α(G)+1
2k−2 in Theorem 6 is best possible.
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