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Green’s Relations on Hyp;(2)

Wattapong Puninagool and Sorasak Leeratanavalee

Abstract

A generalized hypersubstitution of type 7 = (2) is a mapping which
maps the binary operation symbol f to a term o(f) which does not
necessarily preserve the arity. Any such o can be inductively extended
to a map & on the set of all terms of type 7 = (2), and any two such
extensions can be composed in a natural way. Thus, the set Hypc(2)
of all generalized hypersubstitutions of type 7 = (2) forms a monoid.
Green’s relations on the monoid of all hypersubstitutions of type 7 =
(2) were studied by K. Denecke and Sh.L. Wismath. In this paper we
describe the classes of generalized hypersubstitutions of type 7 = (2)
under Green’s relations.

1 Introduction

The concept of generalized hypersubstitutions was introduced by S. Leer-
atanavalee and K. Denecke [11]. We use it as a tool to study strong hyperiden-
tities and use strong hyperidentities to classify varieties into collections called
strong hypervarieties. Varieties which are closed under arbitrary application
of generalized hypersubstitutions are called strongly solid.

A generalized hypersubstitution of type 7 = (n;);cr, or simply, a gen-
eralized hypersubstitution is a mapping o which maps each n;-ary operation
symbol of type 7 to the set W, (X) of all terms of type 7 built up by operation
symbols from {f;|i € I} where f; is n;-ary and variables from a countably
infinite alphabet of variables X := {x1,x2,x3,...} which does not necessarily
preserve the arity. We denote the set of all generalized hypersubstitutions of
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type 7 by Hypg(7). First, we define inductively the concept of generalized
superposition of terms S™ : W, (X)™ ! — W_(X) by the following steps:

(i) Ift=x;,1<j<m,then S"(z,t1,...,tm) =1;.
(ii) If t = zj,m < j € IN, then S™(zj,t1,...,tm) = ;.
(111) Ift = fi(sh .o '75ni)a then
Sm(t,tl, e ,tm) = fi(Sm(Sl,tl, e 7tm),. . .,Sm(sm,tl,. .. 7tm))

We extend a generalized hypersubstitution o to a mapping 6 : W, (X) —
W, (X) inductively defined as follows:

(i) olz] ==z € X,

(i) o[fi(tr,... tn;)] :=S™ (0(fi),0[t1],- -, F[tn;]), for any n;-ary operation
symbol f; supposed that &[t;], 1 < j < n; are already defined.

Then we define a binary operation og on Hypg(7) by 010602 := 1009
where o denotes the usual composition of mappings and 01,02 € Hypa(T).
Let 0;4 be the hypersubstitution which maps each n;-ary operation symbol f;
to the term f;(z1,...,xy,). We proved the following propositions.

Proposition 1.1. ([11]) For arbitrary terms t,t1,...,t, € W.(X) and for
arbitrary generalized hypersubstitutions o, 01,02 we have

(i) S™(6[t],o[t1],...,0[tn]) = 0[S (t,t1, ..., tn)],
(ii) (61 009) =61 069.

Proposition 1.2. ([11]) Hypae (1) = (Hypa(7); 06, 0:4) is a monoid and the
set of all hypersubstitutions of type T forms a submonoid of Hypa(T).

In this paper we describe the classes of generalized hypersubstitutions
of type 7 = (2) under Green’s relations.

2 Green’s relations on Semigroups

Let S be a semigroup and 1 ¢ S. We extend the binary operation on S to
SU{1} by define 21 = 1z = z for all z € SU{1}. Then SU{1} is a semigroup
with identity 1.

Let S be a semigroup. Then we define,

gl — S if S has an identity,
SU{1} otherwise.
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Let S be a semigroup and ) # A C S. We now set

(A); = n{L|L is a left ideal of S containing A},
N{R|R is a right ideal of S containing A},
N{I|] is an ideal of S containing A}.

—_

=2

. S
[l

Then (A);,(A), and (A); are left ideal, right ideal and ideal of S, respectively.
We call (A); ((A);, (A);) the left ideal (right ideal, ideal) of S generated by
A.

It is easy to see that

(A, = S'A=SAUA,
(4), = AS'=AUSA,

(A); = S'AS'=SASUSAUASU A.
For ay,as,...,a, € S, wewrite (ay, az, ..., a,); instead of ({a1,az,...,an})
and call it the left ideal of S generated by ay,as,...,a,. Similarly, we write

(a1,a2,...,a,), and (a1, a9, ...,ay); for the right ideal and the ideal of S gen-
erated by ay,as,...,an,, respectively. If A is a left ideal of S and A = (a); for
some a € S, we then call A the principal left ideal generated by a. We can
define the concept of a principal right ideal and a principal ideal in the same
manner.

Let S be a semigroup. We define the relations £,R,H,D and J on S as
follows:

alb & (a)l = (b)l,
aRb < (a)r = (b)r,
H = LNR,
D = Lok,

adb < (a); = (b);.
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Then we have, for all a,b € S

alb < SaU{a} =SbU{b}
& S'a=S"
& a=zband b=ya for some z,y € S*.
aRb < aSU{a} =bSU{b}
& aS'=bs"
< a=bz and b = ay for some z,y € S'.
aHb < aLlband aRb.
aDb < (a,c) € £ and (¢,b) € R for some ¢ € S.
adb & SaSUSaUaSU{a} =SbSUSbUbLS U {b}
& StaSt = s'vs!
& a=xby and b = zau for some z,y, z,u € S*.

Remark 2.1. Let S be a semigroup. Then the following statements hold.
1. L,R.H,D and J are equivalence relations.
2 HCLCDCJand HCRCDC].

We call the relations £, R, H, D and J the Green’s relations on S. For each
a € S, we denote L-class, R-class, H-class, D-class and J-class containing a
by La, Ra, Hy, D, and J,, respectively.

For more details on Green’s relations see [7].

3 Green’s relations on Hypg(2)

Let 7 = (2) be a type with the binary operation symbol f. The generalized
hypersubstitution o of type 7 = (2) which maps f to the term ¢ in Wiy (X) is
denoted by o;. In this section we want to study Green’s relations on Hypg(2).
First, we introduce some notations.

For s, f(c,d) € W(2)(X),5 € W) (X)\ X, H C Hypc(2) \ Po(2), @i, x5 €
X,1,j € IN we denote :

vb(s) := the total number of variables occurring in the term s,
leftmost(s) := the first variable (from the left) that occurs in s,
rightmost(s) := the last variable that occurs in s,

Wg)({ml}) = {t € Wiy (X)|z1 € var(t), zo ¢ var(t)},
W(g)({mg}) = {t € Wiy (X)|z2 € var(t), z1 ¢ var(t)},

W({ar}) = WG o)\ fo ),

W({z2}) = WG ({z2}) \ {22},
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Wg)({$17$2}) = {t € Wipy(X) |1, 22 € var(t)},
(2):={0s, € Hypc(2)|i € IN,z; € X},
EY({z1}):={or € Hypc(2)|t € W({z1})},
EY({x2}):={0v € Hypc(2)|t € W({Jﬂz})}
ES({an 2=l & Hno(2)i € WE (o )
o ={0fe) € Hypc(2)|t € Wio)(X), 22 ¢ var(t)},
(2;_{Uf(t zs) € Hypa(2)|t € Wig)(X),z1 ¢ var(t)}
W= {t € Wy (X)|t &€ X, 21,22 ¢ var(l)},
G:={o; € Hypa(2)|t € W(o)(X)N\X,z1,22 ¢ var(t)},
f(c,d):= the term obtained from f(c,d) by interchanging all occur-
rences of the letters z1 and zs, i.e. f(c,d) = S?(f(c,d), 2, 71) and f(c,d) =
SZ(f(C’ d)a L2, xl)’
f(c,d)’:= the term defined inductively by z; = z; and f(c,d) =
F, ),
2;C[f(c,d)]:= the term obtained from f (e, ) by replacing each of the

(c,d

occurrences of the letter z1 by z; i.e. ,,C[f(c,d)] = S*(f(c,d), zs, x2),
(c,d

| =

)

Cy,[f(c,d)]:= the term obtained from f(c, ) by replacing each of the
occurrences of the letter zo by z; i.e. Cy,[f(c,d)] = S%(f(c,d), x1,2;),

2;Cx, [ f(c, d)]:= the term obtained from f(c,d) by replacing each of the
occurrences of the letter 1 by z; and the letter za by x; i.e. 5,Cy,[f(c,d)] =
SZ(f(Q d)a L, xj)7

S = {3]s € S},

S = {s'|s € S},

H := {of|o, € H},

H' :={oy|os € H}.

Then we have for any t € Wio)(X)\ X, (t') =t,t=t, ¢/ = 7, O f(z2,21) OG

Oy = Oy and oy aelel af(wz,w1) = O%.

Lemma 3.1. ([12]) Let f(c,d), f(u,v) € W2)(X) and of(c.ay0G T f(u,v) = Ow-
Then vb(w) > vb(f(c,d)) unless f(c,d) and f(u,v) match one of the following
16 possibilities:

E(1) 0¢(c,d) °G O f(uw) = Of(c,a) where opc.a) € G.

E(2) 0f(c.a) OG Tf(ar,a1) = 00, [f(ed)]-

E(3) 0f(c.d) ©G Tf(es,22) = 0., Cli(esd)]-

E(}) 0f(c.d) G Tid = Of(c.d)-

E(5) 0¢(c,d) G Of(z1,0:) = 0c,,[f(c,d)] Where z; € X, 0> 2.

E(6) 0f(c,d) °C O f(z0,21) = T ed)”
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E(7) Of(c,d) OG O f(za,3;) = O, Cu.[f(c,d)] where x; € X, 1 > 2.

E(S) Tf(c,d) OG O f(zy,a1) = O, Coy [f(c,d)] where x; € X, 1 > 2.
E(g) Of(e,d) OG O f(zi,x2) = T4, Clf(c.d)] where x; € X, 1 > 2.

E(ZO} Of(c,d) OG O f(zs,m;) = Umicmj [f(c,d)] where Tiy, Ty € X, i, > 2.
E(11) 0f(c,d) ©°G Of(a1,0) = Of(c,d) wherev & X, f(c,d) € Wg)({xl})
E(12) 0f(c,d) ©G O f(wa0) = OF(eay where v ¢ X, f(c,d) € Wg)({xl})

E(13) 0f(c,a) °G Of(zs,0) = 0,,Clf(cd) where z; € X,i > 2, v ¢ X, f(c,d) €
WS ({1 ).

E(]4) Of(e,d) OG O f(u,zr) = OFled) where u ¢ X, f(C, d) S W(g)({wg})
E(15) 0f(c,d) ©°G Of(ups) = Of(c,dy Where u & X, f(e,d) € W(%({mg}).

E(16) 0f(c,a) °G Of(uzi) = oc,, [f(cd) where z; € X,i > 2,u ¢ X, f(e,d) €
W§ ({a2)).

Proposition 3.2. ([12]) P5(2)UES UES U{oiq} UG is the set of all idem-
potent elements in Hypa(2).

Lemma 3.3. Let f(c,d) € Wy (X)\ X, 0., € Pa(2), 05 € Hypg(2) and
o¢ € G. Then the following statements hold:

(Z) 050G Ogx; = Ogy,
(i) 04, oG 05 € Pa(2),

(iii) oy oG Tf(c,a) = Ot

Proof. (i) Consider (050G 04,)(f) = (6s004,)(f) = bs[oz, (f)] = Fs]xs] =
x; = 04,(f). S0 0506 0y, = 04,

(ii) If s € X, then by (i) we get o, og 0s = 05 € Pg(2). Assume
that s = f(u,v) where u,v € W) (X) and 04, oG 0u,04, oG 0y € Pg(2).
Thus 6, [u],0.,[v] € X. Consider (04, o 0s)(f) = (0, °G Tfuw))(f) =
S2(w4,64,[u],64,[v]). If 2; = 21, then (04, og 04)(f) = 62, [u] € X. If 7; = 12,
then (04, og 05)(f) = 64,[v] € X. If i > 2, then (04, og 0s)(f) = x; € X. So
Oz, OG 0s € PG(Q)

(iii) Since x1, 22 ¢ var(t), thus (o oG op(c.a))(f) = S%(t,6¢[c],6:[d]) =t =
o¢(f). So 040G Tf(c,ay = O
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Proposition 3.4. For any oy € Hypa(2) \ Pa(2), we have 0yRoz, o Loy and
O'tiDO'{DUtIDUtf/.

Proof. Let 0; € Hypa(2) \ Pa(2). Then o7 o¢ 0f(gy.0,) = 0t, 0t oG
Of(es,a1) = O Of(za,ar) ©G Ot = 0 and Oy (y, 2,) °G 0¢ = op. S0 0yRoy and
oiLoy . Therefore o, DoyDoy Do

Proposition 3.5. Anyo,, € Pg(2) is L-related only to itself, but is R-related,
D-related and J-related to all elements of P;(2), and not related to any other
generalized hypersubstitutions. Moreover, the set P (2) forms a complete R-,
D- and J- class.

Proof. By Lemma 3.3, we get for any o,, € Pg(2), 0 og 04, = 04, for all
o € Hypg(2). This shows that any o,, € Pg(2) can be L-related only to itself.
Since 0, og 04, = 04, for all 0,,0,, € Pg(2), so any two elements in Pg(2)
are R-related. From R CcDCY, we obtain that any two elements in P (2) are
D— and J— related. Moreover by Lemma 3.3, we get 0,060,060+ € Pg(2) for
all 05,01 € Hypg(2),04, € Ps(2). This implies if o ¢ Pg(2), then o cannot
be J-related to every element in Pg(2). So Pg(2) is the J-class of its elements.
Since any two elements in Pg(2) are R— and D— related, R C J,D C J and
Pg(2) is the J-class of its elements, thus P (2) forms a complete R-, D-class.

Lemma 3.6. Let 05,0¢ € Hypa(2). Then the following statements hold:
(i) If 050G 0y = 044, then either o, = 0y = 0iq 0T 05 = Tt = O f(y,01)-

(ii) If 05 0G 0t = Of(ay,0,), then either o5 = 044,01 = Of(gy,0,) OT Os =
Of(w2,21), 0t = Oid-

Proof. (i) Assume that o 0G0: = ;4. Since f(z1,22) ¢ X, by Lemma 3.3
we get s,t ¢ X and thus s = f(a,b),t = f(c,d) for some a,b,c,d € Wy)(X).
From o060 = 0,4, we obtain that S?(f(a,b), 6 ¢(an)lcl, 6 fap [d]) = f(21,22).
Soa=c==x10ra=2x9,d=zyand b=d = x9 or b = x1,c = x5. This
implies 05 = 0y = 044 OF 05 = 04 = T f(4y,2,)-

The proof of (ii) is similar to the proof of (i).

Proposition 3.7. All of R-, £- and D-classes of 054 are equal to {Cia, 0 ¢(zy,01)}-

Proof. By Proposition 3.4, we get 0;q and o4, ) are R-, £- and D-
related. This implies the R-, £- and D-class of ¢;4 contain at least {0iq, 0 f(z5,2,) }-
Let oy € Hypg(2) where 0:Do;y. So oilos and o,Ro;q for some o5 €
Hypg(2). Then there exist oy, 0y, 0p, 04 € Hypa(2) such that oy = 0, o¢ 05,
Os = 0q 0@ 0ty 05 = 04d OG Ou and 0;q = 05 0q 0. From 059 = 05 og Ov, by
Lemma 3.6 we get 05 = 0iq OT 05 = O (3 ,4,). FTOM 05 = 0iq OT 05 = O f(z5.01)
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and o5 = 04 og 0y, by Lemma 3.6 we get 0y = 04q OF 05 = Of(4y,2,)- So the
D-class of 044 is equal to {0id, O f(zy,,)}- From R C D, L C D, we obtain that
the R- and the L-class of 0iq are equal to {0, 0 f(xy,1) )

Proposition 3.8. (0i4); = Hypc(2) = (0f(zs,21))i» and if o € Hypa(2) and
(0); = Hypg(2), then o is one of diq 0T Of(zy.0,)- Moreover, the J-class of
0ia 18 equal to its D-class, {0ia; O f(zy1)}-

Proof. Let 0 € Hypc(2). Then 0 og 0iq 0g 0iq = 0 and 0 0G 0¢(z,,4,) °G
O—f(-ZZ,xl) =o0. So (Uid)i = Hypg(Q) = (Jf(zg,xl))i' This implies O—idgo—f(;cz,xl)~
Assume that (0); = Hypg(2). Then 0do,q and thus there exist 4, p € Hypa(2)
such that § og 0 og p = 0;4q. By Lemma 3.6, we get o0 og p = 0jq Or 0 oG p =
O f(as,2,)- Again by Lemma 3.6, we get 0 = 0iq OF 0 = 0 f(45,2,)-

Lemma 3.9. Let u € W9 (X), 0y € Hypg(2) and x = 1 or v = xo. If
x ¢ var(u), then © ¢ var(6¢[u]) (x is not a variable occurring in the term

(01 0 u)(f))-

Proof. If u € X, then 6[u] = v and so = ¢ var(6¢[u]). Assume that u =
f(u1,uz) where uy, uz € Way(X), x ¢ var(6¢[u1]) and x ¢ var(d¢[uz]). Since
x ¢ var(Giur]), = & var(Gi[uz]) and efu] = 6¢[f (ur, uz)] = S*(t, 6¢[w1], 64 [u2]),
thus z € var(6¢[u)).

Proposition 3.10. Any o, € G is R-related only to itself, but is L-related,
D-related and J-related to all elements of G, and not related to any other
generalized hypersubstitutions. Moreover, the set G forms a complete L-, D-
and J- class.

Proof. Let 0; € G. Assume that o5 € Hypg(2) where o;Ro;:. By
Proposition 3.5, we get s ¢ X. Then there exists 0, € Hypg(2) such that
0s = 040G 0p. Since s ¢ X and o, = 0, o 0p, by Lemma 3.3 we get p ¢ X.
Since o, € G and p ¢ X, by Lemma 3.3 we get o og 0 = 04. S0 05 = 0.
Thus oy is R-related only to itself. Let os,0, € G. By Lemma 3.3, we get
0s 0 0y = 05 and 03 og 05 = 0. Thus osL0;. So any two elements in
G are L-related. Since L C D C J, thus any two elements in G are D—
and J— related. Assume that o, € G and o5 € Hype(2) where osJo;. By
Proposition 3.5, we get s ¢ X. Then there exist 0,0, € Hype(2) such that
0p0G 010G 0g = 0. Since s ¢ X and o, o¢ 04 0g 04 = 05, thus by Lemma 3.3
we get p,q ¢ X. Since 0, € G and ¢ ¢ X, by Lemma 3.3 we get 0, 0¢ 04 = 0y.
Since x1, x2 ¢ var(t), by Lemma 3.9 we get x1, 2 are not variables occurring
in the term (0, o¢ 04)(f) = (0p oG 01 oG 04)(f). Thus 1,22 ¢ var(s) and so
0s € G. So G is the J-class of its elements. Since any two elements in G are
L— and D— related, £L C J,D C J and G is the J-class of its elements, thus
G forms a complete £-, D-class.
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Proposition 3.11. Let 7 = (n;)ics be a type and 01,09 € Hyps(r). Then
01Ros if and only if Imé; = Imés.

Proof. Assume that oc1Ros. Then o1 = 03 og 03 and g9 = 01 og 04 for
some 03,04 € Hypg(T) So 61 = (0'2 oG 0’3)A: 09003 and 69 = (O’l [oe (T4)A:
5’1 0&4. Thus Im&l = &1[WT(X)] = (5’2 O&g)[WT(X)} = 6’2[6’3[WT(X)H Q
G9[W,(X)] = Iméy. By the same way we can show that Imés C Imdy.
Conversely, assume that Imé; = Imdy. For each i € I, we have o1(f;) =
S"i(al(fi),xl,...,xni) = &1[fi(x1,...,xm)] € Imoy = Imoy. So Ul(fi) =
G2(t;] for some t; € W, (X). We define v : {f;]i € I} — W(X) by v(fi) = t;
for all i € I. Let i € I. Then (o2 og v)(fi) = d2[v(fi)] = 62[t:] = o1(fi).
So 01 = 03 og y. By the same way we can show that oo = 01 og 8 for some
B e W, (X).

Proposition 3.12. For any os,0¢ € Hypa(2) \ Pg(2), 0sRoy if and only if
s=tors=t.

Proof. Assume that o,Ro;. Then there exist 0,0, € Hypa(2) such that
0s = 0t oG 0y and oy = 05 o¢ 0,. By Lemma 3.3, we get u,v ¢ X. Then
u = f(ui,uz) and v = f(v1,vs) for some uy,uz,vi,va € Winy(X). Then we
have two equations

s = S%(t,6¢[w1], G fus]) - (1)
t = S2(s,64[v1],Gs[va]) - - (2).
From (1) and (2), we get vb(s) = vb(t). We consider four cases:

Case 1: t € WE. From (1), we get s = t.

Case2: t € W(%({xl, x2}). Suppose that u; ¢ X or ug ¢ X. Then 6¢[u1] ¢
X or 6¢[uz] ¢ X. From (1) and z1, x5 € var(t), we obtain that vb(s) > vb(t)
and it is a contradiction. So u1,us € X. Suppose that u; = us = x;. Then
Gt[ur] = G¢[uz] = x1. From (1), we get s € W ({z1}). Suppose that v; ¢ X.
Then 65[v1] ¢ X. From (2) and 1 € var(s), we obtain that vb(t) > vb(s) and
it is a contradiction. So v; € X and thus 64[v1] = v1. Since s € W ({z1}) and
Gs[v1] = v, from (2) we get x1 ¢ var(t) or x93 ¢ var(t) which contradicts to
te Wg)({l'l,l‘g}). If uy = x1,u2 = xa, then 6¢[u1] = 1, 6¢[us] = z2. From
(1), we get s = ¢t. If uy = x1,us = x; where i > 2, then by the same proof as
the case u; = ug = w1 we get x1 ¢ var(t) or o ¢ var(t). If uy = xo,us = w1,
then 6¢[u1] = 9, 6¢[us] = 1. From (1), we get s = €. If uy = x9,uy = o,
then by the same proof as the case uy = uy = 21 we get &1 ¢ wvar(t) or
xo ¢ var(t). If uy = x9,us = ; where ¢ > 2, then by the same proof as the
case u; = ug = w1 we get x1 ¢ var(t) or xo ¢ var(t). If u; = x;,us = x1 where
i > 2, then by the same proof as the case u1 = us = z1 we get 1 ¢ var(t)
or xo ¢ var(t). If u; = x;,us = xo where i > 2, then by the same proof
as the case u; = us = x1 we get x1 ¢ var(t) or xo ¢ var(t). Suppose that
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uy = x;,up = x; where 4,5 > 2. Then 64[ui| = x;,6¢[us] = ;. From (1), we
get s € WY, Since x1, 22 ¢ var(s), from (2) we get s =t. So x1, 72 ¢ var(t)
and it is a contradiction.

Case 3: t € W({x1}). Suppose that u; ¢ X. Then 6¢[us] ¢ X. From
(1), 1 € var(t) and 6{u1] ¢ X, we obtain that vb(s) > vb(t) and it is a
contradiction. So u; € X and thus 64[ui] = u;. If uy = 24, then by (1) we
get s = t. If uy = x5, then by (1) we get s = ¢. Suppose that u; = z; where
i > 2. From (1), we get s € WY, Since x1, 2o ¢ var(s), from (2) we get s = t.
So x1 ¢ var(t) and it is a contradiction.

Case 4: t € W({z2}). By the same proof as the case t € W({x1}) we get
s=tors=t.

Conversely, assume that s =t or s = . By Proposition 3.4, we get o,Ro;.

Lemma 3.13. Let 0f(c,.q) € Hypc(2) \ {Cid, O f(zy,01)} and u € Wi)(X) \ X.
If 0 fc.ay € B¢ ({1, 2}), then vb((04(c,a) oG ou)(f)) > vb(u).

Proof. Since z1,z2 € var(f(c,d)) and f(c,d) # f(x1,22), f(x2,21), thus
c¢ Xord¢ X and vb(f(c,d)) > 3. Let vb(u) = 2. Then u = f(z;,z;)
for some z;,2; € X. So vb(w) = vb((0f(c,a) °c 0u)(f)) = vb((0¢(c,a) °c
Of(aiw))([)) = vb(S*(f(e,d), s, 25)) > 3 > wvb(u). Let u = f(s,t) where
s € X andt ¢ X. Then Gfa)fs] = s € X. Assume that vb(G¢.a)t]) >

vb(t). Since w1,z2 € var(f(c,d)) and vb(Gf(cq [t]) > vb(t), thus vb(w) =
(24000106 )(1) = D7 00T 10 )1 2 OS2 (F (0 D), 5,8 e 1)) >
vb(f(s,t)) = vb(u). Let u = f(s,t) where s,t ¢ X. Assume that vb(6 (. q)[s]) >
vb(s) and vb(G f(caq)[t]) > vb(t). Since x1, 22 € var(f(c,d)) and vb(6 (. q)[s]) >
vb(s), V(G ¢(c,a)[t]) > vb(t), thus vb(w) = vb((04(c,ay0cou)(f)) = v0((0f(c,a)°c
Uf(a,t))(f)) vb(S*(f(c,d), G, [s] G fc.ay[t]) > vb(f(s,t)) = vb(u).

Lemma 3.14. If f(c,d) € W({z1}) UW ({x2}) UWE (21 ¢ var(f(c,d)) or
wy & var(f(c,d))), then for any u,v € Wy (X) the term w corresponding to
T f(e,d) OG T f(u,v) 5 i W({z1})U W({xg}) uUwe.

Proof. Assume that f(c,d) € W({z1}). We have to consider the let-
ters used in the term w = S%(f(c,d),6¢c,a)[u],6¢(c.a)lv]). If u € X, then
Opeau] = v € X. Since f(c,d) € W({z1}), Gfcayfu] € X and w =
S2(f(e,d), 6 p(c,au], 6(c.a)v]), thus w € W({z1}) UW ({z2}) UWE. Assume
that u = f(p,q) where p,q € W(Q)( ) and Gg(c.q)lp] € W({z1}) UW({z2}) U
WC. So yeqlu] = S2(f(c.d). 5 ptea [Pl s(eanla]) € W(lar}) UW ({a}) U
WS, Since f(c,d) € W({z1}), 6c.au] € W({z1}) UW({z2}) UWY and
w = 5(f(c,d), 6 f(c,alu], 6 f(c,av]), thus w € W({z1}) UW({z}) UWCY. By
the same way we can show that if f(c,d) € W({z2}), then w € W({z1}) U
W ({z2}) UWC. If f(c,d) € W, then w = f(c,d) € WE.

Lemma 3.15. Efl s a left zero band.
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Proof. Let 0, ,5),0f(z,0) € EIG1 Since xo ¢ wvar(s), thus (o4, ,s) oG
Tpr ) () = S*(f(21,8), 1, p(ay,0)[t]) = F(21,8). SO Of(ay,8) OG Tf(ay ) =
Of(z1,5)- Thus every element in ES is left zero. So ES is a left zero band.
Proposition 3.16. The L-class of the element o, ., is precisely the set
ES UES.

Proof. For any two idempotent elements e and f in a semigroup S, e f

if and only if ef = e and fe = f. Since ES is a left zero band, it follows
that of(y, 2,) is L-related to any element of ETG1 By Proposition 3.4, we get

Of(zy,2y) I8 L-related to any element of (ES) = Eig Thus the L-class of

Of(e1,2,) COntains at least Efl U ES . For the opposite inclusion, assume that
oy € Hypg(2) where 04L0 (5, »,). By Proposition 3.5, we get ¢t ¢ X. Then
t = f(u,v) for some u,v € W) (X). From 0;L0f(y, 4,), then there exist
0p,0q € Hypg(2) such that o, og 04, 0,) = 04 and o4 0¢ 0t = Of(q,,0)-
Since t, f(x1,21) ¢ X, by Lemma 3.3 we get p,g ¢ X. Then there ex-
ist a,b,c,d € W (X) such that p = f(a,b) and ¢ = f(c,d). Thus we
have of(ap) °G Of(e1,21) = Of(uw) A0 Of(cd) OG Tf(uw) = Of(wrar)- From
T f(a,b) OG Of(z1,a1) = Of(uw), Py Lemma 3.9 we get xo ¢ var(f(u,v)). From
O f(c,d) o@ O f(u,w) = O f(z1,21)> we obtain that SQ(f(C, d)7&f(c,d) [’LL], a—f(c,d) [’U]) =
f(z1,21). Suppose that u,v # x1. Thus G q[ul,0¢c,a)[v] # 1. This im-
plies S(f(c,d), 6 f(c.a)[ul, 0 p(c,ap[v]) # f(21,21), which is a contradiction. So
u = x1 or v =x1. Since xo ¢ var(f(u,v)) and u = z1 or v = x;, thus
Ot = Of(uw) € Eg U E%

Corollary 3.17. The D-class of the element oy, ) is precisely the set
ES UES UES UES.

Proof. Assume that o; € Hypg(2) where 0;D0 (4, 2,). Then there exists
os € Hypg(2) such that o;Ros and 0,0 (5, o). Since 0;Ros, by Proposition
3.12 we get 0y = 05 or 0y = 035. Since 05L0 (4, 4,), Dy Proposition 3.16 we get
o5 € BS UES. If o, € ES, then 0, € ES UES C ES UES UES UES.
If o, € E, then 0y € ES UES C ES UES UES UES,. For the opposite
inclusion, assume that o, € ES UES UES UES. If 0y € ES UEigz, then
by Proposition 3.16 we get 01 L0 ¢z, o). Since L C D, thus 0yDoy(y, 2,). If
oy € ES UEG, then o7 € ES UES . By Proposition 3.16, we get 05£0 4 (2, 41)-

By Proposition 3.12, we get 0yRoz. So 04 Dof(y, 1)

Proposition 3.18. The following statements hold:

() Oporan)s = T 1= {0 € Hypa@lt € WG, ({zx}) UWE ({a2}) or
X1, ¢ var(t)}.
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(ii) If o € I where o ¢ ES UES UESG UES, then (0); C 1.

o’
(iii) The J-class of 0ty 4,) is equal to its D-class, ES UES UES UES .

Proof. (i) Assume that o5 € (0f(4,,2,))i- Then there exist 6, p € Hypa(2)
such that 0 og 0f(z, 4,) 0c p = 0. If § or p € Pg(2), then by Lemma 3.3
we get 0, = 6 0G Of(z,,2,) °c p € Pa(2) C I. Assume that 6,p ¢ Pg(2).
By Lemma 3.14, we get 0f(4, 2,) °¢ p € I. By Lemma 3.9, we get o5 =
0 0G (0f(z,,21) o p) € I. For the opposite inclusion, suppose that o, € I. If
os € Pg(2), then by Lemma 3.3 we get 05 = 0f(z, 2,) °G Of(x1,01) °G s €
(Of(ar,01))i- Let o5 & Pg(2). If w1,20 ¢ var(s), then by Lemma 3.3 we
get 05 = 050G Of(z,,21) °G Os € (Of(ar,01))i- If s € W({z1}), then o, =
O50G T f(zy,21) OGO f(a1,0) € (T f(zy,2,))i for some v € Wipy (X). If s € W({z2}),
then o, = 050G O f(2y,21) °G Tf(wav) € (Tf(a1,21))i for some v € Wig)(X).

(ii) Assume that o € I where 0 ¢ ES UES UES UES. If o € Pg(2),
then (0); = Hypa(2)oHypa(2) = Pg(2) € I. Assume that o ¢ Pg(2) and
0 = Of(uw) Where u,v € Wiy (X). Let f(u,v) € W({x1})UW ({2}). Suppose
that u,v € X. Since f(u,v) € W({z1}) UW ({2}), thus o(,.) € ES UES U
ES UES and it is a contradiction. Suppose that v € X and v ¢ X. If u = x;
or u = g, then o4, ) € ES UES UES UES and it is a contradiction. So
u = x; for some i > 2. Suppose that o ¢z, 2,) € (0f(u,w))i- Since f(z1,71) € X
and 0 ¢z, 2,) € (Of(uw))i; there exist p,q,7,5 € W) (X) such that o4, ) oc
O f(xi,v) eTe] Of(r,s) = Of(xy,x1)" Let w be the term (O—f(x,i,'u) o 0f(7-,s))(f)' So
w = f(x;,k) for some k € W5y (X) \ X. Then we have 04(,q) °G Of(z, k) =
O f(z1,2,)- Thisimplies f(p,q) = f(x2,x2). Consider (0 f(zy,0,)°G0 f(z,k))(f) =
Sz(f(x27x2)7xi7&f(a?2,m2)[k]) = f(&f(ﬂfz,zz)[k}’&f(mmzﬁ[k]) # f(xlvxl)v which
is a contradiction. So (0); € I. By the same way we can show that if u ¢ X
and v € X, then (¢); € I. Suppose that u,v ¢ X. Then vb(f(u,v)) > 4.
Suppose that of(y, +,) € (Ofuv))i- Since f(z1,21) ¢ X and 0y, 2,) €
(0 f(uv))i, there exist p,q, 7, s € W(9)(X) such that o5, 4)°G T f(u,0)0G T f(r,s) =
Of(zr,21)- Let w be the term (0f(u.0) 0 0f(r,s))(f). Then vb(w) > 4. By
Lemma 3.3, we get 1 € var(f(p,q)) or o € var(f(p,q)). Suppose that
fp.q) € WG ({z1,22}). If f(p,q) = f(wr,a2) or f(p.q) = f(az,21), then
Ow = Of(zy,21) OF Ow' = Of(z, 4;) and it is a contradiction. Suppose that
f(p,q) # f(21,22), f(22,21). By Lemma 3.13, we get vb(f(z1,21)) > vb(w),
which is a contradiction. Suppose that f(p,q) € W({z1}) UW({x2}). Then
the equation 04, q) °G Ow = T f(z, 2,) does not fit any of E(1) to E(16), so by
Lemma 3.1 we must have vb(f(z1,21)) > vb(f(p,q)) and it is a contradiction.
So (0); € I. Let f(u,v) € WY Suppose that Of(zr,21) € (Of(uw))i- Since
f(xy,21) ¢ X and 045, 2,) € (0f(u,0))i, there exist p,q,r, s € Wia)(X) such
that O f(p,q) OG O f(uw) OG Tf(r,s) = Of(z1,21)- By Lemma 3.3, we get O f(uw) OG
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Of(rs) = Of(uw)- By Lemma 3.9, we get x1,x2 are not variables occurring in
the term (0 ¢(p.q) °G Tf(uw))(f) = (Tfp.g) ©G Tf(uw) 0C Tf(rs))(f), which is a
contradiction. So (¢); C I. 77

(iii) Since D C g, we must have ES U ES U ES U ES contained in
the J-class of 0f(y, 4,). Assume that o € Hypg(2) where 0dos(,, »,)- Then
(0)i = (0f(21,21))i = 1. So o € I. By (ii), we get 0 € ES UES UEG UES .

Proposition 3.19. For any o; € EY({x1,x2}), the elements which are L-
related to o are only oy itself and oy .

Proof. Let t = f(u,v) where u,v € W(2)(X). Assume that o, € Hypc(2)
where o,L0;. By Proposition 3.5, we get s ¢ X. Then s = f(a,b) for some
a,b € Wi (X). Since s,t ¢ X and o,L0y, there exist ¢, d, e,g € W5y (X) such
that o f(c.d) °G Tf(uw) = Of(ap) ad Tf(eg) OG Tf(ap) = Of(uw)- Suppose that
f(cv d)?f(e7g) §é {f(xl"rQ)’f(x%xl)} and f(C, d)vf(eag) € W((z;)({xl"x?})
Then by Lemma 3.13, we get vb(f(a,b)) > vb(f(u,v)) and vb(f(u,v)) >
vb(f(a,b)), which is a contradiction. Suppose that f(c,d) € Wy, (X)\VV(CQ")({:cl7
22}). Then by Lemma 3.14, we get 1 ¢ var(f(a,b)) or x2 ¢ var(f(a,b)).
Since 1 ¢ wvar(f(a,b)) or xo ¢ wvar(f(a,b)), by Lemma 3.9 we get z; ¢
var(f(u,v)) or z2 ¢ var(f(u,v)) which contradicts to x1,z2 € var(f(u,v)).
Suppose that f(e,g) € W) (X) \ Wg)({$1,$2}). Then by Lemma 3.14, we
get 1 ¢ wvar(f(u,v)) or o ¢ wvar(f(u,v)) which contradicts to z1,2zo €

Uar(f(u,v)). So f(C, d) € {f(JCl,l‘g),f(l‘g,l‘l)} or f(e,g) € {f(x15$2)v f(l’g,iﬁl)}.

This implies 05 = 04 or g5 = oyr.
Corollary 3.20. For o, € E¢({x1,22}), Dy, = {04, 01,07, 07}
Proof. By Proposition 3.12 and Proposition 3.19.

Proposition 3.21. For oy € E€({x1,22}), the J-class of oy is equal to its
D-class, {o¢, 0, 07,05}

Proof. If oy = 0iq or 04 = 0f(4,,2,), then by Proposition 3.8 we get
Dy, = Joyy- Let 01 # 0id, O f(zy,2,) and o5 € Hypg(2) where o,do;. By
Proposition 3.5, we get s ¢ X. Then there exist oy,0,,0,,04 € Hypa(2)
such that o, og 0y og 0, = 05 and o0, og 05 og 04 = 04. This implies o, og
Oy 0G 0t 0 0y 0g 0q = 0y. Since t ¢ X, by Lemma 3.3 we get u,v,p,q ¢ X.
Since t € Wg)({ifhl'g}), by Lemma 3.9 and Lemma 3.14 we get u,v,p,q €
Wg)({$17.’172}) and terms corresponding to the intermediate products are in

W& ({z1,22}). We consider three cases.

Case 1: 0, 0q 0y = 04q. Then by Lemma 3.6, we get 0, = 0, = 04q OF
Op = Ou = Of(zy.0,) U 0p = 0y = 044, then from o, og o1 0g 0, = 05 and
Op O0G 05 0 0q = 0y We get 04 og 0, = 05 and 05 0g 04 = 0. S0 0,Rot. By
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Proposition 3.12, we get 0, = o or 05 = 07. If 0 = 0y = Of(4,,2,), then
from o, og 0t 0¢ 0, = 05 and o, o¢ 05 0 04 = 0¢ We get oy og 0, = 05 and
050G 04 = 0yr. So 0sRoy. By Proposition 3.12, we get o, = oy or 04 = 037

Case 2: 0, 0q 0y = O f(s,21) Then by Lemma 3.6, we get 0, = 044,04, =
O f(wa,x1) OF Op = Of(zp,1),0u = Oiq- Then oy = 0, 0g 0y oG 0 0G 0y G
Tq = Of(xs,e1) OC Tt OG 0y °G Tq = 0 0 (0 0G 04). By Lemma 3.1, we get
vb(t) > vb(t'), unless the product o, oG (0, oG o) fits one of E(1) to E(16).
But vb(t) = vb(t'), thus the product oy og (0,06 04) fits one of E(1) to E(16).
We see that the cases E(1)— E(3), E(5), E(7)— E(16) are impossible. Assume
that E/(4) holds. We have 0,004 = 0;q. By Lemma 3.6, we get 0, = 04 = 044
OF 0y = 0 = Of(z5,2,)- If Oy = 04 = 044, then from o, og 04 0g 0y = 05 and
0p O0G 05 0q 0q = 0y We get 0y, 0g 0y = 05 and 0, og 05 = 0¢. So 0:L0¢. By
Proposition 3.19, we get 0 = oy or 05 = op. If 0, = 04 = 0 (44 ,2,), then from
0, 0G 0t0G Oy = 0Og and Op©G 050G O0q = Ot We get 040G 0t 0@ O’f(xz’a:l) = 0g
and 0, 0g 05 0@ Of(2s,01) = Ot- This implies o, og 07 = 05 and 0}, 0g 05 = 07
So o,L07. By Proposition 3.19, we get 05 = o7 or 05 = op = 05. Assume that
E(6) holds. We have ¢, oG 04 = 0f(4,,4,)- By Lemma 3.6, we get o, = 044 or
Oy = Of(xg,21)- U Op = 0¢ = Of(a,,20), then from o, og 05 0g 04 = o1 We get
os =0y lfop = 0y = 0f(4y,2,), then from o}, 06 0506 0y = 0y We get 05 = 07
If 0p = 0idy0q = Of(2y,01), then from o, oG 050G 04 = 0y We get 05 = o7. If
Op = Of(zy,01)Tq = Oid, then from o, og 05 0q 04 = 0 We get 05 = oyr.

Case 3: 0,00 Oy # 0id, O f(2y,0,)- Let w = (0;0G6 0y 0 04)(f). By Lemma
3.13, we get vb(t) > vb(w). By Lemma 3.1, we get vb(w) > vb(t), unless the
product o; oG (0, 0¢ 04) fits one of E(1) to E(16). But the case vb(w) > vb(t)
is impossible. We see that the cases E(1) — E(3), E(5), E(7) — E(16) are
impossible. Assume that E(4) holds. We must have o, og 04 = 044. By
Lemma 3.6, we get 0, = 0y = 044 OF 0y = 0y = Of(z,.0,)- If Oy = 04 = 0ig,
then from o, o¢ 0t o¢ 0, = 05 and o, og 05 0 04 = 0y We get 0y, 0g 0 = 0
and op0g 05 = 0¢. So 0,L0;. By Proposition 3.19, we get 05 = 0, or 05 = oy
If 0y = 04 = Of(2y,01), then from oy oG o1 0G 0y = 05 and 0y oG 0506 04 = 0y
we get 0y 0G 040G O f(4y,2,) = Os and 0, 0q 05 0G O f(z4,2,) = 0¢- This implies
0,0G07 = 0s and 0,0q0s = 0. So 03L07. By Proposition 3.19, we get 05 = 07
or 05 = oy = 0. Assume that £(6) holds. We must have 0,004 = 0f(¢,,0)-
Then 0 = 0, 0¢ 04 0G 0t °G Ty 0G O = 0 OG Ty OG Ot OG T f(z5,2,) = (Tp o
0u) oG 7. Since 0y, 0G Ty # Cid; 0 f(ag,0,), DY Lemma 3.13 we get vb(t) > vb(t)
and it is a contradiction.

Proposition 3.22. Let t € W5y (X) \ X and 21 € var(t) or xz € var(t).
Then the following statements are equivalent:

(i) o has an H-class of size two,

(i) t' =1,



GREEN’S RELATIONS ON Hypg(2) 263

(iii) t = f(u,v) for some u,v € W2)(X) with v =1'.

Proof. (i) = (i) Assume that (¢) holds. By Proposition 3.12, we get
R,, = {o+,03}. Since H,, C R,, and |H,,| = 2, thus H,, = {o+,05}. So
o¢Loy. By Proposition 3.4, we get 0yLoy. So oployp. If t € Wg)({:cl,:rg}),
then by Proposition 3.19, we get t' = t. If t € W({z1}), then by Lemma
3.9, we get x5 is not a variable occurring in the term (o og o¢)(f) for all
o € Hypg(2). So o og oy # oy for all 0 € Hype(2). Thus it is impossible that
oy is L-related to 0. By the same way we can show that if ¢ € W ({z2}), then
oy and o7 are not related.

(i1) = (i) Assume that ¢’ = t. By Proposition 3.4, we get 0yLoz. So
R,, = {o+,07} C L,,. Thus H,, = L,, N Ry, = R,, = {0,073} So |Hy,| = 2.

(4i) = (i) Assume that ¢t = f(u,v) for some u,v € Wy)(X) with ' = 7.

So f(u,v) = f(u,v)’

= f(@v)=f(v,u)
= u=20
= v=©0) =7 =1

(#4i) = (i1) Assume that t = f(u,v) for some u,v € W9)(X) with v = /.

So ' = fluv) = fu,w) = f@' ) = f@w) = f@u) = f@w) =
flu,v) =t.
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