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Green’s Relations on HypG(2)

Wattapong Puninagool and Sorasak Leeratanavalee

Abstract

A generalized hypersubstitution of type τ = (2) is a mapping which
maps the binary operation symbol f to a term σ(f) which does not
necessarily preserve the arity. Any such σ can be inductively extended
to a map σ̂ on the set of all terms of type τ = (2), and any two such
extensions can be composed in a natural way. Thus, the set HypG(2)
of all generalized hypersubstitutions of type τ = (2) forms a monoid.
Green’s relations on the monoid of all hypersubstitutions of type τ =
(2) were studied by K. Denecke and Sh.L. Wismath. In this paper we
describe the classes of generalized hypersubstitutions of type τ = (2)
under Green’s relations.

1 Introduction

The concept of generalized hypersubstitutions was introduced by S. Leer-
atanavalee and K. Denecke [11]. We use it as a tool to study strong hyperiden-
tities and use strong hyperidentities to classify varieties into collections called
strong hypervarieties. Varieties which are closed under arbitrary application
of generalized hypersubstitutions are called strongly solid.

A generalized hypersubstitution of type τ = (ni)i∈I , or simply, a gen-
eralized hypersubstitution is a mapping σ which maps each ni-ary operation
symbol of type τ to the set Wτ (X) of all terms of type τ built up by operation
symbols from {fi|i ∈ I} where fi is ni-ary and variables from a countably
infinite alphabet of variables X := {x1, x2, x3, . . .} which does not necessarily
preserve the arity. We denote the set of all generalized hypersubstitutions of
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type τ by HypG(τ). First, we define inductively the concept of generalized
superposition of terms Sm : Wτ (X)m+1 → Wτ (X) by the following steps:

(i) If t = xj , 1 ≤ j ≤ m, then Sm(xj , t1, . . . , tm) := tj .

(ii) If t = xj ,m < j ∈ IN, then Sm(xj , t1, . . . , tm) := xj .

(iii) If t = fi(s1, . . . , sni
), then

Sm(t, t1, . . . , tm) := fi(S
m(s1, t1, . . . , tm), . . . , Sm(sni , t1, . . . , tm)).

We extend a generalized hypersubstitution σ to a mapping σ̂ : Wτ (X) →
Wτ (X) inductively defined as follows:

(i) σ̂[x] := x ∈ X,

(ii) σ̂[fi(t1, . . . , tni)] := Sni(σ(fi), σ̂[t1], . . . , σ̂[tni ]), for any ni-ary operation
symbol fi supposed that σ̂[tj ], 1 ≤ j ≤ ni are already defined.

Then we define a binary operation ◦G onHypG(τ) by σ1◦Gσ2 := σ̂1◦σ2

where ◦ denotes the usual composition of mappings and σ1, σ2 ∈ HypG(τ).
Let σid be the hypersubstitution which maps each ni-ary operation symbol fi
to the term fi(x1, . . . , xni). We proved the following propositions.

Proposition 1.1. ([11]) For arbitrary terms t, t1, . . . , tn ∈ Wτ (X) and for
arbitrary generalized hypersubstitutions σ, σ1, σ2 we have

(i) Sn(σ̂[t], σ̂[t1], . . . , σ̂[tn]) = σ̂[Sn(t, t1, . . . , tn)],

(ii) (σ̂1 ◦ σ2)̂ = σ̂1 ◦ σ̂2.

Proposition 1.2. ([11]) HypG(τ) = (HypG(τ); ◦G, σid) is a monoid and the
set of all hypersubstitutions of type τ forms a submonoid of HypG(τ).

In this paper we describe the classes of generalized hypersubstitutions
of type τ = (2) under Green’s relations.

2 Green’s relations on Semigroups

Let S be a semigroup and 1 /∈ S. We extend the binary operation on S to
S∪{1} by define x1 = 1x = x for all x ∈ S∪{1}. Then S∪{1} is a semigroup
with identity 1.

Let S be a semigroup. Then we define,

S1 =

{
S if S has an identity,
S ∪ {1} otherwise.
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Let S be a semigroup and ∅ ̸= A ⊆ S. We now set

(A)l = ∩{L|L is a left ideal of S containing A},
(A)r = ∩{R|R is a right ideal of S containing A},
(A)i = ∩{I|I is an ideal of S containing A}.

Then (A)l,(A)r and (A)i are left ideal, right ideal and ideal of S, respectively.
We call (A)l ((A)r, (A)i) the left ideal (right ideal, ideal) of S generated by
A.

It is easy to see that

(A)l = S1A = SA ∪A,

(A)r = AS1 = A ∪ SA,

(A)i = S1AS1 = SAS ∪ SA ∪AS ∪A.

For a1, a2, . . . , an ∈ S, we write (a1, a2, . . . , an)l instead of ({a1, a2, . . . , an})l
and call it the left ideal of S generated by a1, a2, . . . , an. Similarly, we write
(a1, a2, . . . , an)r and (a1, a2, . . . , an)i for the right ideal and the ideal of S gen-
erated by a1, a2, . . . , an, respectively. If A is a left ideal of S and A = (a)l for
some a ∈ S, we then call A the principal left ideal generated by a. We can
define the concept of a principal right ideal and a principal ideal in the same
manner.

Let S be a semigroup. We define the relations L,R,H,D and J on S as
follows:

aLb ⇔ (a)l = (b)l,

aRb ⇔ (a)r = (b)r,

H = L ∩ R,

D = L ◦ R,
aJb ⇔ (a)i = (b)i.
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Then we have, for all a, b ∈ S

aLb ⇔ Sa ∪ {a} = Sb ∪ {b}
⇔ S1a = S1b

⇔ a = xb and b = ya for some x, y ∈ S1.

aRb ⇔ aS ∪ {a} = bS ∪ {b}
⇔ aS1 = bS1

⇔ a = bx and b = ay for some x, y ∈ S1.

aHb ⇔ aLb and aRb.

aDb ⇔ (a, c) ∈ L and (c, b) ∈ R for some c ∈ S.

aJb ⇔ SaS ∪ Sa ∪ aS ∪ {a} = SbS ∪ Sb ∪ bS ∪ {b}
⇔ S1aS1 = S1bS1

⇔ a = xby and b = zau for some x, y, z, u ∈ S1.

Remark 2.1. Let S be a semigroup. Then the following statements hold.

1. L,R,H,D and J are equivalence relations.

2. H ⊆ L ⊆ D ⊆ J and H ⊆ R ⊆ D ⊆ J.

We call the relations L,R,H,D and J the Green’s relations on S. For each
a ∈ S, we denote L-class, R-class, H-class, D-class and J-class containing a
by La, Ra,Ha, Da and Ja, respectively.

For more details on Green’s relations see [7].

3 Green’s relations on HypG(2)

Let τ = (2) be a type with the binary operation symbol f . The generalized
hypersubstitution σ of type τ = (2) which maps f to the term t in W(2)(X) is
denoted by σt. In this section we want to study Green’s relations on HypG(2).
First, we introduce some notations.

For s, f(c, d) ∈ W(2)(X), S ⊆ W(2)(X) \X,H ⊆ HypG(2) \ PG(2), xi, xj ∈
X, i, j ∈ IN we denote :

vb(s) := the total number of variables occurring in the term s,
leftmost(s) := the first variable (from the left) that occurs in s,
rightmost(s) := the last variable that occurs in s,
WG

(2)({x1}) := {t ∈ W(2)(X)|x1 ∈ var(t), x2 /∈ var(t)},
WG

(2)({x2}) := {t ∈ W(2)(X)|x2 ∈ var(t), x1 /∈ var(t)},
W ({x1}) := WG

(2)({x1}) \ {x1},
W ({x2}) := WG

(2)({x2}) \ {x2},
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WG
(2)({x1, x2}) := {t ∈ W(2)(X)|x1, x2 ∈ var(t)},

PG(2):={σxi ∈ HypG(2)|i ∈ IN, xi ∈ X},
EG({x1}):={σt ∈ HypG(2)|t ∈ W ({x1})},
EG({x2}):={σt ∈ HypG(2)|t ∈ W ({x2})},
EG({x1, x2}):={σt ∈ HypG(2)|t ∈ WG

(2)({x1, x2})},
EG

x1
:={σf(x1,t) ∈ HypG(2)|t ∈ W(2)(X), x2 /∈ var(t)},

EG
x2
:={σf(t,x2) ∈ HypG(2)|t ∈ W(2)(X), x1 /∈ var(t)},

WG := {t ∈ W(2)(X)|t /∈ X,x1, x2 /∈ var(t)},
G:={σt ∈ HypG(2)|t ∈ W(2)(X)\X,x1, x2 /∈ var(t)},
f(c, d):= the term obtained from f(c, d) by interchanging all occur-

rences of the letters x1 and x2, i.e. f(c, d) = S2(f(c, d), x2, x1) and f(c, d) =
S2(f(c, d), x2, x1),

f(c, d)′:= the term defined inductively by x′
i = xi and f(c, d)′ =

f(d′, c′),

xi
C[f(c, d)]:= the term obtained from f(c, d) by replacing each of the

occurrences of the letter x1 by xi i.e. xiC[f(c, d)] = S2(f(c, d), xi, x2),
Cxi

[f(c, d)]:= the term obtained from f(c, d) by replacing each of the
occurrences of the letter x2 by xi i.e. Cxi [f(c, d)] = S2(f(c, d), x1, xi),

xiCxj [f(c, d)]:= the term obtained from f(c, d) by replacing each of the
occurrences of the letter x1 by xi and the letter x2 by xj i.e. xiCxj [f(c, d)] =
S2(f(c, d), xi, xj),

S := {s|s ∈ S},
S′ := {s′|s ∈ S},
H := {σt|σt ∈ H},
H ′ := {σt′ |σt ∈ H}.

Then we have for any t ∈ W(2)(X) \X, (t′)′ = t, t = t, t′ = t
′
, σf(x2,x1) ◦G

σt = σt′ and σt ◦G σf(x2,x1) = σt.

Lemma 3.1. ([12]) Let f(c, d), f(u, v) ∈ W(2)(X) and σf(c,d) ◦Gσf(u,v) = σw.
Then vb(w) > vb(f(c, d)) unless f(c, d) and f(u, v) match one of the following
16 possibilities:

E(1) σf(c,d) ◦G σf(u,v) = σf(c,d) where σf(c,d) ∈ G.

E(2) σf(c,d) ◦G σf(x1,x1) = σCx1 [f(c,d)]
.

E(3) σf(c,d) ◦G σf(x2,x2) = σ
x2

C[f(c,d)].

E(4) σf(c,d) ◦G σid = σf(c,d).

E(5) σf(c,d) ◦G σf(x1,xi) = σCxi
[f(c,d)] where xi ∈ X, i > 2.

E(6) σf(c,d) ◦G σf(x2,x1) = σ
f(c,d)

.
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E(7) σf(c,d) ◦G σf(x2,xi) = σ
x2Cxi

[f(c,d)] where xi ∈ X, i > 2.

E(8) σf(c,d) ◦G σf(xi,x1) = σ
xi

Cx1 [f(c,d)]
where xi ∈ X, i > 2.

E(9) σf(c,d) ◦G σf(xi,x2) = σ
xi

C[f(c,d)] where xi ∈ X, i > 2.

E(10) σf(c,d) ◦G σf(xi,xj) = σ
xi

Cxj
[f(c,d)] where xi, xj ∈ X, i, j > 2.

E(11) σf(c,d) ◦G σf(x1,v) = σf(c,d) where v /∈ X, f(c, d) ∈ WG
(2)({x1}).

E(12) σf(c,d) ◦G σf(x2,v) = σ
f(c,d)

where v /∈ X, f(c, d) ∈ WG
(2)({x1}).

E(13) σf(c,d) ◦G σf(xi,v) = σ
xi

C[f(c,d)] where xi ∈ X,i > 2, v /∈ X, f(c, d) ∈
WG

(2)({x1}).

E(14) σf(c,d) ◦G σf(u,x1) = σ
f(c,d)

where u /∈ X, f(c, d) ∈ WG
(2)({x2}).

E(15) σf(c,d) ◦G σf(u,x2) = σf(c,d) where u /∈ X, f(c, d) ∈ WG
(2)({x2}).

E(16) σf(c,d) ◦G σf(u,xi) = σCxi
[f(c,d)] where xi ∈ X, i > 2, u /∈ X, f(c, d) ∈

WG
(2)({x2}).

Proposition 3.2. ([12]) PG(2)∪EG
x1

∪EG
x2

∪{σid}∪G is the set of all idem-
potent elements in HypG(2).

Lemma 3.3. Let f(c, d) ∈ W(2)(X) \ X, σxi ∈ PG(2), σs ∈ HypG(2) and
σt ∈ G. Then the following statements hold:

(i) σs ◦G σxi = σxi ,

(ii) σxi ◦G σs ∈ PG(2),

(iii) σt ◦G σf(c,d) = σt.

Proof. (i) Consider (σs ◦G σxi)(f) = (σ̂s ◦σxi)(f) = σ̂s[σxi(f)] = σ̂s[xi] =
xi = σxi(f). So σs ◦G σxi = σxi .

(ii) If s ∈ X, then by (i) we get σxi ◦G σs = σs ∈ PG(2). Assume
that s = f(u, v) where u, v ∈ W(2)(X) and σxi ◦G σu, σxi ◦G σv ∈ PG(2).
Thus σ̂xi [u], σ̂xi [v] ∈ X. Consider (σxi ◦G σs)(f) = (σxi ◦G σf(u,v))(f) =
S2(xi, σ̂xi [u], σ̂xi [v]). If xi = x1, then (σxi ◦G σs)(f) = σ̂xi [u] ∈ X. If xi = x2,
then (σxi ◦G σs)(f) = σ̂xi [v] ∈ X. If i > 2, then (σxi ◦G σs)(f) = xi ∈ X. So
σxi ◦G σs ∈ PG(2).

(iii) Since x1, x2 /∈ var(t), thus (σt ◦G σf(c,d))(f) = S2(t, σ̂t[c], σ̂t[d]) = t =
σt(f). So σt ◦G σf(c,d) = σt.
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Proposition 3.4. For any σt ∈ HypG(2)\PG(2), we have σtRσt, σtLσt′ and
σtDσtDσt′Dσt′ .

Proof. Let σt ∈ HypG(2) \ PG(2). Then σt ◦G σf(x2,x1) = σt, σt ◦G
σf(x2,x1) = σt, σf(x2,x1) ◦G σt′ = σt and σf(x2,x1) ◦G σt = σt′ . So σtRσt and
σtLσt′ . Therefore σtDσtDσt′Dσt′ .

Proposition 3.5. Any σxi ∈ PG(2) is L-related only to itself, but is R-related,
D-related and J-related to all elements of PG(2), and not related to any other
generalized hypersubstitutions. Moreover, the set PG(2) forms a complete R-,
D- and J- class.

Proof. By Lemma 3.3, we get for any σxi ∈ PG(2), σ ◦G σxi = σxi for all
σ ∈ HypG(2). This shows that any σxi ∈ PG(2) can be L-related only to itself.
Since σxi ◦G σxj = σxj for all σxi , σxj ∈ PG(2), so any two elements in PG(2)
are R-related. From R ⊆ D ⊆ J, we obtain that any two elements in PG(2) are
D− and J− related. Moreover by Lemma 3.3, we get σs◦Gσxi◦Gσt ∈ PG(2) for
all σs, σt ∈ HypG(2), σxi ∈ PG(2). This implies if σ /∈ PG(2), then σ cannot
be J-related to every element in PG(2). So PG(2) is the J-class of its elements.
Since any two elements in PG(2) are R− and D− related, R ⊆ J,D ⊆ J and
PG(2) is the J-class of its elements, thus PG(2) forms a complete R-, D-class.

Lemma 3.6. Let σs, σt ∈ HypG(2). Then the following statements hold:

(i) If σs ◦G σt = σid, then either σs = σt = σid or σs = σt = σf(x2,x1).

(ii) If σs ◦G σt = σf(x2,x1), then either σs = σid, σt = σf(x2,x1) or σs =
σf(x2,x1), σt = σid.

Proof. (i) Assume that σs◦Gσt = σid. Since f(x1, x2) /∈ X, by Lemma 3.3
we get s, t /∈ X and thus s = f(a, b), t = f(c, d) for some a, b, c, d ∈ W(2)(X).
From σs◦Gσt = σid, we obtain that S2(f(a, b), σ̂f(a,b)[c], σ̂f(a,b)[d]) = f(x1, x2).
So a = c = x1 or a = x2, d = x1 and b = d = x2 or b = x1, c = x2. This
implies σs = σt = σid or σs = σt = σf(x2,x1).

The proof of (ii) is similar to the proof of (i).

Proposition 3.7. All of R-, L- and D-classes of σid are equal to {σid, σf(x2,x1)}.

Proof. By Proposition 3.4, we get σid and σf(x2,x1) are R-, L- and D-
related. This implies the R-, L- andD-class of σid contain at least {σid, σf(x2,x1)}.
Let σt ∈ HypG(2) where σtDσid. So σtLσs and σsRσid for some σs ∈
HypG(2). Then there exist σu, σv, σp, σq ∈ HypG(2) such that σt = σp ◦G σs,
σs = σq ◦G σt, σs = σid ◦G σu and σid = σs ◦G σv. From σid = σs ◦G σv, by
Lemma 3.6 we get σs = σid or σs = σf(x2,x1). From σs = σid or σs = σf(x2,x1)
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and σs = σq ◦G σt, by Lemma 3.6 we get σt = σid or σs = σf(x2,x1). So the
D-class of σid is equal to {σid, σf(x2,x1)}. From R ⊆ D,L ⊆ D, we obtain that
the R- and the L-class of σid are equal to {σid, σf(x2,x1)}.

Proposition 3.8. (σid)i = HypG(2) = (σf(x2,x1))i, and if σ ∈ HypG(2) and
(σ)i = HypG(2), then σ is one of σid or σf(x2,x1). Moreover, the J-class of
σid is equal to its D-class, {σid, σf(x2,x1)}.

Proof. Let σ ∈ HypG(2). Then σ ◦G σid ◦G σid = σ and σ ◦G σf(x2,x1) ◦G
σf(x2,x1) = σ. So (σid)i = HypG(2) = (σf(x2,x1))i. This implies σidJσf(x2,x1).
Assume that (σ)i = HypG(2). Then σJσid and thus there exist δ, ρ ∈ HypG(2)
such that δ ◦G σ ◦G ρ = σid. By Lemma 3.6, we get σ ◦G ρ = σid or σ ◦G ρ =
σf(x2,x1). Again by Lemma 3.6, we get σ = σid or σ = σf(x2,x1).

Lemma 3.9. Let u ∈ W(2)(X), σt ∈ HypG(2) and x = x1 or x = x2. If
x /∈ var(u), then x /∈ var(σ̂t[u]) (x is not a variable occurring in the term
(σt ◦G σu)(f)).

Proof. If u ∈ X, then σ̂t[u] = u and so x /∈ var(σ̂t[u]). Assume that u =
f(u1, u2) where u1, u2 ∈ W(2)(X), x /∈ var(σ̂t[u1]) and x /∈ var(σ̂t[u2]). Since
x /∈ var(σ̂t[u1]), x /∈ var(σ̂t[u2]) and σ̂t[u] = σ̂t[f(u1, u2)] = S2(t, σ̂t[u1], σ̂t[u2]),
thus x /∈ var(σ̂t[u]).

Proposition 3.10. Any σt ∈ G is R-related only to itself, but is L-related,
D-related and J-related to all elements of G, and not related to any other
generalized hypersubstitutions. Moreover, the set G forms a complete L-, D-
and J- class.

Proof. Let σt ∈ G. Assume that σs ∈ HypG(2) where σsRσt. By
Proposition 3.5, we get s /∈ X. Then there exists σp ∈ HypG(2) such that
σs = σt ◦G σp. Since s /∈ X and σs = σt ◦G σp, by Lemma 3.3 we get p /∈ X.
Since σt ∈ G and p /∈ X, by Lemma 3.3 we get σt ◦G σp = σt. So σs = σt.
Thus σt is R-related only to itself. Let σs, σt ∈ G. By Lemma 3.3, we get
σs ◦G σt = σs and σt ◦G σs = σt. Thus σsLσt. So any two elements in
G are L-related. Since L ⊆ D ⊆ J, thus any two elements in G are D−
and J− related. Assume that σt ∈ G and σs ∈ HypG(2) where σsJσt. By
Proposition 3.5, we get s /∈ X. Then there exist σp, σq ∈ HypG(2) such that
σp ◦G σt ◦G σq = σs. Since s /∈ X and σp ◦G σt ◦G σq = σs, thus by Lemma 3.3
we get p, q /∈ X. Since σt ∈ G and q /∈ X, by Lemma 3.3 we get σt ◦G σq = σt.
Since x1, x2 /∈ var(t), by Lemma 3.9 we get x1, x2 are not variables occurring
in the term (σp ◦G σt)(f) = (σp ◦G σt ◦G σq)(f). Thus x1, x2 /∈ var(s) and so
σs ∈ G. So G is the J-class of its elements. Since any two elements in G are
L− and D− related, L ⊆ J,D ⊆ J and G is the J-class of its elements, thus
G forms a complete L-, D-class.
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Proposition 3.11. Let τ = (ni)i∈I be a type and σ1, σ2 ∈ HypG(τ). Then
σ1Rσ2 if and only if Imσ̂1 = Imσ̂2.

Proof. Assume that σ1Rσ2. Then σ1 = σ2 ◦G σ3 and σ2 = σ1 ◦G σ4 for
some σ3, σ4 ∈ HypG(τ). So σ̂1 = (σ2 ◦G σ3)̂ = σ̂2 ◦ σ̂3 and σ̂2 = (σ1 ◦G σ4)̂ =
σ̂1 ◦ σ̂4. Thus Imσ̂1 = σ̂1[Wτ (X)] = (σ̂2 ◦ σ̂3)[Wτ (X)] = σ̂2[σ̂3[Wτ (X)]] ⊆
σ̂2[Wτ (X)] = Imσ̂2. By the same way we can show that Imσ̂2 ⊆ Imσ̂1.
Conversely, assume that Imσ̂1 = Imσ̂2. For each i ∈ I, we have σ1(fi) =
Sni(σ1(fi), x1, . . . , xni) = σ̂1[fi(x1, . . . , xni)] ∈ Imσ̂1 = Imσ̂2. So σ1(fi) =
σ̂2[ti] for some ti ∈ Wτ (X). We define γ : {fi|i ∈ I} −→ Wτ (X) by γ(fi) = ti
for all i ∈ I. Let i ∈ I. Then (σ2 ◦G γ)(fi) = σ̂2[γ(fi)] = σ̂2[ti] = σ1(fi).
So σ1 = σ2 ◦G γ. By the same way we can show that σ2 = σ1 ◦G β for some
β ∈ Wτ (X).

Proposition 3.12. For any σs, σt ∈ HypG(2) \ PG(2), σsRσt if and only if
s = t or s = t.

Proof. Assume that σsRσt. Then there exist σu, σv ∈ HypG(2) such that
σs = σt ◦G σu and σt = σs ◦G σv. By Lemma 3.3, we get u, v /∈ X. Then
u = f(u1, u2) and v = f(v1, v2) for some u1, u2, v1, v2 ∈ W(2)(X). Then we
have two equations

s = S2(t, σ̂t[u1], σ̂t[u2]) · · · (1)
t = S2(s, σ̂s[v1], σ̂s[v2]) · · · (2).

From (1) and (2), we get vb(s) = vb(t). We consider four cases:
Case 1: t ∈ WG. From (1), we get s = t.
Case 2: t ∈ WG

(2)({x1, x2}). Suppose that u1 /∈ X or u2 /∈ X. Then σ̂t[u1] /∈
X or σ̂t[u2] /∈ X. From (1) and x1, x2 ∈ var(t), we obtain that vb(s) > vb(t)
and it is a contradiction. So u1, u2 ∈ X. Suppose that u1 = u2 = x1. Then
σ̂t[u1] = σ̂t[u2] = x1. From (1), we get s ∈ W ({x1}). Suppose that v1 /∈ X.
Then σ̂s[v1] /∈ X. From (2) and x1 ∈ var(s), we obtain that vb(t) > vb(s) and
it is a contradiction. So v1 ∈ X and thus σ̂s[v1] = v1. Since s ∈ W ({x1}) and
σ̂s[v1] = v1, from (2) we get x1 /∈ var(t) or x2 /∈ var(t) which contradicts to
t ∈ WG

(2)({x1, x2}). If u1 = x1, u2 = x2, then σ̂t[u1] = x1, σ̂t[u2] = x2. From

(1), we get s = t. If u1 = x1, u2 = xi where i > 2, then by the same proof as
the case u1 = u2 = x1 we get x1 /∈ var(t) or x2 /∈ var(t). If u1 = x2, u2 = x1,
then σ̂t[u1] = x2, σ̂t[u2] = x1. From (1), we get s = t. If u1 = x2, u2 = x2,
then by the same proof as the case u1 = u2 = x1 we get x1 /∈ var(t) or
x2 /∈ var(t). If u1 = x2, u2 = xi where i > 2, then by the same proof as the
case u1 = u2 = x1 we get x1 /∈ var(t) or x2 /∈ var(t). If u1 = xi, u2 = x1 where
i > 2, then by the same proof as the case u1 = u2 = x1 we get x1 /∈ var(t)
or x2 /∈ var(t). If u1 = xi, u2 = x2 where i > 2, then by the same proof
as the case u1 = u2 = x1 we get x1 /∈ var(t) or x2 /∈ var(t). Suppose that
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u1 = xi, u2 = xj where i, j > 2. Then σ̂t[u1] = xi, σ̂t[u2] = xj . From (1), we
get s ∈ WG. Since x1, x2 /∈ var(s), from (2) we get s = t. So x1, x2 /∈ var(t)
and it is a contradiction.

Case 3: t ∈ W ({x1}). Suppose that u1 /∈ X. Then σ̂t[u1] /∈ X. From
(1), x1 ∈ var(t) and σ̂t[u1] /∈ X, we obtain that vb(s) > vb(t) and it is a
contradiction. So u1 ∈ X and thus σ̂s[u1] = u1. If u1 = x1, then by (1) we
get s = t. If u1 = x2, then by (1) we get s = t. Suppose that u1 = xi where
i > 2. From (1), we get s ∈ WG. Since x1, x2 /∈ var(s), from (2) we get s = t.
So x1 /∈ var(t) and it is a contradiction.

Case 4: t ∈ W ({x2}). By the same proof as the case t ∈ W ({x1}) we get
s = t or s = t.

Conversely, assume that s = t or s = t. By Proposition 3.4, we get σsRσt.

Lemma 3.13. Let σf(c,d) ∈ HypG(2) \ {σid, σf(x2,x1)} and u ∈ W(2)(X) \X.
If σf(c,d) ∈ EG({x1, x2}), then vb((σf(c,d) ◦G σu)(f)) > vb(u).

Proof. Since x1, x2 ∈ var(f(c, d)) and f(c, d) ̸= f(x1, x2), f(x2, x1), thus
c /∈ X or d /∈ X and vb(f(c, d)) ≥ 3. Let vb(u) = 2. Then u = f(xi, xj)
for some xi, xj ∈ X. So vb(w) = vb((σf(c,d) ◦G σu)(f)) = vb((σf(c,d) ◦G
σf(xi,xj))(f)) = vb(S2(f(c, d), xi, xj)) ≥ 3 > vb(u). Let u = f(s, t) where
s ∈ X and t /∈ X. Then σ̂f(c,d)[s] = s ∈ X. Assume that vb(σ̂f(c,d)[t]) >
vb(t). Since x1, x2 ∈ var(f(c, d)) and vb(σ̂f(c,d)[t]) > vb(t), thus vb(w) =
vb((σf(c,d)◦Gσu)(f)) = vb((σf(c,d)◦Gσf(s,t))(f)) = vb(S2(f(c, d), s, σ̂f(c,d)[t])) >
vb(f(s, t)) = vb(u). Let u = f(s, t) where s, t /∈ X. Assume that vb(σ̂f(c,d)[s]) >
vb(s) and vb(σ̂f(c,d)[t]) > vb(t). Since x1, x2 ∈ var(f(c, d)) and vb(σ̂f(c,d)[s]) >
vb(s), vb(σ̂f(c,d)[t]) > vb(t), thus vb(w) = vb((σf(c,d)◦Gσu)(f)) = vb((σf(c,d)◦G
σf(s,t))(f)) = vb(S2(f(c, d), σ̂f(c,d)[s], σ̂f(c,d)[t])) > vb(f(s, t)) = vb(u).

Lemma 3.14. If f(c, d) ∈ W ({x1}) ∪ W ({x2}) ∪ WG (x1 /∈ var(f(c, d)) or
x2 /∈ var(f(c, d))), then for any u, v ∈ W(2)(X) the term w corresponding to
σf(c,d) ◦G σf(u,v) is in W ({x1}) ∪W ({x2}) ∪WG.

Proof. Assume that f(c, d) ∈ W ({x1}). We have to consider the let-
ters used in the term w = S2(f(c, d), σ̂f(c,d)[u], σ̂f(c,d)[v]). If u ∈ X, then
σ̂f(c,d)[u] = u ∈ X. Since f(c, d) ∈ W ({x1}), σ̂f(c,d)[u] ∈ X and w =
S2(f(c, d), σ̂f(c,d)[u], σ̂f(c,d)[v]), thus w ∈ W ({x1}) ∪W ({x2}) ∪WG. Assume
that u = f(p, q) where p, q ∈ W(2)(X) and σ̂f(c,d)[p] ∈ W ({x1}) ∪W ({x2}) ∪
WG. So σ̂f(c,d)[u] = S2(f(c, d), σ̂f(c,d)[p], σ̂f(c,d)[q]) ∈ W ({x1}) ∪ W ({x2}) ∪
WG. Since f(c, d) ∈ W ({x1}), σ̂f(c,d)[u] ∈ W ({x1}) ∪ W ({x2}) ∪ WG and
w = S2(f(c, d), σ̂f(c,d)[u], σ̂f(c,d)[v]), thus w ∈ W ({x1}) ∪W ({x2}) ∪WG. By
the same way we can show that if f(c, d) ∈ W ({x2}), then w ∈ W ({x1}) ∪
W ({x2}) ∪WG. If f(c, d) ∈ WG, then w = f(c, d) ∈ WG.

Lemma 3.15. EG
x1

is a left zero band.
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Proof. Let σf(x1,s), σf(x1,t) ∈ EG
x1
. Since x2 /∈ var(s), thus (σf(x1,s) ◦G

σf(x1,t))(f) = S2(f(x1, s), x1, σ̂f(x1,s)[t]) = f(x1, s). So σf(x1,s) ◦G σf(x1,t) =
σf(x1,s). Thus every element in EG

x1
is left zero. So EG

x1
is a left zero band.

Proposition 3.16. The L-class of the element σf(x1,x1) is precisely the set

EG
x1

∪ EG
x2
.

Proof. For any two idempotent elements e and f in a semigroup S, eLf
if and only if ef = e and fe = f . Since EG

x1
is a left zero band, it follows

that σf(x1,x1) is L-related to any element of EG
x1
. By Proposition 3.4, we get

σf(x1,x1) is L-related to any element of (EG
x1
)′ = EG

x2
. Thus the L-class of

σf(x1,x1) contains at least E
G
x1

∪ EG
x2
. For the opposite inclusion, assume that

σt ∈ HypG(2) where σtLσf(x1,x1). By Proposition 3.5, we get t /∈ X. Then
t = f(u, v) for some u, v ∈ W(2)(X). From σtLσf(x1,x1), then there exist
σp, σq ∈ HypG(2) such that σp ◦G σf(x1,x1) = σt and σq ◦G σt = σf(x1,x1).
Since t, f(x1, x1) /∈ X, by Lemma 3.3 we get p, q /∈ X. Then there ex-
ist a, b, c, d ∈ W(2)(X) such that p = f(a, b) and q = f(c, d). Thus we
have σf(a,b) ◦G σf(x1,x1) = σf(u,v) and σf(c,d) ◦G σf(u,v) = σf(x1,x1). From
σf(a,b) ◦G σf(x1,x1) = σf(u,v), by Lemma 3.9 we get x2 /∈ var(f(u, v)). From
σf(c,d) ◦G σf(u,v) = σf(x1,x1), we obtain that S2(f(c, d), σ̂f(c,d)[u], σ̂f(c,d)[v]) =
f(x1, x1). Suppose that u, v ̸= x1. Thus σ̂f(c,d)[u], σ̂f(c,d)[v] ̸= x1. This im-
plies S2(f(c, d), σ̂f(c,d)[u], σ̂f(c,d)[v]) ̸= f(x1, x1), which is a contradiction. So
u = x1 or v = x1. Since x2 /∈ var(f(u, v)) and u = x1 or v = x1, thus

σt = σf(u,v) ∈ EG
x1

∪ EG
x2
.

Corollary 3.17. The D-class of the element σf(x1,x1) is precisely the set

EG
x1

∪ EG
x2

∪ EG
x1

∪ EG
x2
.

Proof. Assume that σt ∈ HypG(2) where σtDσf(x1,x1). Then there exists
σs ∈ HypG(2) such that σtRσs and σsLσf(x1,x1). Since σtRσs, by Proposition
3.12 we get σt = σs or σt = σs. Since σsLσf(x1,x1), by Proposition 3.16 we get

σs ∈ EG
x1

∪ EG
x2
. If σs ∈ EG

x1
, then σt ∈ EG

x1
∪ EG

x1
⊆ EG

x1
∪ EG

x2
∪ EG

x1
∪ EG

x2
.

If σs ∈ EG
x2
, then σt ∈ EG

x2
∪ EG

x2
⊆ EG

x1
∪ EG

x2
∪ EG

x1
∪ EG

x2
. For the opposite

inclusion, assume that σt ∈ EG
x1

∪ EG
x2

∪ EG
x1

∪ EG
x2
. If σt ∈ EG

x1
∪ EG

x2
, then

by Proposition 3.16 we get σtLσf(x1,x1). Since L ⊆ D, thus σtDσf(x1,x1). If

σt ∈ EG
x2
∪EG

x1
, then σt ∈ EG

x1
∪EG

x2
. By Proposition 3.16, we get σtLσf(x1,x1).

By Proposition 3.12, we get σtRσt. So σtDσf(x1,x1).

Proposition 3.18. The following statements hold:

(i) (σf(x1,x1))i = I := {σt ∈ HypG(2)|t ∈ WG
(2)({x1}) ∪ WG

(2)({x2}) or

x1, x2 /∈ var(t)}.
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(ii) If σ ∈ I where σ /∈ EG
x1

∪ EG
x2

∪ EG
x1

∪ EG
x2
, then (σ)i ( I.

(iii) The J-class of σf(x1,x1) is equal to its D-class, EG
x1

∪ EG
x2

∪ EG
x1

∪ EG
x2
.

Proof. (i) Assume that σs ∈ (σf(x1,x1))i. Then there exist δ, ρ ∈ HypG(2)
such that δ ◦G σf(x1,x1) ◦G ρ = σs. If δ or ρ ∈ PG(2), then by Lemma 3.3
we get σs = δ ◦G σf(x1,x1) ◦G ρ ∈ PG(2) ⊆ I. Assume that δ, ρ /∈ PG(2).
By Lemma 3.14, we get σf(x1,x1) ◦G ρ ∈ I. By Lemma 3.9, we get σs =
δ ◦G (σf(x1,x1) ◦G ρ) ∈ I. For the opposite inclusion, suppose that σs ∈ I. If
σs ∈ PG(2), then by Lemma 3.3 we get σs = σf(x1,x1) ◦G σf(x1,x1) ◦G σs ∈
(σf(x1,x1))i. Let σs /∈ PG(2). If x1, x2 /∈ var(s), then by Lemma 3.3 we
get σs = σs ◦G σf(x1,x1) ◦G σs ∈ (σf(x1,x1))i. If s ∈ W ({x1}), then σs =
σs ◦Gσf(x1,x1) ◦Gσf(x1,v) ∈ (σf(x1,x1))i for some v ∈ W(2)(X). If s ∈ W ({x2}),
then σs = σs ◦G σf(x1,x1) ◦G σf(x2,v) ∈ (σf(x1,x1))i for some v ∈ W(2)(X).

(ii) Assume that σ ∈ I where σ /∈ EG
x1

∪ EG
x2

∪ EG
x1

∪ EG
x2
. If σ ∈ PG(2),

then (σ)i = HypG(2)σHypG(2) = PG(2) ( I. Assume that σ /∈ PG(2) and
σ = σf(u,v) where u, v ∈ W(2)(X). Let f(u, v) ∈ W ({x1})∪W ({x2}). Suppose
that u, v ∈ X. Since f(u, v) ∈ W ({x1})∪W ({x2}), thus σf(u,v) ∈ EG

x1
∪EG

x2
∪

EG
x1

∪EG
x2

and it is a contradiction. Suppose that u ∈ X and v /∈ X. If u = x1

or u = x2, then σf(u,v) ∈ EG
x1

∪ EG
x2

∪ EG
x1

∪ EG
x2

and it is a contradiction. So
u = xi for some i > 2. Suppose that σf(x1,x1) ∈ (σf(u,v))i. Since f(x1, x1) /∈ X
and σf(x1,x1) ∈ (σf(u,v))i, there exist p, q, r, s ∈ W(2)(X) such that σf(p,q) ◦G
σf(xi,v) ◦G σf(r,s) = σf(x1,x1). Let w be the term (σf(xi,v) ◦G σf(r,s))(f). So
w = f(xi, k) for some k ∈ W(2)(X) \ X. Then we have σf(p,q) ◦G σf(xi,k) =
σf(x1,x1). This implies f(p, q) = f(x2, x2). Consider (σf(x2,x2)◦Gσf(xi,k))(f) =
S2(f(x2, x2), xi, σ̂f(x2,x2)[k]) = f(σ̂f(x2,x2)[k], σ̂f(x2,x2)[k]) ̸= f(x1, x1), which
is a contradiction. So (σ)i ( I. By the same way we can show that if u /∈ X
and v ∈ X, then (σ)i ( I. Suppose that u, v /∈ X. Then vb(f(u, v)) ≥ 4.
Suppose that σf(x1,x1) ∈ (σf(u,v))i. Since f(x1, x1) /∈ X and σf(x1,x1) ∈
(σf(u,v))i, there exist p, q, r, s ∈ W(2)(X) such that σf(p,q)◦Gσf(u,v)◦Gσf(r,s) =
σf(x1,x1). Let w be the term (σf(u,v) ◦G σf(r,s))(f). Then vb(w) ≥ 4. By
Lemma 3.3, we get x1 ∈ var(f(p, q)) or x2 ∈ var(f(p, q)). Suppose that
f(p, q) ∈ WG

(2)({x1, x2}). If f(p, q) = f(x1, x2) or f(p, q) = f(x2, x1), then
σw = σf(x1,x1) or σw′ = σf(x1,x1) and it is a contradiction. Suppose that
f(p, q) ̸= f(x1, x2), f(x2, x1). By Lemma 3.13, we get vb(f(x1, x1)) > vb(w),
which is a contradiction. Suppose that f(p, q) ∈ W ({x1}) ∪W ({x2}). Then
the equation σf(p,q) ◦G σw = σf(x1,x1) does not fit any of E(1) to E(16), so by
Lemma 3.1 we must have vb(f(x1, x1)) > vb(f(p, q)) and it is a contradiction.
So (σ)i ( I. Let f(u, v) ∈ WG. Suppose that σf(x1,x1) ∈ (σf(u,v))i. Since
f(x1, x1) /∈ X and σf(x1,x1) ∈ (σf(u,v))i, there exist p, q, r, s ∈ W(2)(X) such
that σf(p,q) ◦G σf(u,v) ◦G σf(r,s) = σf(x1,x1). By Lemma 3.3, we get σf(u,v) ◦G
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σf(r,s) = σf(u,v). By Lemma 3.9, we get x1, x2 are not variables occurring in
the term (σf(p,q) ◦G σf(u,v))(f) = (σf(p,q) ◦G σf(u,v) ◦G σf(r,s))(f), which is a
contradiction. So (σ)i ( I.

(iii) Since D ⊆ J, we must have EG
x1

∪ EG
x2

∪ EG
x1

∪ EG
x2

contained in
the J-class of σf(x1,x1). Assume that σ ∈ HypG(2) where σJσf(x1,x1). Then

(σ)i = (σf(x1,x1))i = I. So σ ∈ I. By (ii), we get σ ∈ EG
x1

∪ EG
x2

∪ EG
x1

∪ EG
x2

.

Proposition 3.19. For any σt ∈ EG({x1, x2}), the elements which are L-
related to σt are only σt itself and σt′ .

Proof. Let t = f(u, v) where u, v ∈ W(2)(X). Assume that σs ∈ HypG(2)
where σsLσt. By Proposition 3.5, we get s /∈ X. Then s = f(a, b) for some
a, b ∈ W(2)(X). Since s, t /∈ X and σsLσt, there exist c, d, e, g ∈ W(2)(X) such
that σf(c,d) ◦G σf(u,v) = σf(a,b) and σf(e,g) ◦G σf(a,b) = σf(u,v). Suppose that
f(c, d), f(e, g) /∈ {f(x1, x2), f(x2, x1)} and f(c, d), f(e, g) ∈ WG

(2)({x1, x2}).
Then by Lemma 3.13, we get vb(f(a, b)) > vb(f(u, v)) and vb(f(u, v)) >
vb(f(a, b)), which is a contradiction. Suppose that f(c, d) ∈ W(2)(X)\WG

(2)({x1,

x2}). Then by Lemma 3.14, we get x1 /∈ var(f(a, b)) or x2 /∈ var(f(a, b)).
Since x1 /∈ var(f(a, b)) or x2 /∈ var(f(a, b)), by Lemma 3.9 we get x1 /∈
var(f(u, v)) or x2 /∈ var(f(u, v)) which contradicts to x1, x2 ∈ var(f(u, v)).
Suppose that f(e, g) ∈ W(2)(X) \ WG

(2)({x1, x2}). Then by Lemma 3.14, we

get x1 /∈ var(f(u, v)) or x2 /∈ var(f(u, v)) which contradicts to x1, x2 ∈
var(f(u, v)). So f(c, d) ∈ {f(x1, x2), f(x2, x1)} or f(e, g) ∈ {f(x1, x2), f(x2, x1)}.
This implies σs = σt or σs = σt′ .

Corollary 3.20. For σt ∈ EG({x1, x2}), Dσt = {σt, σt′ , σt, σt′}.

Proof. By Proposition 3.12 and Proposition 3.19.

Proposition 3.21. For σt ∈ EG({x1, x2}), the J-class of σt is equal to its
D-class, {σt, σt′ , σt, σt′}.

Proof. If σt = σid or σt = σf(x2,x1), then by Proposition 3.8 we get
Dσid

= Jσid
. Let σt ̸= σid, σf(x2,x1) and σs ∈ HypG(2) where σsJσt. By

Proposition 3.5, we get s /∈ X. Then there exist σu, σv, σp, σq ∈ HypG(2)
such that σu ◦G σt ◦G σv = σs and σp ◦G σs ◦G σq = σt. This implies σp ◦G
σu ◦G σt ◦G σv ◦G σq = σt. Since t /∈ X, by Lemma 3.3 we get u, v, p, q /∈ X.
Since t ∈ WG

(2)({x1, x2}), by Lemma 3.9 and Lemma 3.14 we get u, v, p, q ∈
WG

(2)({x1, x2}) and terms corresponding to the intermediate products are in

WG
(2)({x1, x2}). We consider three cases.
Case 1: σp ◦G σu = σid. Then by Lemma 3.6, we get σp = σu = σid or

σp = σu = σf(x2,x1). If σp = σu = σid, then from σu ◦G σt ◦G σv = σs and
σp ◦G σs ◦G σq = σt we get σt ◦G σv = σs and σs ◦G σq = σt. So σsRσt. By
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Proposition 3.12, we get σs = σt or σs = σt. If σp = σu = σf(x2,x1), then
from σu ◦G σt ◦G σv = σs and σp ◦G σs ◦G σq = σt we get σt′ ◦G σv = σs and
σs ◦G σq = σt′ . So σsRσt′ . By Proposition 3.12, we get σs = σt′ or σs = σt′ .

Case 2: σp ◦G σu = σf(x2,x1). Then by Lemma 3.6, we get σp = σid, σu =
σf(x2,x1) or σp = σf(x2,x1), σu = σid. Then σt = σp ◦G σu ◦G σt ◦G σv ◦G
σq = σf(x2,x1) ◦G σt ◦G σv ◦G σq = σt′ ◦G (σv ◦G σq). By Lemma 3.1, we get
vb(t) > vb(t′), unless the product σt′ ◦G (σv ◦G σq) fits one of E(1) to E(16).
But vb(t) = vb(t′), thus the product σt′ ◦G (σv ◦Gσq) fits one of E(1) to E(16).
We see that the cases E(1)−E(3), E(5), E(7)−E(16) are impossible. Assume
that E(4) holds. We have σv◦Gσq = σid. By Lemma 3.6, we get σv = σq = σid

or σv = σq = σf(x2,x1). If σv = σq = σid, then from σu ◦G σt ◦G σv = σs and
σp ◦G σs ◦G σq = σt we get σu ◦G σt = σs and σp ◦G σs = σt. So σsLσt. By
Proposition 3.19, we get σs = σt or σs = σt′ . If σv = σq = σf(x2,x1), then from
σu ◦G σt ◦G σv = σs and σp ◦G σs ◦G σq = σt we get σu ◦G σt ◦G σf(x2,x1) = σs

and σp ◦G σs ◦G σf(x2,x1) = σt. This implies σu ◦G σt = σs and σp ◦G σs = σt.
So σsLσt. By Proposition 3.19, we get σs = σt or σs = σt

′ = σt′ . Assume that
E(6) holds. We have σv ◦G σq = σf(x2,x1). By Lemma 3.6, we get σq = σid or
σq = σf(x2,x1). If σp = σq = σf(x1,x2), then from σp ◦G σs ◦G σq = σt we get
σs = σt. If σp = σq = σf(x2,x1), then from σp ◦G σs ◦G σq = σt we get σs = σt′ .
If σp = σid, σq = σf(x2,x1), then from σp ◦G σs ◦G σq = σt we get σs = σt. If
σp = σf(x2,x1), σq = σid, then from σp ◦G σs ◦G σq = σt we get σs = σt′ .

Case 3: σp ◦G σu ̸= σid, σf(x2,x1). Let w = (σt ◦G σv ◦G σq)(f). By Lemma
3.13, we get vb(t) > vb(w). By Lemma 3.1, we get vb(w) > vb(t), unless the
product σt ◦G (σv ◦G σq) fits one of E(1) to E(16). But the case vb(w) > vb(t)
is impossible. We see that the cases E(1) − E(3), E(5), E(7) − E(16) are
impossible. Assume that E(4) holds. We must have σv ◦G σq = σid. By
Lemma 3.6, we get σv = σq = σid or σv = σq = σf(x2,x1). If σv = σq = σid,
then from σu ◦G σt ◦G σv = σs and σp ◦G σs ◦G σq = σt we get σu ◦G σt = σs

and σp ◦G σs = σt. So σsLσt. By Proposition 3.19, we get σs = σt or σs = σt′ .
If σv = σq = σf(x2,x1), then from σu ◦G σt ◦G σv = σs and σp ◦G σs ◦G σq = σt

we get σu ◦G σt ◦G σf(x2,x1) = σs and σp ◦G σs ◦G σf(x2,x1) = σt. This implies
σu◦Gσt = σs and σp◦Gσs = σt. So σsLσt. By Proposition 3.19, we get σs = σt

or σs = σt
′ = σt′ . Assume that E(6) holds. We must have σv◦Gσq = σf(x2,x1).

Then σt = σp ◦G σu ◦G σt ◦G σv ◦G σq = σp ◦G σu ◦G σt ◦G σf(x2,x1) = (σp ◦G
σu) ◦G σt. Since σp ◦G σu ̸= σid, σf(x2,x1), by Lemma 3.13 we get vb(t) > vb(t)
and it is a contradiction.

Proposition 3.22. Let t ∈ W(2)(X) \ X and x1 ∈ var(t) or x2 ∈ var(t).
Then the following statements are equivalent:

(i) σt has an H-class of size two,

(ii) t′ = t,
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(iii) t = f(u, v) for some u, v ∈ W(2)(X) with v = u′.

Proof. (i) =⇒ (ii) Assume that (i) holds. By Proposition 3.12, we get
Rσt = {σt, σt}. Since Hσt ⊆ Rσt and |Hσt | = 2, thus Hσt = {σt, σt}. So
σtLσt. By Proposition 3.4, we get σtLσt′ . So σtLσt′ . If t ∈ WG

(2)({x1, x2}),
then by Proposition 3.19, we get t′ = t. If t ∈ W ({x1}), then by Lemma
3.9, we get x2 is not a variable occurring in the term (σ ◦G σt)(f) for all
σ ∈ HypG(2). So σ ◦G σt ̸= σt for all σ ∈ HypG(2). Thus it is impossible that
σt is L-related to σt. By the same way we can show that if t ∈ W ({x2}), then
σt and σt are not related.

(ii) =⇒ (i) Assume that t′ = t. By Proposition 3.4, we get σtLσt. So
Rσt = {σt, σt} ⊆ Lσt . Thus Hσt = Lσt ∩Rσt = Rσt = {σt, σt}. So |Hσt | = 2.

(ii) =⇒ (iii) Assume that t = f(u, v) for some u, v ∈ W(2)(X) with t′ = t.

So f(u, v) = f(u, v)′

⇒ f(u, v) = f(v′, u′)

⇒ u = v′

⇒ v = (v′)′ = u′ = u′.

(iii) =⇒ (ii) Assume that t = f(u, v) for some u, v ∈ W(2)(X) with v = u′.

So t′ = f(u, v)′ = f(u, u′)′ = f(u′′, u′) = f(u, u′) = f(u, u′) = f(u, u′) =
f(u, v) = t.
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