Stability and superstability of homomorphisms on C^{*}-ternary algebras

M. Eshaghi Gordji and A.Fazeli

Abstract

In this paper, we investigate the stability and superstability of homomorphisms on C^{*}-ternary algebras associated with the functional equation $$
f\left(\frac{x+2 y+2 z}{5}\right)+f\left(\frac{2 x+y-z}{5}\right)+f\left(\frac{2 x-3 y-z}{5}\right)=f(x) .
$$

1 Introduction

The stability problem of functional equations started with the following question concerning stability of group homomorphisms proposed by S.M. Ulam [40] during a talk before a Mathematical Colloquium at the University of Wisconsin, Madison, in 1940:

Let $\left(G_{1},.\right)$ be a group and $\left(G_{2}, *\right)$ be a metric group with the metric $d(\cdot, \cdot)$. Given $\epsilon>0$, does there exist a $\delta>0$ such that, if a mapping $h: G_{1} \longrightarrow G_{2}$ satisfies the inequality $d(h(x . y), h(x) * h(y))<\delta$ for all $x, y \in G_{1}$, then there exists a homomorphism $H: G_{1} \longrightarrow G_{2}$ with $d(h(x), H(x))<\epsilon$ for all $x \in G_{1}$?

In 1941, Hyers [18] gave a first affirmative answer to the question of Ulam for Banach spaces as follows:

If E and E^{\prime} are Banach spaces and $f: E \longrightarrow E^{\prime}$ is a mapping for which there is $\varepsilon>0$ such that

[^0]$\|f(x+y)-f(x)-f(y)\| \leq \varepsilon$ for all $x, y \in E$, then there is a unique additive mapping $L: E \longrightarrow E^{\prime}$ such that $\|f(x)-L(x)\| \leq \varepsilon$ for all $x \in E$.

Hyers' Theorem was generalized by Rassias [36] for linear mappings by considering an unbounded Cauchy difference.

The paper of Rassias [37] has provided a lot of influence in the development of what we now call the generalized Hyers-Ulam stability or as Hyers-UlamRassias stability of functional equations. In 1994, a generalization of the Rassias theorem was obtained by Gǎvruta [14] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach. For more details about the results concerning such problems, the reader refer to $[3,4,5,11,16,25,13,15,19,20,21,22]$ and $[29]-[34]$ and $[7,38]$.

Ternary algebraic operations have propounded originally in 19th century in Cayley [2] and J.J.Silvester's paper [39]. The application of ternary algebra in supersymmetry is presented in [23] and in Yang-Baxter equation in [27]. Cubic analogue of Laplace and d'alembert equations have been considered for first order by Himbert in [17],[24]. The previous definition of C^{*}-ternary algebras has been propounded by H.Zettle in [41]. In relation to homomorphisms and isomorphisms between various spaces we refer readers to [28]-[35], $[1,6,8,12$, $9,10]$.

2 Prelimiaries

Let A be a linear space over a complex field equipped with a mapping [] : $A^{3}=$ $A \times A \times A \rightarrow A$ with $(x, y, z) \rightarrow[x, y, z]$ that is linear in variables x, y, z and satisfy the associative identity, i.e. $[x, y,[z, u, v]]=[x,[y, z, u], v]=[[x, y, z], u, v]$ for all $x, y, z, u, v \in A$. The pair $(A,[])$ is called a ternary algebra. The ternary algebra $(A,[])$ is called unital if it has an identity element, i.e. an element $e \in A$ such that $[x, e, e]=[e, e, x]=x$ for every $x \in A . \mathrm{A} *-t e r n a r y$ algebra is a ternary algebra together with a mapping $*: A \rightarrow A$ which satisfies $\left(x^{*}\right)^{*}=x,(\lambda x)^{*}=\bar{\lambda} x^{*},(x+y)^{*}=x^{*}+y^{*},[x, y, z]^{*}=\left[z^{*}, y^{*}, x^{*}\right]$ for all $x, y, z \in A$ and all $\lambda \in \mathbb{C}$. In the case that A is unital and e is its unit, we assume that $e^{*}=e$.
A is normed ternary algebra if A is a ternary algebra and there exists a norm $\|$.$\| on A$ which satisfies $\|[x, y, z]\| \leq\|x\|\|y\|\|z\|$ for all $x, y, z \in A$. Whenever the ternary algebra A is unital with unit element e, we repute $\|e\|=1$. A normed ternary algebra A is called a Banach ternary algebra, if $(A,\| \|)$ is a Banach space. If A is a ternary algebra, $x \in A$ is called central if $[x, y, z]=[z, x, y]=[y, z, x]$ for all y, z in A.
The set of central elements of A is called the center of A and is shown by $Z(A)$.

In case A is $*-$ normed ternary algebra and $Z(A)=0$ we grant $\left\|x^{*}\right\|=\|x\|$. A C^{*}-ternary algebra is a Banach $*$-ternary algebra if $\left\|\left[x^{*}, y, x\right]\right\|=\|x\|^{2}\|y\|$ for all x in A and y in $Z(A)$.

Let A, B be two C^{*}-ternary algebras. A linear mapping $h: A \rightarrow B$ is called a homomorphism if $h([x, y, z])=[h(x), h(y), h(z)]$ for all $x, y, z \in A$ and a homomorphism $h: A \rightarrow B$ is called a $*$-homomorphism if $h\left(a^{*}\right)=h(a)^{*}$ for all $a \in A$.

Comments : If A is a unital (binary) C^{*}-algebra with unit e, we define $[x, y, z]:=(x y) z$ for all x, y, z in A. Then we have $[x, y, z]^{*}=((x y) z)^{*}=$ $z^{*}(x y)^{*}=z^{*}\left(y^{*} x^{*}\right)=\left(z^{*} y^{*}\right) x^{*}=\left[z^{*}, y^{*}, x^{*}\right]$. Now if y in ternary algebra A belongs to $Z(A)$, then we have $y y^{*}=\left(y y^{*}\right) e=\left[y, y^{*}, e\right]=\left[y^{*}, e, y\right]=$ $\left(y^{*} e\right) y=y^{*} y$. Thus y is normal in C^{*}-algebra A. On the other hand, for every normal element x in a C^{*}-algebra, we have $\|x\|=\rho(x)$ in which $\rho(x)$ is spectral radius of x . Theorem 1.3.4 of [26] expresses that if A is a unital and commutative Banach algebra and $\Omega(A)$ is its maximal ideal space, then for every a in A $\sigma(a)=\{h(a) ; h \in \Omega(A)\}$. Now, if z belongs to C^{*}-algebra A and $z=z^{*}$ and $x \in A$ is normal and $x z=z x$, then $z x$ is a normal element of C^{*}-algebra and if B is the C^{*}-algebra generated by $\mathrm{x}, \mathrm{z}, \mathrm{e}$ then B is unital and commutative and so

$$
\|z x\|=\sup _{h \in \Omega(A)}|h(z x)|=\sup _{h \in \Omega(A)}|h(z)| \sup _{h \in \Omega(A)}|h(x)|=\|z\|\|x\|
$$

Now let $y \in A$ be a central element of ternary algebra A and let x belongs to A. Then

$$
\left\|\left[x^{*}, y, x\right]\right\|=\left\|\left[x, x^{*}, y\right]\right\|=\left\|\left(x x^{*}\right) y\right\|=\left\|x x^{*}\right\|\|y\|=\|x\|^{2}\|y\|
$$

Thus A is a unital C^{*}-ternary algebra.

3 Solution

We start our work with solution of functional equation

$$
f\left(\frac{x+2 y+2 z}{5}\right)+f\left(\frac{2 x+y-z}{5}\right)+f\left(\frac{2 x-3 y-z}{5}\right)=f(x) .
$$

Theorem 3.1. Let X and Y be linear spaces and $f: X \rightarrow Y$ be a mapping. Then f is additive if and only if

$$
\begin{equation*}
f\left(\frac{x+2 y+2 z}{5}\right)+f\left(\frac{2 x+y-z}{5}\right)+f\left(\frac{2 x-3 y-z}{5}\right)=f(x) \tag{1}
\end{equation*}
$$

for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in $X-\{0\}$.
Proof. If f is additive, it is obvious that f satisfies (1). Conversely suppose that f satisfies (1).
Letting $x=y=z$ in (1), we have $f\left(\frac{2 x}{5}\right)+f\left(\frac{-2 x}{5}\right)=0$.
Replacing x by $\frac{5 x}{2}$ to get $f(-x)=-f(x)$.
Putting $z=-y$ and $x=y$ in (1) we get

$$
\begin{equation*}
f\left(\frac{y}{5}\right)+f\left(\frac{4 y}{5}\right)+f(0)=f(y) \tag{2}
\end{equation*}
$$

Laying $z=3 x$ and $y=x$ in (1) we infer that

$$
\begin{equation*}
f(x)=f\left(\frac{9 x}{5}\right)+f(0)-f\left(\frac{4 x}{5}\right) \tag{3}
\end{equation*}
$$

Letting $x=2 z$ and $y=-2 z$ in (1) we conclude that

$$
\begin{equation*}
f(2 z)=f(0)+f\left(\frac{z}{5}\right)+f\left(\frac{9 z}{5}\right) . \tag{4}
\end{equation*}
$$

Using (3) and (4) we see that

$$
\begin{equation*}
f(2 x)-f(x)=f\left(\frac{x}{5}\right)+f\left(\frac{4 x}{5}\right) \tag{5}
\end{equation*}
$$

By use of (5) and (2) we obtain

$$
\begin{equation*}
f(2 x)=2 f(x)-f(0) \tag{6}
\end{equation*}
$$

It follows from (6) that

$$
\begin{equation*}
f\left(\frac{4 y}{5}\right)=4 f\left(\frac{y}{5}\right)-3 f(0) \tag{7}
\end{equation*}
$$

We deduce from (2) and (7) that

$$
\begin{equation*}
5 f\left(\frac{y}{5}\right)=f(y)+2 f(0) \tag{8}
\end{equation*}
$$

Multiplying by 5 both sides of (3) with (8) we lead to

$$
\begin{equation*}
f(9 x)=5 f(x)+f(4 x)-5 f(0) \tag{9}
\end{equation*}
$$

It follows from (6) and (9) that

$$
\begin{equation*}
f(9 x)=9 f(x)-8 f(0) \tag{10}
\end{equation*}
$$

Multiply by 5 both sides of (4), together with (6) and (8) one gets

$$
\begin{equation*}
f(9 x)=9 f(x)-14 f(0) \tag{11}
\end{equation*}
$$

We infer from (11) and (10) that $f(0)=0$. Hence by (6) and (8) and (10), we have

$$
\begin{equation*}
f(2 x)=2 f(x), f(9 x)=9 f(x), f(y)=5 f\left(\frac{y}{5}\right) \tag{12}
\end{equation*}
$$

Replacing y by 5 y in (12) we get

$$
\begin{equation*}
f(2 x)=2 f(x), f(9 x)=9 f(x), f(5 y)=5 f(y) \tag{13}
\end{equation*}
$$

Substituting x with 5 x and y with 5 y and z with 5 z in (1) together (13) we have

$$
\begin{equation*}
f(x+2 y+2 z)+f(2 x+y-z)+f(2 x-3 y-z)=5 f(x) \tag{14}
\end{equation*}
$$

Laying $y=-z$ in (14) with (13) one gets

$$
\begin{equation*}
f(x-z)+f(x+z)=f(2 x) \tag{15}
\end{equation*}
$$

We replace $r=x-z$ and $s=x+z$ in (15), then we have $f(r)+f(s)=f(r+s)$. Hence f is additive.

We need the following theorem in our main results.
Theorem 3.2. Let $n_{0} \in \mathbb{N}$ be a fixed positive integer number and X and Y be linear spaces and $f: X \rightarrow Y$ be an additive function. Then f is linear if and only if $f(\mu x)=\mu f(x)$ for all x in X and μ in $T_{\frac{1}{n_{o}}}^{1}=\left\{e^{i \theta} ; 0 \leq \theta \leq \frac{2 \pi}{n_{o}}\right\}$.
Proof. Suppose that f is additive and $f(\mu x)=\mu f(x)$ for all x in X and μ in $T_{\frac{1}{n_{o}}}^{1}$.
Let μ be in T^{1}, then $\mu=e^{i \theta}$ that $0 \leq \theta \leq 2 \pi$.
We set $\mu_{1}=e^{\frac{i \theta}{n_{o}}}$, thus μ_{1} is in $T_{\frac{1}{n_{o}}}^{1}$ and $f(\mu x)=f\left(\mu_{1}^{n_{o}} x\right)=\mu_{1}^{n_{o}} f(x)=\mu f(x)$ for all x in X . If μ belongs to $n T^{1}=\left\{n z ; z \in T^{1}\right\}$ then by additivity of f , $f(\mu x)=\mu f(x)$
for all x in X and μ in $n T^{1}$. If $t \in(0, \infty)$ then by archimedean property there exists a natural number n such that the point $(t, 0)$ lies in the interior of circle with center at origin and radius n .
Let $t_{1}=t+\sqrt{n^{2}-t^{2}} i \in n T^{1}$ and $t_{2}=t-\sqrt{n^{2}-t^{2}} i \in n T^{1}$.
We have $t=\frac{t_{1}+t_{2}}{2}$ and $f(t x)=f\left(\frac{t_{1}+t_{2}}{2} x\right)=\frac{t_{1}+t_{2}}{2} f(x)=t f(x)$ for all x in X .
If $\mu \in \mathbb{C}$, then $\mu=|\mu| e^{i \mu_{1}}$ so $f(\mu x)=f\left(|\mu| e^{i \mu_{1}} x\right)=|\mu| e^{i \mu_{1}} f(x)=\mu f(x)$ for all x in X .
The converse is clear.

Theorem 3.3. Let X and Y be linear spaces and $f: X \rightarrow Y$ be a mapping. Then f is \mathbb{C}-linear if and only if

$$
\begin{equation*}
f\left(\frac{\mu x+2 y+2 z}{5}\right)+f\left(\frac{2 \mu x+y-z}{5}\right)+f\left(\frac{2 \mu x-3 y-z}{5}\right)=\mu f(x) \tag{16}
\end{equation*}
$$

for all x,y,z in $X-\{0\}$ and μ in $T_{\frac{1}{n_{o}}}^{1}$.
Proof. If f is \mathbb{C}-linear, it is clear that f satisfies (16). Conversely, let f satisfies (16). We set $\mu=1$ in (16), then by Theorem 3.1, f is an additive mapping. Letting $y=z=0$ in (16) we have $f\left(\frac{\mu x}{5}\right)+2 f\left(\frac{2 \mu x}{5}\right)=\mu f(x)$. By additivity of f we get $f(\mu x)=\mu f(x)$ for all x in X and μ in $T_{\frac{1}{n_{o}}}^{1}$.
So by Theorem 3.2 f is a \mathbb{C}-linear.
Notation 3.4. Let X and Y be linear spaces and $f: X \rightarrow Y$ be a mapping. Then we set
$E_{\mu} f(x, y, z)=f\left(\frac{\mu x+2 y+2 z}{5}\right)+f\left(\frac{2 \mu x+y-z}{5}\right)+f\left(\frac{2 \mu x-3 y-z}{5}\right)-\mu f(x)$
for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in X and μ in \mathbb{C}.

$4 \quad$ Stability

In this section we investigate the Stability of $*-$ homomorphisms between C^{*} ternary algebras.

Theorem 4.1. Let A and B be two C^{*}-ternary algebras and $\varphi, \psi: A^{3} \rightarrow$ $[0, \infty)$ be functions such that

$$
\begin{gather*}
\tilde{\varphi}(x)=\sum_{n=1}^{\infty} 3^{n-1} \varphi\left(\frac{x}{3^{n-1}}, 0, \frac{x}{3^{n}}\right)<\infty \quad\left[\tilde{\varphi}(x)=\sum_{n=1}^{\infty} \frac{1}{3^{n}} \varphi\left(3^{n} x, 0,3^{n-1} x\right)<\infty\right] \tag{18}\\
\lim _{n \rightarrow \infty} 3^{n} \varphi\left(\frac{x}{3^{n}}, \frac{y}{3^{n}}, \frac{z}{3^{n}}\right)=0 \quad\left[\lim _{n \rightarrow \infty} \frac{1}{3^{n}} \varphi\left(3^{n} x, 3^{n} y, 3^{n} z\right)=0\right] \tag{17}\\
\lim _{n \rightarrow \infty} 3^{3 n} \psi\left(\frac{x}{3^{n}}, \frac{y}{3^{n}}, \frac{z}{3^{n}}\right)=0 \quad\left[\lim _{n \rightarrow \infty} \frac{1}{3^{3 n}} \psi\left(3^{n} x, 3^{n} y, 3^{n} z\right)=0\right] \tag{19}
\end{gather*}
$$

for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in A. Suppose that $f: A \rightarrow B$ is a mapping such that

$$
\begin{equation*}
\left\|E_{\mu} f(x, y, z)\right\| \leq \varphi(x, y, z) \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\|f([x, y, z])-[f(x), f(y), f(z)]\| \leq \psi(x, y, z), \quad\left\|f\left(a^{*}\right)-f(a)^{*}\right\| \leq \psi(a, 0,0) \tag{21}
\end{equation*}
$$

for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{a}$ in A and μ in $T_{\frac{1}{n_{o}}}^{1}$.
Then there exists a unique $*$-homomorphism $T: A \rightarrow B$ such that

$$
\begin{equation*}
\|T(x)-f(x)\| \leq \tilde{\varphi}(x) \tag{22}
\end{equation*}
$$

and we have

$$
\begin{equation*}
T(x)=\lim _{n \rightarrow \infty} 3^{n} f\left(\frac{x}{3^{n}}\right) \quad\left[T(x)=\lim _{n \rightarrow \infty} \frac{1}{3^{n}} f\left(3^{n} x\right)\right] \tag{23}
\end{equation*}
$$

for all x in A.
Proof. Letting $\mu=1$ and $z=\frac{x}{3}$ and $y=0$ in (20), we have

$$
\begin{equation*}
\left\|3 f\left(\frac{x}{3}\right)-f(x)\right\| \leq \varphi\left(x, 0, \frac{x}{3}\right) . \tag{24}
\end{equation*}
$$

Replacing x by $\frac{x}{3}$ in (24) and multiplying by 3 both sides of (24), we get

$$
\begin{equation*}
\left\|3^{2} f\left(\frac{x}{3^{2}}\right)-3 f\left(\frac{x}{3}\right)\right\| \leq 3 \varphi\left(\frac{x}{3}, 0, \frac{x}{3^{2}}\right) . \tag{25}
\end{equation*}
$$

Using (24) and (25) we get

$$
\left\|3^{2} f\left(\frac{x}{3^{2}}\right)-f(x)\right\| \leq \varphi\left(x, 0, \frac{x}{3}\right)+3 \varphi\left(\frac{x}{3}, o, \frac{x}{3^{2}}\right)
$$

By use of the above method, by induction, we infer that

$$
\begin{equation*}
\left\|3^{n} f\left(\frac{x}{3^{n}}\right)-f(x)\right\| \leq \sum_{i=1}^{n} 3^{i-1} \varphi\left(\frac{x}{3^{i-1}}, 0, \frac{x}{3^{i}}\right) \tag{26}
\end{equation*}
$$

Substitute x with $\frac{x}{3^{m}}$ in (26) and multiply by 3^{m} its both parties of inequality, we lead to
$\left\|3^{n+m} f\left(\frac{x}{3^{n+m}}\right)-3^{m} f\left(\frac{x}{3^{m}}\right)\right\| \leq \sum_{i=m+1}^{n+m} 3^{i-1} \varphi\left(\frac{x}{3^{i-1}}, 0, \frac{x}{3^{i}}\right) \leq \sum_{i=m+1}^{\infty} 3^{i-1} \varphi\left(\frac{x}{3^{i-1}}, 0, \frac{x}{3^{i}}\right)$.
The right expression of (27) by (17) tends to zero as m tends to infinity. So the sequence $\left\{3^{n} f\left(\frac{x}{3^{n}}\right)\right\}$ is a Cauchy sequence in complete space B. Hence,
one can define $T: A \rightarrow B$ by $T(x)=\lim _{n \rightarrow \infty} 3^{n} f\left(\frac{x}{3^{n}}\right)$. From (20) and (18) we arrive at

$$
\left\|E_{\mu} T(x, y, z)\right\|=\lim _{n \rightarrow \infty} 3^{n}\left\|E_{\mu} f\left(\frac{x}{3^{n}}, \frac{y}{3^{n}}, \frac{z}{3^{n}}\right)\right\| \leq \lim _{n \rightarrow \infty} 3^{n} \varphi\left(\frac{x}{3^{n}}, \frac{y}{3^{n}}, \frac{z}{3^{n}}\right)=0
$$

So $E_{\mu} T(x, y, z)=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in A and μ in $T_{\frac{1}{n_{o}}}^{1}$.
By Theorem 3.3, T is \mathbb{C}-linear. (21) and (19) imply that

$$
\begin{gathered}
\|T([x, y, z])-[T(x), T(y), T(z)]\|= \\
\lim _{n \rightarrow \infty} 3^{3 n}\left\|f\left(\left[\frac{x}{3^{n}}, \frac{y}{3^{n}}, \frac{z}{3^{n}}\right]\right)-\left[f\left(\frac{x}{3^{n}}\right), f\left(\frac{y}{3^{n}}\right), f\left(\frac{z}{3^{n}}\right)\right]\right\| \leq \\
\lim _{n \rightarrow \infty} 3^{3 n} \psi\left(\frac{x}{3^{n}}, \frac{y}{3^{n}}, \frac{z}{3^{n}}\right)=0
\end{gathered}
$$

Thus $T([x, y, z])=[T(x), T(y), T(z)]$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in A. By a same method as above, we can show that $T\left(a^{*}\right)=T(a)^{*}$ for all a in A. Therefore, T is a *-homomorphism.
Now let $T^{\prime}: A \rightarrow B$ be another $*-$ homomorphism satisfying $\left\|T^{\prime}(x)-f(x)\right\| \leq \tilde{\varphi}(x)$ for all x in A . Then from linearity of T^{\prime} we see that

$$
\begin{gathered}
\left\|T(x)-T^{\prime}(x)\right\|=\lim _{n \rightarrow \infty}\left\|3^{n} f\left(\frac{x}{3^{n}}\right)-T^{\prime}(x)\right\|=\lim _{n \rightarrow \infty} 3^{n}\left\|f\left(\frac{x}{3^{n}}\right)-T^{\prime}\left(\frac{x}{3^{n}}\right)\right\| \leq \\
\left.\lim _{n \rightarrow \infty} 3^{n} \tilde{\varphi}\left(\frac{x}{3^{n}}\right)\right)=\lim _{n \rightarrow \infty} \sum_{i=n+1}^{\infty} 3^{i-1} \varphi\left(\frac{x}{3^{i-1}}, 0, \frac{x}{3^{i}}\right)=0
\end{gathered}
$$

Therefore $T(x)=T^{\prime}(x)$ for all x in A .
Corollary 4.2. Let $\theta, p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, q_{1}, q_{2}, q_{3}$ be real numbers such that $\theta, p_{2}>0$,
$p_{1}, p_{2}, p_{3}>1\left[p_{1}, p_{2}, p_{3}<1\right], p_{4}+p_{5}>1\left[p_{4}+p_{5}<1\right], q_{1}, q_{2}, q_{3}>$ $3\left[q_{1}, q_{2}, q_{3}<3\right]$
and A,B be two C^{*}-ternary algebras and $f: A \rightarrow B$ be a mapping satisfying

$$
\left\|E_{\mu} f(x, y, z)\right\| \leq \theta\left(\|x\|^{p_{1}}+\|y\|^{p_{2}}+\|z\|^{p_{3}}+\|x\|^{p_{4}}\|z\|^{p_{5}}\right)
$$

$\left\|f([x, y, z])-[f(x), f(y), f(z)] \leq \theta\left(\|x\|^{q_{1}}+\|y\|^{q_{2}}+\|z\|^{q_{3}}\right), \quad\right\| f\left(a^{*}\right)-f(a)^{*}\|\leq \theta\| a \|^{q_{1}}$
for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{a}$ in A and all μ in $T_{\frac{1}{n_{o}}}^{1}$. Then there exists a unique $*$-homomorphism $T: A \rightarrow B$ such that

$$
\|f(x)-T(x)\| \leq \theta\left(\frac{3^{p_{1}}}{\left|3^{p_{1}}-3\right|}\|x\|^{p_{1}}+\frac{1}{\left|3^{p_{3}}-3\right|}\|x\|^{p_{3}}+\frac{3^{p_{4}}}{\left|3^{p_{4}+p_{5}}-3\right|}\|x\|^{p_{4}+p_{5}}\right)
$$

and

$$
T(x)=\lim _{n \rightarrow \infty} 3^{n} f\left(\frac{x}{3^{n}}\right) \quad\left[T(x)=\lim _{n \rightarrow \infty} \frac{1}{3^{n}} f\left(3^{n} x\right)\right]
$$

for all x in A .

Proof. Putting

$$
\varphi(x, y, z)=\theta\left(\|x\|^{p_{1}}+\|y\|^{p_{2}}+\|z\|^{p_{3}}+\|x\|^{p_{4}}\|z\|^{p_{5}}\right)
$$

and

$$
\psi(x, y, z)=\theta\left(\|x\|^{q_{1}}+\|y\|^{q_{2}}+\|z\|^{q_{3}}\right)
$$

in Theorem 4.1.

5 Superstability

Theorem 5.1. Let A and B be two C^{*}-ternary algebras and $\varphi, \psi: A^{3} \rightarrow$ $[0, \infty)$ be functions such that

$$
\begin{gathered}
\varphi(x, 0, z)=0 \\
\lim _{n \rightarrow \infty} 3^{n} \varphi\left(\frac{x}{3^{n}}, \frac{y}{3^{n}}, \frac{z}{3^{n}}\right)=0 \quad\left[\lim _{n \rightarrow \infty} \frac{1}{3^{n}} \varphi\left(3^{n} x, 3^{n} y, 3^{n} z\right)=0\right] \\
\lim _{n \rightarrow \infty} 3^{3 n} \psi\left(\frac{x}{3^{n}}, \frac{y}{3^{n}}, \frac{z}{3^{n}}\right)=0 \quad\left[\lim _{n \rightarrow \infty} \frac{1}{3^{3 n}} \psi\left(3^{n} x, 3^{n} y, 3^{n} z\right)=0\right],
\end{gathered}
$$

for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in A . Suppose that $f: A \rightarrow B$ is a mapping such that

$$
\begin{gathered}
\left\|E_{\mu} f(x, y, z)\right\| \leq \varphi(x, y, z) \\
\|f([x, y, z])-[f(x), f(y), f(z)]\| \leq \psi(x, y, z), \quad\left\|f\left(a^{*}\right)-f(a)^{*}\right\| \leq \psi(a, 0,0)
\end{gathered}
$$

for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{a}$ in A and μ in $T_{\frac{1}{n_{o}}}^{1}$. Then f is a $*-$ homomorphism.
Proof. Because $\varphi(x, o, z)=0$ for all x, z in A, like the proof of Theorem 4.1, we have $3 f\left(\frac{x}{3}\right)=f(x)$ and by induction we infer that $3^{n} f\left(\frac{x}{3^{n}}\right)=f(x)$. Therefore $T(x)=f(x)$ for all x in A . Thus f is a $*-$ homomorphism between C^{*}-ternary algebras. The other case is similar.

Corollary 5.2. Let $\theta, p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}, p_{7}, p_{8}, q_{1}, q_{2}, q_{3}$ be real numbers such that $\theta \geq 0, p_{1}>1$
$\left[p_{1}<1\right], p_{2}+p_{3}+p_{4}>1\left[p_{2}+p_{3}+p_{4}<1\right], p_{5}+p_{6}>1 \quad\left[p_{5}+p_{6}<1\right]$, $p_{7}+p_{8}>1\left[p_{7}+p_{8}<1\right], q_{1}+q_{2}+q_{3}>3\left[q_{1}+q_{2}+q_{3}<3\right]$ and let A,B be two C^{*}-ternary algebras. Let $f: A \rightarrow B$ be a mapping such that

$$
\begin{gathered}
\left\|E_{\mu} f(x, y, z)\right\| \leq \theta\left(\|y\|^{p_{1}}+\|x\|^{p_{2}}\|y\|^{p_{3}}\|z\|^{p_{4}}+\|x\|^{p_{5}}\|y\|^{p_{6}}+\|y\|^{p_{7}}\|z\|^{p_{8}}\right) \\
\|f([x, y, z])-[f(x), f(y), f(z)]\| \leq \theta\left(\|x\|^{q_{1}}\|y\|^{q_{2}}\|z\|^{q_{3}}\right)
\end{gathered}
$$

for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in A and μ in $T_{\frac{1}{n_{o}}}^{1}$. Then f is a homomorphism.

Proof. It follows by Theorem 5.1 by putting

$$
\begin{gathered}
\varphi(x, y, z)=\theta\left(\|y\|^{p_{1}}+\|x\|^{p_{2}}\|y\|^{p_{3}}\|z\|^{p_{4}}+\|x\|^{p_{5}}\|y\|^{p_{6}}+\|y\|^{p_{7}}\|z\|^{p_{8}}\right) \\
\psi(x, y, z)=\theta\left(\|x\|^{q_{1}}\|y\|^{q_{2}}\|z\|^{q_{3}}\right)
\end{gathered}
$$

Theorem 5.3. Let A and B be two C^{*}-ternary algebras and let B be unital with unit e^{\prime} and let $\varphi, \psi: A^{3} \rightarrow[0, \infty)$ be functions such that

$$
\begin{array}{rll}
\tilde{\varphi}(x)= & \sum_{n=1}^{\infty} 3^{n-1} \varphi\left(\frac{x}{3^{n-1}}, 0, \frac{x}{3^{n}}\right)<\infty & {\left[\tilde{\varphi}(x)=\sum_{n=1}^{\infty} \frac{1}{3^{n}} \varphi\left(3^{n} x, 0,3^{n-1} x\right)<\infty\right],} \\
& \lim _{n \rightarrow \infty} 3^{n} \varphi\left(\frac{x}{3^{n}}, \frac{y}{3^{n}}, \frac{z}{3^{n}}\right)=0 & {\left[\lim _{n \rightarrow \infty} \frac{1}{3^{n}} \varphi\left(3^{n} x, 3^{n} y, 3^{n} z\right)=0\right]} \\
& \lim _{n \rightarrow \infty} 3^{3 n} \psi\left(\frac{x}{3^{n}}, \frac{y}{3^{n}}, \frac{z}{3^{n}}\right)=0 & \\
& {\left[\lim _{n \rightarrow \infty} \frac{1}{3^{3 n}} \psi\left(3^{n} x, 3^{n} y, 3^{n} z\right)=0\right],}
\end{array}
$$

for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in A . Suppose that $f: A \rightarrow B$ is a mapping satisfying

$$
\left\|E_{\mu} f(x, y, z)\right\| \leq \varphi(x, y, z)
$$

$\left\|f([x, y, z])-[f(x), f(y), f(z)] \leq \theta\left(\|x\|^{q_{1}}+\|y\|^{q_{2}}+\|z\|^{q_{3}}\right), \quad\right\| f\left(a^{*}\right)-f(a)^{*}\|\leq \theta\| a \|^{q_{1}}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{a}$ in A and μ in $T_{\frac{1}{n_{o}}}^{1}$ and there exists a x_{0} in A such that $e^{\prime}=$ $\lim _{n \rightarrow \infty} 3^{n} f\left(\frac{x_{0}}{3^{n}}\right)$
$\left[e^{\prime}=\lim _{n \rightarrow \infty} \frac{1}{3^{n}} f\left(3^{n} x\right)\right]$. Then f is a $*$-homomorphism.
Proof. By Theorem 4.1 there exists a $*$-homomorphism $T: A \rightarrow B$ such that

$$
\|T(x)-f(x)\| \leq \tilde{\varphi}(x) \quad \text { and } \quad T(x)=\lim _{n \rightarrow \infty} 3^{n} f\left(\frac{x}{3^{n}}\right)
$$

for all x in A. Now observe that

$$
\begin{gathered}
\|[T(x), T(y), T(z)]-[T(x), T(y), f(z)]\|=\|T([x, y, z])-[T(x), T(y), f(z)]\|= \\
\lim _{n \rightarrow \infty} 3^{2 n} \| f\left(\left[\frac{x}{3^{n}}, \frac{y}{3^{n}}, z\right]\right)-\left[f\left(\frac{x}{3^{n}}, f\left(\frac{y}{3^{n}}\right), f(z)\right] \| \leq \lim _{n \rightarrow \infty} 3^{2 n} \psi\left(\frac{x}{3^{n}}, \frac{y}{3^{n}}, z\right)=0\right.
\end{gathered}
$$

for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in A. So $[T(x), T(y), T(z)-f(z)]=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in A .
By hypothesis of theorem, we get $T\left(x_{0}\right)=e^{\prime}$. Replacing x , y by x_{0} in the last bracket, we have $\left[e^{\prime}, e^{\prime}, T(z)-f(z)\right]=0$ for all z in A. Hence $f(z)=T(z)$ for all z in A.
Therefore f is a $*$-homomorphism between C^{*}-ternary algebras A and B.

Theorem 5.4. Let A and B be two C^{*}-ternary algebras and $\varphi, \psi: A^{3} \rightarrow$ $[0, \infty)$ be functions such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} 3^{n} \psi\left(\frac{x}{3^{n}}, y, z\right)=0, \quad\left[\lim _{n \rightarrow \infty} \frac{1}{3^{n}} \psi\left(3^{n} x, y, z\right)=0\right] \tag{28}
\end{equation*}
$$

and satisfy (17), (18), (19).
Suppose that $f: A \rightarrow B$ is a mapping that satisfies (20), (21) for all $x, y, z \in A$ and all $\mu \in T_{\frac{1}{n}}^{1}$.
Assume that $S(B)$ be the set of all self adjoint elements of B and there exists an element y_{o} in A such that $0 \neq \lim _{n \rightarrow \infty} 3^{n} f\left(\frac{y_{o}}{3^{n}}\right) \in S(B) \quad\left[0 \neq \lim _{n \rightarrow \infty} \frac{1}{3^{n}} f\left(3^{n} y_{o}\right) \in\right.$ $S(B)]$ and $\{f(3 x)-3 f(x) ; x \in A\} \subseteq Z(B)$.
Then f is a $*$-homomorphism between C^{*}-ternary algebras.
Proof. By Theorem 4.1 there exists a $*$-homomorphism T such that $T(x)=$ $\lim _{n \rightarrow \infty} 3^{n} f\left(\frac{x}{3^{n}}\right)$ for all x in A. Also by (21) we get

$$
\begin{gathered}
\left\|T\left(\left[x_{1}, x_{2}, x_{3}\right]\right)-\left[T\left(x_{1}\right), f\left(x_{2}\right), f\left(x_{3}\right)\right]\right\|= \\
\lim _{n \rightarrow \infty} 3^{n}\left\|f\left(\left[\frac{x_{1}}{3^{n}}, x_{2}, x_{3}\right]\right)-\left[f\left(\frac{x_{1}}{3^{n}}\right), f\left(x_{2}\right), f\left(x_{3}\right)\right]\right\| \leq \lim _{n \rightarrow \infty} 3^{n} \psi\left(\frac{x_{1}}{3^{n}}, x_{2}, x_{3}\right)=0 .
\end{gathered}
$$

So $T\left(\left[x_{1}, x_{2}, x_{3}\right]\right)=\left[T\left(x_{1}\right), f\left(x_{2}\right), f\left(x_{3}\right)\right]$ for all x_{1}, x_{2}, x_{3} in A. Now assume n belongs to \mathbb{N} and let $x \in A$. We set $x_{1}=y_{o}, x_{2}=x, x_{3}=\frac{y_{o}}{3^{n}}$. So

$$
\begin{equation*}
T\left(\left[y_{o}, x, \frac{y_{o}}{3^{n}}\right]\right)=\left[T\left(y_{o}\right), f(x), f\left(\frac{y_{o}}{3^{n}}\right)\right] \tag{29}
\end{equation*}
$$

Replacing x by 3 x in (29), we obtain

$$
\begin{equation*}
3 T\left(\left[y_{o}, x, \frac{y_{o}}{3^{n}}\right]\right)=\left[T\left(y_{o}\right), f(3 x), f\left(\frac{y_{o}}{3^{n}}\right)\right] \tag{30}
\end{equation*}
$$

Multiply both sides of (29) by 3, we conclude that

$$
\begin{equation*}
3 T\left(\left[y_{o}, x, \frac{y_{o}}{3^{n}}\right]\right)=\left[T\left(y_{o}\right), 3 f(x), f\left(\frac{y_{o}}{3^{n}}\right)\right] \tag{31}
\end{equation*}
$$

It follows from (30) and (31) that

$$
\begin{equation*}
\left[T\left(y_{o}\right), f(3 x)-3 f(x), f\left(\frac{y_{o}}{3^{n}}\right)\right]=0 \tag{32}
\end{equation*}
$$

Multiply both sides of (32) by 3^{n} and letting $n \rightarrow \infty$ we arrive at $\left[T\left(y_{o}\right), f(3 x)-\right.$ $\left.3 f(x), T\left(y_{o}\right)\right]=0$.

By assumption, we have $0 \neq T\left(y_{o}\right) \in S(B)$ and $f(3 x)-3 f(x) \in Z(B)$. According to the property of C^{*}-norm we obtain $f(3 x)-3 f(x)=0$ for all x in A. By induction, we find out that $3^{n} f\left(\frac{x}{3^{n}}\right)=f(x)$ for all x in A and n in \mathbb{N}. Taking the limit we have $T(x)=f(x)$ for all x in A. Hence f is a *-homomorphism.

References

[1] M. Bavand Savadkouhi, M. E. Gordji, J. M. Rassias and N. Ghobadipour, Approximate ternary Jordan derivations on Banach ternary algebras, J. Math. Phys. 50, 042303 (2009), 9 pages.
[2] A. Cayley, cambridge Math.4, P. 1 (1845).
[3] P. W. Cholewa, Remarks on the stability of functional equations, Aequat. Math. 27 (1984), 76-86.
[4] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
[5] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, London, 2002.
[6] A. Ebadian, N. Ghobadipour, M. E. Gordji, A fixed point method for perturbation of bimultipliers and Jordan bimultipliers in $C^{*}-t e r n a r y ~ a l-$ gebras, J. Math. Phys. 51, 1, 2010, 10 pages, doi:10.1063/1.3496391.
[7] A. Ebadian, A. Najati and M. E. Gordji, On approximate additive-quartic and quadratic-cubic functional equations in two variables on abelian groups, Results. Math. DOI 10.1007/s00025-010-0018-4 (2010)
[8] M. Eshaghi Gordji, M. B. Ghaemi, S. Kaboli Gharetapeh, S. Shams, A. Ebadian, On the stability of J^{*}-derivations, Journal of Geometry and Physics 60 (3) (2010) 454-459.
[9] M. Eshaghi Gordji, N. Ghobadipour, Stability of $(\alpha, \beta, \gamma)-$ derivations on Lie C^{*} - algebras, International Journal of Geometric Methods in Modern Physics, Vol. 7, No. 7 (2010) 1-10, DOI: 10.1142/S0219887810004737.
[10] M. Eshaghi Gordji, H. Khodaei and R. Khodabakhsh, On approximate $n-a r y$ derivations, Int. J. Geom. Methods Mod. Phys., Vol.8, No 3, (2011), 485-500.
[11] M. Eshaghi Gordji and H. Khodaei, Stability of Functional Equations, LAP LAMBERT Academic Publishing, 2010.
[12] M. Eshaghi Gordji and A. Najati, Approximately J^{*}-homomorphisms: A fixed point approach, Journal of Geometry and Physics 60 (2010), 809814.
[13] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431-434.
[14] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[15] P. Gǎvruta and L. Gǎvruta, A new method for the generalized Hyers-Ulam-Rassias stability, Int. J. Nonlinear Anal. Appl. 1 (2010), 11-18.
[16] M. E. Gordji and H. Khodaei, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Anal. 71 (2009), 5629-5643.
[17] A. Himbert, Comptes Rendus de l'Acad. Sci. Paris, (1985).
[18] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222-224.
[19] D. H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[20] S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press Inc., Palm Harbor, Florida, 2001.
[21] S. M. Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Amer. Math. Soc. 126 (1998), 3137-3143.
[22] S. M. Jung, Stability of the quadratic equation of Pexider type, Abh. Math. Sem. Univ. Hamburg 70 (2000), 175-190.
[23] R. Kerner, Z_{3}-graded algebras and the cubic root of the supersymmetry translations, J. Math. phys. 33(1), 403-411 (1992).
[24] R. Kerner, The cubic chessboard: Geometry and physics, Class. Quantum Grav, 14, A203 (1997).
[25] H. Khodaei and Th. M. Rassias, Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl. 1 (2010), 22-41.
[26] Gerald J. Murphy, C^{*}-Algebras and operator theory, Academic Press.Inc. 1990.
[27] S. Okabo, Triple products and Yang-Baxter equation I\& II. Octonionic and quaternionic triple systems, J. Math. phys. 34(7), 3273-3291 (1993) and 34(7), 3292-3215.
[28] C. Park, Approximate homomorphims on JB*-tribles, J. Math. Anal. Appl. 306 (2005) 375-381. MR2132907 (2005m:46113).
[29] C. Park, Isomorphisms between unital C^{*}-algebras, J. Math. Anal. Appl. 307 (2005) 753-762. MR2142458 (2005k:46140).
[30] C. Park, Lie *-homomorphisms between Lie C^{*}-algebras and Lie *derivations on Lie C^{*}-algebras, J. Math. Anal. Appl. 293 (2004) 419-434. MR2053888 (2005f:47092).
[31] C. Park, Homomorphisms between Lie JC*-algebras and Cauchy-Rassias stability of Lie JC*-algebra derivations, J. Lie theory 15 (2005) 393-414. MR2147435 (2006b:17033).
[32] C. Park, Homomorphisms between poisson JC*-algebras, Bull. Braz. math. Soc. 36(2005).
[33] C. Park and M. E. Gordji, Comment on Approximate ternary Jordan derivations on Banach ternary algebras [Bavand Savadkouhi et al. J. Math. Phys. 50, 042303 (2009)], J. Math. Phys. 51, 044102 (2010), 7 pages.
[34] C. Park, A. Najati, Homomorphisms and derivations in C^{*} algebras, Abst. Appl. Anal. 2007(2007), Article ID 80630. MR2302193 (2007m:46100).
[35] J. M. Rassias and H. M. Kim, Approximate homomorphisms and derivations between C^{*}-ternary algebras, J. Math. Phys. 49 (2008), no. 6, 063507, 10 pp . 46Lxx (39B82).
[36] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[37] Th. M. Rassias, New characterization of inner product spaces, Bull. Sci. Math. 108 (1984), 95-99.
[38] Th. M. Rassias and P. Šemrl, On the behaviour of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993.
[39] J. J. Sylvester, Johns Hopkins Circ. Journ., 3 P.7(1883).
[40] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, science ed. Wiley, New York, 1940.
[41] H. Zettl, A characterization of ternary rings of operators, Adv. Math. 48 (1983) 117-143. MR0700979 (84h:46093).
M. Eshaghi Gordji,

Department of Mathematics,
Semnan University,
P. O. Box 35195-363, Semnan, Iran

Email: madjid.eshaghi@gmail.com
A. Fazeli,

Science and Research Branch,
Islamic AZAD University (IAU),
Tehran, Iran.
Email: asad.fazeli@gmail.com

[^0]: Key Words: stability; suprestability ; C^{*}-ternary algebra; homomorphism
 2010 Mathematics Subject Classification: 46L99, 17C65, 46L05, 47B48, 39B82, 39B52.
 Received: February, 2011.
 Accepted: February, 2012.

