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Stability and superstability of homomorphisms
on C*—ternary algebras

M. Eshaghi Gordji and A.Fazeli

Abstract

In this paper, we investigate the stability and superstability of ho-
momorphisms on C*—ternary algebras associated with the functional
equation

T+ 2y + 2z
5

20 — 3y — z
5

20 +y — 2
5

b )+ /( )+ /( ) = f(=).

1 Introduction

The stability problem of functional equations started with the following ques-
tion concerning stability of group homomorphisms proposed by S.M. Ulam
[40] during a talk before a Mathematical Colloquium at the University of Wis-
consin, Madison, in 1940:

Let (G1,.) be a group and (Ga, *) be a metric group with the metric d(-, -).
Given € > 0, does there exist a § > 0 such that, if a mapping h : G; — G4
satisfies the inequality d(h(z.y), h(x) x h(y)) < § for all z,y € Gy, then there
exists a homomorphism H : G; — Gy with d(h(z), H(x)) < e for all z € G1?

In 1941, Hyers [18] gave a first affirmative answer to the question of Ulam
for Banach spaces as follows:

If E and E' are Banach spaces and f : E —» E is a mapping for which
there is € > 0 such that
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If(z+y)— flz) - f@y)H < ¢ for all z,y € E, then there is a unique additive
mapping L : E — E such that ||f(z) — L(z)|| < e for all x € E.

Hyers' Theorem was generalized by Rassias [36] for linear mappings by
considering an unbounded Cauchy difference.

The paper of Rassias [37] has provided a lot of influence in the development
of what we now call the generalized Hyers—Ulam stability or as Hyers—Ulam—
Rassias stability of functional equations. In 1994, a generalization of the Ras-
sias theorem was obtained by Gavruta [14] by replacing the unbounded Cauchy
difference by a general control function in the spirit of Rassias’ approach. For
more details about the results concerning such problems, the reader refer to
[3, 4, 5, 11, 16, 25, 13, 15, 19, 20, 21, 22] and [29]-[34] and [7, 38] .

Ternary algebraic operations have propounded originally in 19th century in
Cayley [2] and J.J.Silvester’s paper [39]. The application of ternary algebra in
supersymmetry is presented in [23] and in Yang-Baxter equation in [27]. Cubic
analogue of Laplace and d’alembert equations have been considered for first
order by Himbert in [17],[24]. The previous definition of C*-ternary algebras
has been propounded by H.Zettle in [41]. In relation to homomorphisms and
isomorphisms between various spaces we refer readers to [28]-[35], [1, 6, 8, 12,
9, 10).

2 Prelimiaries

Let A be a linear space over a complex field equipped with a mapping [] : A% =
AxAxA — Awith (z,y,2) — [z,y, 2] that is linear in variables z, y, z and sat-
isfy the associative identity, i.e. [z,y, [z, u,v]] = [z, [y, 2, u],v] = [[z, ¥y, 2], u, V]
for all z,y, z,u,v € A. The pair (A, []) is called a ternary algebra. The ternary
algebra (A,[]) is called unital if it has an identity element, i.e. an element
e € A such that [z,e,e] = [e,e,x] = x for every z € A. A x — ternary alge-
bra is a ternary algebra together with a mapping * : A — A which satisfies
(z*)* =z, \z)* = \a*, (z +y)* = 2" +y%, [v,9,2]* = [%,y*, 2] for all
z,y,z € A and all A € C. In the case that A is unital and e is its unit, we
assume that e* = e.

A is normed ternary algebra if A is a ternary algebra and there exists a
norm ||.|| on A which satisfies ||[x,y,2]|| < ||z|| |yl ||z]| for all z,y,z € A.
Whenever the ternary algebra A is unital with unit element e, we repute
lle]l = 1. A normed ternary algebra A is called a Banach ternary algebra, if
(A, ] ]|) is a Banach space. If A is a ternary algebra, « € A is called central if
[x,y, 2] = [2,2,y] = [y, 2z, z] for all y,z in A.

The set of central elements of A is called the center of A and is shown by Z(A).
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In case A is *—normed ternary algebra and Z(A) = 0 we grant ||z*|| = ||z||.
A C*-ternary algebra is a Banach * —ternary algebra if ||[z*,y, z]|| = ||z|*|y|
for all  in A and y in Z(A).

Let A,B be two C*—ternary algebras. A linear mapping h : A — B is
called a homomorphism if h([z,y, z]) = [h(x), h(y), h(2)] for all z,y,z € A and
a homomorphism h : A — B is called a *—homomorphism if h(a*) = h(a)*
for all a € A.

Comments : If A is a unital (binary) C*-algebra with unit e, we define
[z,y,2] := (zy)z for all z,y,z in A. Then we have [z,y,z]* = ((zy)2)* =
2*(zy)* = 2*(y*x*) = (z*y*)a* = [2*,y*,2%]. Now if y in ternary algebra
A belongs to Z(A), then we have yy* = (yy*)e = [y,y*,e] = [y*,e,y] =
(y*e)y = y*y. Thus y is normal in C*-algebra A. On the other hand, for
every normal element x in a C*-algebra, we have ||z|| = p(x) in which p(x)
is spectral radius of x. Theorem 1.3.4 of [26] expresses that if A is a unital
and commutative Banach algebra and Q(A) is its maximal ideal space, then
for every ain A o(a) = {h(a) ; h € Q(A)}. Now, if z belongs to C*-algebra A
and z = z* and x € A is normal and xz = zx, then zzx is a normal element of
C*-algebra and if B is the C'*-algebra generated by x,z,e then B is unital and
commutative and so

|zl = sup |h(z2)| = sup |h(z)| sup [h(z)]= =[]
heQ(A) REQ(A) heQ(A)

Now let y € A be a central element of ternary algebra A and let x belongs to
A. Then

Iz, 2]l = e, 2, ylll = @)yl = llz2* [yl = =]y

Thus A is a unital C*-ternary algebra.

3  Solution

We start our work with solution of functional equation

f(x+2§+22)+f(2x+5y—z)+f(2x—§y—z):f(x).

Theorem 3.1. Let X and Y be linear spaces and f : X — Y be a mapping.
Then f is additive if and only if

T+ 2y + 2z
I 4 5

204y — 2
5

20 — 3y — 2
5

I )+ 1( ) = f(x) (1)
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for all x,y,z in X — {0}.

Proof. Tt f is additive, it is obvious that f satisfies (1).

that f satisfies (1).
2z

5
Replacing x by 5; to get f(—z) = —f(z).
Putting z = —y and z = y in (1) we get

Letting x =y = z in (1), we have f(

y 4y
FE)+F(5)+£(0) = f(y)

Laying z = 3z and y = z in (1) we infer that

9z 4z

£ = 1) + £(0) - 150,

Letting = 2z and y = —2z in (1) we conclude that

f(22) = FO) + 1)+ F().

Using (3) and (4) we see that

f@2x) = f(z) = f(
By use of (5) and (2) we obtain
f(2x) = 2f(x) - £(0).
It follows from (6) that

(=5 -35(0)

We deduce from (2) and (7) that

5/(2) = I(y) +27(0).

Multiplying by 5 both sides of (3) with (8) we lead to

f(9z) = 5f(x) + f(4x) — 5f(0).

It follows from (6) and (9) that

f(9z) = 9f(x) — 8£(0).

)+ F(0) =0

Conversely suppose

(10)
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Multiply by 5 both sides of (4), together with (6) and (8) one gets
7(92) = 9f(x) — 14/(0). (11)

We infer from (11) and (10) that f(0) = 0. Hence by (6) and (8) and (10), we
have

f2x) =2f(x), f9z) =9f(x), fly) = 5f(%)- (12)
Replacing y by 5y in (12) we get
f2x) =2f(z), f(92) =9f(x), f(5y) =5f(y). (13)

Substituting x with 5x and y with 5y and z with 5z in (1) together (13) we
have

fl@+2y+22)+ fQRr+y—2)+ f(2z -3y —2) = 5f(2). (14)

Laying y = —z in (14) with (13) one gets
f(@—2)+ fz+2) = f(22). (15)
We replace r = x—z and s = z+z in (15), then we have f(r)+ f(s) = f(r+s).
Hence f is additive. O

We need the following theorem in our main results.

Theorem 3.2. Let ng € N be a fixed positive integer number and X and Y
be linear spaces and f : X — Y be an additive function. Then f is linear if

. 2
and only if f(ur) = pf(x) for all x in X and pin T4 ={e? ; 0< 0 < —W}
No

no

Proof. Suppose that f is additive and f(uz) = pf(x) for all x in X and p in
T .

Let p be in le then p = €9 that 0 < 0 < 2.

We set iy = et thus oy is in T and f(uz) = f(ul°z) = i f(w) = uf ()
for all x in X. If  belongs to nTh = {nz ; z € T'} then by additivity of f,
flpz) = pf (x)

for all x in X and p in nT*. If t € (0,00) then by archimedean property there
exists a natural number n such that the point (¢,0) lies in the interior of circle
with center at origin and radius n.

Let ty =t+vVn?2—t2ienT' and to =t — V/n? — 2 i € nT".

We have ¢ = 252 and fier) = (2 ;tzx) _ b ;th(a:) — tf(x) for all
x in X.

If p € C, then p = |ule’™ so f(ux) = f(|ule a) = |ple’ f(x) = pf(z) for
all x in X.

The converse is clear. O
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Theorem 3.3. Let X and Y be linear spaces and f : X — Y be a mapping.
Then f is C—linear if and only if

f(ux+25y+2z)+f(2um+5y—z)+f(2ﬂx—53y‘z):uf(m) (16)

for all x,y,z in X — {0} and p in T% .

Proof. 1f f is C—linear, it is clear that f satisfies (16). Conversely, let { satisfies

(16). We set 4 = 1 in (16), then by Theorem 3.1, f is an additive mapping.
2

Letting y = z = 0 in (16) we have f(%) + 2f(%) = pf(z). By additivity

of f we get f(ux) = pf(z) for all x in X and p in T .

So by Theorem 3.2 f is a C—linear. O

Notation 3.4. Let X and Y be linear spaces and f : X — Y be a mapping.
Then we set

2ur — 3y — 2

pr + 2y + 2z (Q;M—l—y—z
)

B f(e,y.2) = SO0 4+ (R0 4 4

) —uf(x)

for all x,y,z in X and g in C.

4 Stability

In this section we investigate the Stability of x—homomorphisms between C*-
ternary algebras.

Theorem 4.1. Let A and B be two C*—ternary algebras and ¢, : A3 —
[0,00) be functions such that

- > e T T N =1 n e
90(1‘) = Z 3 1@(371_1 707 37) < o0 [(p(l‘) = Z 37()0(3 xaoag 1'I) < OO],
n=1 n=1
(17)
1
Tim. 3%(3%,3%,3%) =0 [lim oop(3",8"y.8") =0, (18)
im 3L Y Fy (3 3 37 —

for all x,y,z in A. Suppose that f: A — B is a mapping such that

||El~tf(x7y72)|| S 90(3373/72) (20)
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1,y 2]) = [f (@), F(w), FEI < oy, 2),  ([f(a”) = f(a)"]] < 4(a,0,0)

(21)
for all x,y,z,a in A and p in TY .
Then there exists a unique *—ﬁomomorphism T:A— B such that
1T (z) — f2)ll < &(x) (22)
and we have
T(r) = lim 3"7(5)  [T(r) = lim - f(3"0)] (23)
for all x in A.
Proof. Letting p =1 and z = g and y = 0 in (20), we have
x T
IB£(3) = f@)] < ¢(=,0, 5). (24)

Replacing x by g in (24) and multiplying by 3 both sides of (24), we get

182£(55) = 3£ (51 < 3¢(5.0, 55)- (25)

Using (24) and (25) we get

182£(55) = Fl@)l < (.0, 3) +3¢(5, 0, 35)

32

By use of the above method, by induction, we infer that

18" £(5) = F@)ll < D8 oo, 0, 5)- (26)
i=1

Substitute x with 3% in (26) and multiply by 3™ its both parties of inequality,

we lead to
s x X X
n+m E 71— 1 71— 1
”3 f(3n+m) ” < 3 3z 1’ 31 Z 3 31 1707 31)
1=m-+1 1=m-+1

(27)
The right expression of (27) by (17) tends to zero as m tends to infinity. So

the sequence {3"f (3%)} is a Cauchy sequence in complete space B. Hence,
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one can define T': A — B by T(z) = lim 3"f(3£). From (20) and (18) we
n— o0 n

arrive at

n Y
HE#T(x,y, )” - hm 3 ”Eﬂf(

3n’ 3n’ 3n
So E,T(z,y,z) =0 for all x,y,z in A and p in T .
By Theorem 3.3, T is C—linear. (21) and (19) imoply that

1T ([, 2]) = [T(2), T(y), T()]| =

n T Yy z
)||<11m3 (37a37337):0‘

Jim 3™ F(1 5 52D = (PG o) S50l <
n Y A2y
Jim 3° 11’(37, g gn) =

Thus T([z,y,z2]) = [T(z),T(y),T(z)] for all x,y,z in A. By a same method
as above, we can show that T'(a*) = T(a)* for all a in A. Therefore, T is a
*—homomorphism.

Now let 7" : A — B be another x—homomorphism satisfying

IT"(z) — f(2)|| < @(zx) for all x in A. Then from linearity of 7" we see that

I7() ~ T’ (@)l = lim 18" F(55) = T'(@)]| = lim 8"1£(57) = T'(5)ll <

. n~; L T > i—1 T T -
Jim 3 = Jmm, D 8 (g 05 =

Therefore T'(z) = T'(x) for all x in A. O

Corollary 4.2. Let 0,p1,p2,p3,P4,P5,91,492,q3 be real numbers such that
9»]92 >0 ’
p1,p2,p3 > 1 [p1,p2,p3 < 1], pa+ps > 1 [pa+ps < 1], q1,92,q3 >

3 [q1,92,93 < 3]
and A,B be two C*-ternary algebras and f : A — B be a mapping satisfying

1B f (@ y, 2) | < OC[ ] + yll”> + 207 + [l ]|2]17),
1f (2,9, 2D) = [ (@), f(y), ()] < Ol +yl| =+ 2]%), [1f(a®)=F(@)*[| < Ol|al| "

for all x,y,z,a in A and all 4 in T, . Then there exists a unique *—homomorphism
T : A — B such that ’

1f(2) =T@)| < (0 —=;

and

3P4

J— Pa+ps
e )

||t + |z[|”e +

G L
|3P1 — 3| |3Ps — 3|

T(z) = lim 3”f( 7)) [T(z) = lim *f(3” )]

n— oo 7L—>OO

for all x in A.
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Proof. Putting
o, y,2) = O([lz]I”* + llyll”> + 12017 + [[]*]|=]1"*)

and
(2, y,2) = 0([[| " + |ly[|* + [|z]*)

in Theorem 4.1. ]

5 Superstability

Theorem 5.1. Let A and B be two C*-ternary algebras and ¢,¢ : A% —
[0, 00) be functions such that

Lp(x’ 0) Z) = 0’
1
Jim 3 (g g g =0 Ll me(3e 373" = O
. 3n € Yy < _ . 1 n n n _

for all x,y,z in A. Suppose that f: A — B is a mapping such that

1Euf(z,y,2)| < (z,y, 2)
1 f ([, 9, 2]) = [f (), F(y), FI < (x,y, 2),  [If(a”) = fla)*]| < ¢(a,0,0)

for all x,y,z,ain A and g in T . Then f is a *—homomorphism.

Proof. Because ¢(z,0,z) = 0 for all x,z in A, like the proof of Theorem 4.1, we
have 3f(§) = f(z) and by induction we infer that 3"f(3£n) = f(z). Therefore

T(x) = f(x) for all x in A. Thus f is a *—homomorphism between C*—ternary
algebras. The other case is similar. O

Corollary 5.2. Let 0, p1, p2, 03, D4, D5, D6, P7, P8, 41, G2, g3 be real numbers such
that 6 >0, p; > 1

[p1 < 1] ,pa+p3+ps>1 [pa+ps+ps <1 ,ps+ps>1 [ps+ps <1,
pr+ps>1 [pr+ps<1],q1+q2+g3 >3 [q1+ g2+ g3 <3] and let AB be
two C*—ternary algebras. Let f: A — B be a mapping such that

1Ef (2, y, )| < O(l[yll™ + [P |yl 12174 + [P [yl + Ty P l1217*)

1f (s y, 2]) = [f (@), F (), SR < Ozl lyll*2]]2]1%)

for all x,y,z in A and g in T . Then f is a homomorphism.
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Proof. Tt follows by Theorem 5.1 by putting
ey, z) = 0(lyll”* + llzlP [yl 2117 + NP> yl17° =+ [yl1P7{]=]"*)
U(z,y,2) = 0| lyl|*[[2]1%).
O

Theorem 5.3. Let A and B be two C*—ternary algebras and let B be unital
with unit e’ and let ¢, : A3 — [0,00) be functions such that

oo

- = _ T T - 1 e
r) = 23" 1(,0(3n—71,07 37) <oo [p(x) = Z 3790(8”90,0,3 12) < ],
n=1 n=1

im 3no(2 Y 2y L (3m0 3 372 —
Jim 3 w(gn,3n,3n)—0 [lim 7 e(8"e, 3%, 3"2) = 0],
3n y 2N n n n _
nlggoi% w( wrgn) =0 [nlgr;o 71!1(3 x,3"y,3"z) = 0],
2n y — n =

for all x,y,z in A. Suppose that f: A — B is a mapping satisfying

||Eﬂf(£177y,2’)|| S 90(1’73/’2)
1f sy, 2D)=[f (2), F(y), f(2)] < Ozl +lyl*+[]=]1%), [[f(a”)=f(a)*]| < bflal[™

for all x,y,z,a in A and g in T and there exists a 2o in A such that ¢/ =
x e
lim 3" f(5”)

n—00 3

[¢/ = lim —f(3" )]. Then f is a *—homomorphism.
TI—)OO

Proof. By Theorem 4.1 there exists a *—homomorphism 7" : A — B such that

IT() — f()| < ¢(x) and T(x) = lim 3"f(=-)

n—oo 3n

for all x in A. Now observe that
||[T($),T(y)7T(Z)] —[T(2), T(y), f = IT([x, y,2]) = [T(2),T(y), f(2)]l| =

2n Y € Yy 2n Yy

N G T < =
T 3 L) [ G G < dim s, L) =0

for all x,y,z in A. So [T'(x),T(y),T(z) — f(2)] = 0 for all x,y,z in A.
By hypothesis of theorem, we get T'(z9) = ¢’. Replacing x,y by z¢ in the last
bracket, we have [¢/,¢/,T(z) — f(z)] = 0 for all z in A. Hence f(z) = T'(z) for
all zin A.
Therefore f is a *—homomorphism between C*-ternary algebras A and B. [
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Theorem 5.4. Let A and B be two C*—ternary algebras and ¢, : 43 —
[0,00) be functions such that

1
o ¥:2) =00 [lim (3", 2) = 0], (28)

n—oo

lim 3™y

n—o00 3

and satisfy (17), (18), (19).

Suppose that f : A — B is a mapping that satisfies (20), (21) for all z,y,z € A

and all p e T .

Assume that S(ZB ) be the set of all self adjoint elements of B and there exists an
o . 1

element , in A such that 0 # lim 3" f(g—n) €S(B) [0# lim - f(3"y,) €

S(B)] and {f(3z) — 3f(x) ; x € A} C Z(B).

Then f is a *—homomorphism between C*-ternary algebras.

Proof. By Theorem 4.1 there exists a x—homomorphism T such that T'(x) =
lim 3”f(3£n) for all x in A. Also by (21) we get
n—oo

T ([1, 22, 23]) — [T(21), f(22), f(23)]]| =

Z1 T1 1

i 352 2, s]) — [£(G2), fwa), fla)]l| < lim 376 (52,

So T([x1,x2, z3]) = [T(21), f(z2), f(x3)] for all x1,x2,23 in A. Now assume n

T2, .1‘3) =0.

belongs to N and let € A. We set x1 = y,, T2 = x,23 = &. So

3
T((yor v, 521) = [Tvo). £ (@), £ (52)] (29)
Replacing x by 3x in (29), we obtain
3T ([yor v, 551) = [T(w0). S (32), £ (53] (30)
Multiply both sides of (29) by 3, we conclude that
8T (lyor @, 55) = [T(00), 3 (@), £ (52 (31)
It follows from (30) and (31) that
(Tyo). f(32) = 3f(2), F(52)] = 0. (2)

37’L

Multiply both sides of (32) by 3™ and letting n — oo we arrive at [T'(y,), f(3z)—
3f(x), T(yo)] = 0.
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By assumption, we have 0 # T'(y,) € S(B) and f(3z) — 3f(x) € Z(B). Ac-
cording to the property of C*—norm we obtain f(3z) — 3f(z) = 0 for all x
in A. By induction, we find out that 3”f(3£n) = f(z) for all x in A and n

in N. Taking the limit we have T(xz) = f(x) for all x in A. Hence f is a

*—homomorphism. O
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