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Stability and superstability of homomorphisms
on C∗−ternary algebras

M. Eshaghi Gordji and A.Fazeli

Abstract

In this paper, we investigate the stability and superstability of ho-
momorphisms on C∗−ternary algebras associated with the functional
equation

f(
x+ 2y + 2z

5
) + f(

2x+ y − z

5
) + f(

2x− 3y − z

5
) = f(x).

1 Introduction

The stability problem of functional equations started with the following ques-
tion concerning stability of group homomorphisms proposed by S.M. Ulam
[40] during a talk before a Mathematical Colloquium at the University of Wis-
consin, Madison, in 1940:

Let (G1, .) be a group and (G2, ∗) be a metric group with the metric d(·, ·).
Given ϵ > 0, does there exist a δ > 0 such that, if a mapping h : G1 −→ G2

satisfies the inequality d(h(x.y), h(x) ∗ h(y)) < δ for all x, y ∈ G1, then there
exists a homomorphism H : G1 −→ G2 with d(h(x),H(x)) < ϵ for all x ∈ G1?

In 1941, Hyers [18] gave a first affirmative answer to the question of Ulam
for Banach spaces as follows:

If E and E
′
are Banach spaces and f : E −→ E

′
is a mapping for which

there is ε > 0 such that
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∥f(x+ y)− f(x)− f(y)∥ ≤ ε for all x, y ∈ E, then there is a unique additive
mapping L : E −→ E

′
such that ∥f(x)− L(x)∥ ≤ ε for all x ∈ E.

Hyers’ Theorem was generalized by Rassias [36] for linear mappings by
considering an unbounded Cauchy difference.

The paper of Rassias [37] has provided a lot of influence in the development
of what we now call the generalized Hyers–Ulam stability or as Hyers–Ulam–
Rassias stability of functional equations. In 1994, a generalization of the Ras-
sias theorem was obtained by Gǎvruta [14] by replacing the unbounded Cauchy
difference by a general control function in the spirit of Rassias’ approach. For
more details about the results concerning such problems, the reader refer to
[3, 4, 5, 11, 16, 25, 13, 15, 19, 20, 21, 22] and [29]–[34] and [7, 38] .

Ternary algebraic operations have propounded originally in 19th century in
Cayley [2] and J.J.Silvester’s paper [39]. The application of ternary algebra in
supersymmetry is presented in [23] and in Yang-Baxter equation in [27]. Cubic
analogue of Laplace and d’alembert equations have been considered for first
order by Himbert in [17],[24]. The previous definition of C∗-ternary algebras
has been propounded by H.Zettle in [41]. In relation to homomorphisms and
isomorphisms between various spaces we refer readers to [28]–[35], [1, 6, 8, 12,
9, 10].

2 Prelimiaries

Let A be a linear space over a complex field equipped with a mapping [ ] : A3 =
A×A×A→ A with (x, y, z) → [x, y, z] that is linear in variables x, y, z and sat-
isfy the associative identity, i.e. [x, y, [z, u, v]] = [x, [y, z, u], v] = [[x, y, z], u, v]
for all x, y, z, u, v ∈ A. The pair (A, [ ]) is called a ternary algebra. The ternary
algebra (A, [ ]) is called unital if it has an identity element, i.e. an element
e ∈ A such that [x, e, e] = [e, e, x] = x for every x ∈ A. A ∗ − ternary alge-
bra is a ternary algebra together with a mapping ∗ : A → A which satisfies
(x∗)∗ = x, (λx)∗ = λ̄x∗, (x + y)∗ = x∗ + y∗, [x, y, z]∗ = [z∗, y∗, x∗] for all
x, y, z ∈ A and all λ ∈ C. In the case that A is unital and e is its unit, we
assume that e∗ = e.

A is normed ternary algebra if A is a ternary algebra and there exists a
norm ∥.∥ on A which satisfies ∥[x, y, z]∥ ≤ ∥x∥ ∥y∥ ∥z∥ for all x, y, z ∈ A.
Whenever the ternary algebra A is unital with unit element e, we repute
∥e∥ = 1. A normed ternary algebra A is called a Banach ternary algebra, if
(A, ∥ ∥) is a Banach space. If A is a ternary algebra, x ∈ A is called central if
[x, y, z] = [z, x, y] = [y, z, x] for all y, z in A.
The set of central elements of A is called the center of A and is shown by Z(A).
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In case A is ∗−normed ternary algebra and Z(A) = 0 we grant ||x∗|| = ||x||.
A C∗-ternary algebra is a Banach ∗−ternary algebra if ∥[x∗, y, x]∥ = ∥x∥2∥y∥
for all x in A and y in Z(A).

Let A,B be two C∗−ternary algebras. A linear mapping h : A → B is
called a homomorphism if h([x, y, z]) = [h(x), h(y), h(z)] for all x, y, z ∈ A and
a homomorphism h : A → B is called a ∗−homomorphism if h(a∗) = h(a)∗

for all a ∈ A.

Comments : If A is a unital (binary) C∗-algebra with unit e, we define
[x, y, z] := (xy)z for all x, y, z in A. Then we have [x, y, z]∗ = ((xy)z)∗ =
z∗(xy)∗ = z∗(y∗x∗) = (z∗y∗)x∗ = [z∗, y∗, x∗]. Now if y in ternary algebra
A belongs to Z(A), then we have yy∗ = (yy∗)e = [y, y∗, e] = [y∗, e, y] =
(y∗e)y = y∗y. Thus y is normal in C∗-algebra A. On the other hand, for
every normal element x in a C∗-algebra, we have ∥x∥ = ρ(x) in which ρ(x)
is spectral radius of x. Theorem 1.3.4 of [26] expresses that if A is a unital
and commutative Banach algebra and Ω(A) is its maximal ideal space, then
for every a in A σ(a) = {h(a) ; h ∈ Ω(A)}. Now, if z belongs to C∗-algebra A
and z = z∗ and x ∈ A is normal and xz = zx, then zx is a normal element of
C∗-algebra and if B is the C∗-algebra generated by x,z,e then B is unital and
commutative and so

||zx|| = sup
h∈Ω(A)

|h(zx)| = sup
h∈Ω(A)

|h(z)| sup
h∈Ω(A)

|h(x)| = ∥z∥∥x∥

Now let y ∈ A be a central element of ternary algebra A and let x belongs to
A. Then

∥[x∗, y, x]∥ = ∥[x, x∗, y]∥ = ∥(xx∗)y∥ = ∥xx∗∥∥y∥ = ∥x∥2∥y∥

Thus A is a unital C∗-ternary algebra.

3 Solution

We start our work with solution of functional equation

f(
x+ 2y + 2z

5
) + f(

2x+ y − z

5
) + f(

2x− 3y − z

5
) = f(x).

Theorem 3.1. Let X and Y be linear spaces and f : X → Y be a mapping.
Then f is additive if and only if

f(
x+ 2y + 2z

5
) + f(

2x+ y − z

5
) + f(

2x− 3y − z

5
) = f(x) (1)
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for all x,y,z in X − {0}.

Proof. If f is additive, it is obvious that f satisfies (1). Conversely suppose
that f satisfies (1).

Letting x = y = z in (1), we have f(
2x

5
) + f(

−2x

5
) = 0.

Replacing x by
5x

2
to get f(−x) = −f(x).

Putting z = −y and x = y in (1) we get

f(
y

5
) + f(

4y

5
) + f(0) = f(y) (2)

Laying z = 3x and y = x in (1) we infer that

f(x) = f(
9x

5
) + f(0)− f(

4x

5
). (3)

Letting x = 2z and y = −2z in (1) we conclude that

f(2z) = f(0) + f(
z

5
) + f(

9z

5
). (4)

Using (3) and (4) we see that

f(2x)− f(x) = f(
x

5
) + f(

4x

5
). (5)

By use of (5) and (2) we obtain

f(2x) = 2f(x)− f(0). (6)

It follows from (6) that

f(
4y

5
) = 4f(

y

5
)− 3f(0). (7)

We deduce from (2) and (7) that

5f(
y

5
) = f(y) + 2f(0). (8)

Multiplying by 5 both sides of (3) with (8) we lead to

f(9x) = 5f(x) + f(4x)− 5f(0). (9)

It follows from (6) and (9) that

f(9x) = 9f(x)− 8f(0). (10)
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Multiply by 5 both sides of (4), together with (6) and (8) one gets

f(9x) = 9f(x)− 14f(0). (11)

We infer from (11) and (10) that f(0) = 0. Hence by (6) and (8) and (10), we
have

f(2x) = 2f(x), f(9x) = 9f(x), f(y) = 5f(
y

5
). (12)

Replacing y by 5y in (12) we get

f(2x) = 2f(x), f(9x) = 9f(x), f(5y) = 5f(y). (13)

Substituting x with 5x and y with 5y and z with 5z in (1) together (13) we
have

f(x+ 2y + 2z) + f(2x+ y − z) + f(2x− 3y − z) = 5f(x). (14)

Laying y = −z in (14) with (13) one gets

f(x− z) + f(x+ z) = f(2x). (15)

We replace r = x−z and s = x+z in (15), then we have f(r)+f(s) = f(r+s).
Hence f is additive.

We need the following theorem in our main results.

Theorem 3.2. Let n0 ∈ N be a fixed positive integer number and X and Y
be linear spaces and f : X → Y be an additive function. Then f is linear if

and only if f(µx) = µf(x) for all x in X and µ in T 1
1

no

= {eiθ ; 0 ≤ θ ≤ 2π

no
}.

Proof. Suppose that f is additive and f(µx) = µf(x) for all x in X and µ in
T 1

1
no

.

Let µ be in T 1, then µ = eiθ that 0 ≤ θ ≤ 2π.

We set µ1 = e
iθ
no , thus µ1 is in T 1

1
no

and f(µx) = f(µno
1 x) = µno

1 f(x) = µf(x)

for all x in X. If µ belongs to nT 1 = {nz ; z ∈ T 1} then by additivity of f,
f(µx) = µf(x)
for all x in X and µ in nT 1. If t ∈ (0,∞) then by archimedean property there
exists a natural number n such that the point (t, 0) lies in the interior of circle
with center at origin and radius n.
Let t1 = t+

√
n2 − t2 i ∈ nT 1 and t2 = t−

√
n2 − t2 i ∈ nT 1.

We have t =
t1 + t2

2
and f(tx) = f(

t1 + t2
2

x) =
t1 + t2

2
f(x) = tf(x) for all

x in X.
If µ ∈ C, then µ = |µ|eiµ1 so f(µx) = f(|µ|eiµ1x) = |µ|eiµ1f(x) = µf(x) for
all x in X.
The converse is clear.
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Theorem 3.3. Let X and Y be linear spaces and f : X → Y be a mapping.
Then f is C−linear if and only if

f(
µx+ 2y + 2z

5
) + f(

2µx+ y − z

5
) + f(

2µx− 3y − z

5
) = µf(x) (16)

for all x,y,z in X − {0} and µ in T 1
1

no

.

Proof. If f is C−linear, it is clear that f satisfies (16). Conversely, let f satisfies
(16). We set µ = 1 in (16), then by Theorem 3.1, f is an additive mapping.

Letting y = z = 0 in (16) we have f(
µx

5
) + 2f(

2µx

5
) = µf(x). By additivity

of f we get f(µx) = µf(x) for all x in X and µ in T 1
1

no

.

So by Theorem 3.2 f is a C−linear.

Notation 3.4. Let X and Y be linear spaces and f : X → Y be a mapping.
Then we set

Eµf(x, y, z) = f(
µx+ 2y + 2z

5
) + f(

2µx+ y − z

5
) + f(

2µx− 3y − z

5
)− µf(x)

for all x,y,z in X and µ in C.

4 Stability

In this section we investigate the Stability of ∗−homomorphisms between C∗-
ternary algebras.

Theorem 4.1. Let A and B be two C∗−ternary algebras and φ,ψ : A3 →
[0,∞) be functions such that

φ̃(x) =
∞∑

n=1

3n−1φ(
x

3n−1
, 0,

x

3n
) <∞ [φ̃(x) =

∞∑
n=1

1

3n
φ(3nx, 0, 3n−1x) <∞],

(17)

lim
n→∞

3nφ(
x

3n
,
y

3n
,
z

3n
) = 0 [ lim

n→∞

1

3n
φ(3nx, 3ny, 3nz) = 0], (18)

lim
n→∞

33nψ(
x

3n
,
y

3n
,
z

3n
) = 0 [ lim

n→∞

1

33n
ψ(3nx, 3ny, 3nz) = 0], (19)

for all x,y,z in A. Suppose that f : A→ B is a mapping such that

∥Eµf(x, y, z)∥ ≤ φ(x, y, z) (20)
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∥f([x, y, z])− [f(x), f(y), f(z)]∥ ≤ ψ(x, y, z), ∥f(a∗)− f(a)∗∥ ≤ ψ(a, 0, 0)
(21)

for all x,y,z,a in A and µ in T 1
1
no

.

Then there exists a unique ∗−homomorphism T : A→ B such that

∥T (x)− f(x)∥ ≤ φ̃(x) (22)

and we have

T (x) = lim
n→∞

3nf(
x

3n
) [T (x) = lim

n→∞

1

3n
f(3nx)], (23)

for all x in A.

Proof. Letting µ = 1 and z =
x

3
and y = 0 in (20), we have

∥3f(x
3
)− f(x)∥ ≤ φ(x, 0,

x

3
). (24)

Replacing x by
x

3
in (24) and multiplying by 3 both sides of (24), we get

∥32f( x
32

)− 3f(
x

3
)∥ ≤ 3φ(

x

3
, 0,

x

32
). (25)

Using (24) and (25) we get

∥32f( x
32

)− f(x)∥ ≤ φ(x, 0,
x

3
) + 3φ(

x

3
, o,

x

32
)

By use of the above method, by induction, we infer that

∥3nf( x
3n

)− f(x)∥ ≤
n∑

i=1

3i−1φ(
x

3i−1
, 0,

x

3i
). (26)

Substitute x with
x

3m
in (26) and multiply by 3m its both parties of inequality,

we lead to

∥3n+mf(
x

3n+m
)−3mf(

x

3m
)∥ ≤

n+m∑
i=m+1

3i−1φ(
x

3i−1
, 0,

x

3i
) ≤

∞∑
i=m+1

3i−1φ(
x

3i−1
, 0,

x

3i
).

(27)
The right expression of (27) by (17) tends to zero as m tends to infinity. So

the sequence {3nf( x
3n

)} is a Cauchy sequence in complete space B. Hence,
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one can define T : A → B by T (x) = lim
n→∞

3nf(
x

3n
). From (20) and (18) we

arrive at

∥EµT (x, y, z)∥ = lim
n→∞

3n∥Eµf(
x

3n
,
y

3n
,
z

3n
)∥ ≤ lim

n→∞
3nφ(

x

3n
,
y

3n
,
z

3n
) = 0.

So EµT (x, y, z) = 0 for all x,y,z in A and µ in T 1
1

no

.

By Theorem 3.3, T is C−linear. (21) and (19) imply that

∥T ([x, y, z])− [T (x), T (y), T (z)]∥ =

lim
n→∞

33n∥f([ x
3n
,
y

3n
,
z

3n
])− [f(

x

3n
), f(

y

3n
), f(

z

3n
)]∥ ≤

lim
n→∞

33nψ(
x

3n
,
y

3n
,
z

3n
) = 0.

Thus T ([x, y, z]) = [T (x), T (y), T (z)] for all x,y,z in A. By a same method
as above, we can show that T (a∗) = T (a)∗ for all a in A. Therefore, T is a
∗−homomorphism.
Now let T ′ : A→ B be another ∗−homomorphism satisfying
∥T ′(x)− f(x)∥ ≤ φ̃(x) for all x in A. Then from linearity of T ′ we see that

∥T (x)− T ′(x)∥ = lim
n→∞

∥3nf( x
3n

)− T ′(x)∥ = lim
n→∞

3n∥f( x
3n

)− T ′(
x

3n
)∥ ≤

lim
n→∞

3nφ̃(
x

3n
)) = lim

n→∞

∞∑
i=n+1

3i−1φ(
x

3i−1
, 0,

x

3i
) = 0.

Therefore T (x) = T ′(x) for all x in A.

Corollary 4.2. Let θ, p1, p2, p3, p4, p5, q1, q2, q3 be real numbers such that
θ, p2 > 0 ,
p1, p2, p3 > 1 [p1, p2, p3 < 1] , p4 + p5 > 1 [p4 + p5 < 1] , q1, q2, q3 >
3 [q1, q2, q3 < 3]
and A,B be two C∗-ternary algebras and f : A→ B be a mapping satisfying

∥Eµf(x, y, z)∥ ≤ θ(∥x∥p1 + ∥y∥p2 + ∥z∥p3 + ∥x∥p4∥z∥p5),

∥f([x, y, z])−[f(x), f(y), f(z)] ≤ θ(∥x∥q1+∥y∥q2+∥z∥q3), ∥f(a∗)−f(a)∗∥ ≤ θ∥a∥q1

for all x,y,z,a in A and all µ in T 1
1
no

. Then there exists a unique ∗−homomorphism

T : A→ B such that

∥f(x)− T (x)∥ ≤ θ(
3p1

|3p1 − 3|
∥x∥p1 +

1

|3p3 − 3|
∥x∥p3 +

3p4

|3p4+p5 − 3|
∥x∥p4+p5)

and

T (x) = lim
n→∞

3nf(
x

3n
) [T (x) = lim

n→∞

1

3n
f(3nx)]

for all x in A.
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Proof. Putting

φ(x, y, z) = θ(∥x∥p1 + ∥y∥p2 + ∥z∥p3 + ∥x∥p4∥z∥p5)

and
ψ(x, y, z) = θ(∥x∥q1 + ∥y∥q2 + ∥z∥q3)

in Theorem 4.1.

5 Superstability

Theorem 5.1. Let A and B be two C∗-ternary algebras and φ,ψ : A3 →
[0,∞) be functions such that

φ(x, 0, z) = 0,

lim
n→∞

3nφ(
x

3n
,
y

3n
,
z

3n
) = 0 [ lim

n→∞

1

3n
φ(3nx, 3ny, 3nz) = 0],

lim
n→∞

33nψ(
x

3n
,
y

3n
,
z

3n
) = 0 [ lim

n→∞

1

33n
ψ(3nx, 3ny, 3nz) = 0],

for all x,y,z in A. Suppose that f : A→ B is a mapping such that

∥Eµf(x, y, z)∥ ≤ φ(x, y, z)

∥f([x, y, z])− [f(x), f(y), f(z)]∥ ≤ ψ(x, y, z), ∥f(a∗)− f(a)∗∥ ≤ ψ(a, 0, 0)

for all x,y,z,a in A and µ in T 1
1
no

. Then f is a ∗−homomorphism.

Proof. Because φ(x, o, z) = 0 for all x,z in A, like the proof of Theorem 4.1, we

have 3f(
x

3
) = f(x) and by induction we infer that 3nf(

x

3n
) = f(x). Therefore

T (x) = f(x) for all x in A. Thus f is a ∗−homomorphism between C∗−ternary
algebras. The other case is similar.

Corollary 5.2. Let θ, p1, p2, p3, p4, p5, p6, p7, p8, q1, q2, q3 be real numbers such
that θ ≥ 0, p1 > 1
[p1 < 1] , p2 + p3 + p4 > 1 [p2 + p3 + p4 < 1] , p5 + p6 > 1 [p5 + p6 < 1],
p7 + p8 > 1 [p7 + p8 < 1], q1 + q2 + q3 > 3 [q1 + q2 + q3 < 3] and let A,B be
two C∗−ternary algebras. Let f : A→ B be a mapping such that

∥Eµf(x, y, z)∥ ≤ θ(∥y∥p1 + ∥x∥p2∥y∥p3∥z∥p4 + ∥x∥p5∥y∥p6 + ∥y∥p7∥z∥p8)

∥f([x, y, z])− [f(x), f(y), f(z)]∥ ≤ θ(∥x∥q1∥y∥q2∥z∥q3)

for all x,y,z in A and µ in T 1
1
no

. Then f is a homomorphism.
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Proof. It follows by Theorem 5.1 by putting

φ(x, y, z) = θ(∥y∥p1 + ∥x∥p2∥y∥p3∥z∥p4 + ∥x∥p5∥y∥p6 + ∥y∥p7∥z∥p8)

ψ(x, y, z) = θ(∥x∥q1∥y∥q2∥z∥q3).

Theorem 5.3. Let A and B be two C∗−ternary algebras and let B be unital
with unit e′ and let φ,ψ : A3 → [0,∞) be functions such that

φ̃(x) =

∞∑
n=1

3n−1φ(
x

3n−1
, 0,

x

3n
) <∞ [φ̃(x) =

∞∑
n=1

1

3n
φ(3nx, 0, 3n−1x) <∞],

lim
n→∞

3nφ(
x

3n
,
y

3n
,
z

3n
) = 0 [ lim

n→∞

1

3n
φ(3nx, 3ny, 3nz) = 0],

lim
n→∞

33nψ(
x

3n
,
y

3n
,
z

3n
) = 0 [ lim

n→∞

1

33n
ψ(3nx, 3ny, 3nz) = 0],

lim
n→∞

32nψ(
x

3n
,
y

3n
, z) = 0 [ lim

n→∞

1

32n
ψ(3nx, 3ny, z) = 0],

for all x,y,z in A. Suppose that f : A→ B is a mapping satisfying

∥Eµf(x, y, z)∥ ≤ φ(x, y, z)

∥f([x, y, z])−[f(x), f(y), f(z)] ≤ θ(∥x∥q1+∥y∥q2+∥z∥q3), ∥f(a∗)−f(a)∗∥ ≤ θ∥a∥q1

for all x,y,z,a in A and µ in T 1
1

no

and there exists a x0 in A such that e′ =

lim
n→∞

3nf(
x0
3n

)

[e′ = lim
n→∞

1

3n
f(3nx)]. Then f is a ∗−homomorphism.

Proof. By Theorem 4.1 there exists a ∗−homomorphism T : A→ B such that

∥T (x)− f(x)∥ ≤ φ̃(x) and T (x) = lim
n→∞

3nf(
x

3n
)

for all x in A. Now observe that

∥[T (x), T (y), T (z)]− [T (x), T (y), f(z)]∥ = ∥T ([x, y, z])− [T (x), T (y), f(z)]∥ =

lim
n→∞

32n∥f([ x
3n
,
y

3n
, z])− [f(

x

3n
, f(

y

3n
), f(z)]∥ ≤ lim

n→∞
32nψ(

x

3n
,
y

3n
, z) = 0

for all x,y,z in A. So [T (x), T (y), T (z)− f(z)] = 0 for all x,y,z in A.
By hypothesis of theorem, we get T (x0) = e′. Replacing x,y by x0 in the last
bracket, we have [e′, e′, T (z)− f(z)] = 0 for all z in A. Hence f(z) = T (z) for
all z in A.
Therefore f is a ∗−homomorphism between C∗-ternary algebras A and B.



Stability and superstability of homomorphisms on C∗−ternary algebras 183

Theorem 5.4. Let A and B be two C∗−ternary algebras and φ,ψ : A3 →
[0,∞) be functions such that

lim
n→∞

3nψ(
x

3n
, y, z) = 0, [ lim

n→∞

1

3n
ψ(3nx, y, z) = 0], (28)

and satisfy (17), (18), (19).
Suppose that f : A→ B is a mapping that satisfies (20), (21) for all x, y, z ∈ A
and all µ ∈ T 1

1
no

.

Assume that S(B) be the set of all self adjoint elements of B and there exists an

element yo in A such that 0 ̸= lim
n→∞

3nf(
yo
3n

) ∈ S(B) [0 ̸= lim
n→∞

1

3n
f(3nyo) ∈

S(B)] and {f(3x)− 3f(x) ; x ∈ A} ⊆ Z(B).
Then f is a ∗−homomorphism between C∗-ternary algebras.

Proof. By Theorem 4.1 there exists a ∗−homomorphism T such that T (x) =

lim
n→∞

3nf(
x

3n
) for all x in A. Also by (21) we get

||T ([x1, x2, x3])− [T (x1), f(x2), f(x3)]|| =

lim
n→∞

3n||f([x1
3n
, x2, x3])− [f(

x1
3n

), f(x2), f(x3)]|| ≤ lim
n→∞

3nψ(
x1
3n
, x2, x3) = 0.

So T ([x1, x2, x3]) = [T (x1), f(x2), f(x3)] for all x1, x2, x3 in A. Now assume n

belongs to N and let x ∈ A. We set x1 = yo, x2 = x, x3 =
yo
3n

. So

T ([yo, x,
yo
3n

]) = [T (yo), f(x), f(
yo
3n

)] (29)

Replacing x by 3x in (29), we obtain

3T ([yo, x,
yo
3n

]) = [T (yo), f(3x), f(
yo
3n

)]. (30)

Multiply both sides of (29) by 3, we conclude that

3T ([yo, x,
yo
3n

]) = [T (yo), 3f(x), f(
yo
3n

)]. (31)

It follows from (30) and (31) that

[T (yo), f(3x)− 3f(x), f(
yo
3n

)] = 0. (32)

Multiply both sides of (32) by 3n and letting n→ ∞ we arrive at [T (yo), f(3x)−
3f(x), T (yo)] = 0.
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By assumption, we have 0 ̸= T (yo) ∈ S(B) and f(3x) − 3f(x) ∈ Z(B). Ac-
cording to the property of C∗−norm we obtain f(3x) − 3f(x) = 0 for all x

in A. By induction, we find out that 3nf(
x

3n
) = f(x) for all x in A and n

in N. Taking the limit we have T (x) = f(x) for all x in A. Hence f is a
∗−homomorphism.
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