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The nearest symmetric fuzzy solution for a
symmetric fuzzy linear system

T. Allahviranloo, E. Haghi, M. Ghanbari

Abstract

In this paper, the nearest symmetric fuzzy solution for a symmetric
L-L fuzzy linear system (S-L-FLS) is obtained by a new metric. To this
end, the S-L-FLS is transformed to the non-linear programming problem
(NLP). The solution of the obtained NLP is our favorite fuzzy number
vector solution. Also, it is shown that if an S-L-FLS has unique fuzzy
solution, then its solution is symmetric. Two constructive algorithms
are presented in details and the method is illustrated by solving several
numerical examples.

1 Introduction

One field of applied mathematics that play a major role in various areas
of sciences is solving systems of linear equations where some of the system’s
parameters are proposed as fuzzy numbers. Therefore, it is natural that we
want to develop numerical procedures to solve such systems.

A general model for solving an n × n fuzzy linear system (FLS) which
coefficient matrix is crisp and the right hand side column is arbitrary fuzzy
number vector were proposed by Friedman et al. [16]. Based on Friedman et
al.’s method, Allahviranloo [2, 3, 5, 8] used the various numerical methods to
solve fuzzy linear systems. Recently, he and Salahshour [10] have proposed a
simple and practical method to obtain symmetric fuzzy solutions of fuzzy linear
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systems. Also, Ghanbari and his colleague [17] have proposed an approach for
computing the general compromised solution of an L-R fuzzy linear system by
use of a ranking function when the coefficient matrix is a crisp m× n matrix.
In continuation to these works, Dehghan et al. [12, 13] have discussed the case
in which all parameters in a fuzzy linear system are fuzzy numbers, which they
called it a fully fuzzy linear system, and extend some iterative methods on the
this system. Recently, Allahviranloo and Salahshour [11] have proposed a new
method to obtain symmetric solution of fully fuzzy linear system based on
1-cut expansion. For more research papers see [1, 6, 7, 15].

In this paper, we extend Diamond’s idea [14] to define a new metric distance
for L-R fuzzy numbers with the fixed shape functions L(·) and R(·). Then,
we use the proposed metric distance to introduce a method for obtaining the
nearest symmetric fuzzy solution for symmetric L-L fuzzy linear system (S-
L-FLS), where the coefficient matrix is a crisp n × n matrix and the right
hand side column is a symmetric L-L fuzzy number vector with the fixed L(·)
and R(·). Also, it is shown that if an S-L-FLS has unique fuzzy solution,
then its solution is symmetric. According to our method, for solving S-L-
FLS, we construct a minimization problem based on the proposed metric and
then solve it. If the optimal value is zero, then we obtain a symmetric exact
solution. Otherwise, S-L-FLS has not any exact solution and thus we compute
a symmetric approximate solution for it.

The structure of this paper is organized as follows. In Section 2 we present
some basic definitions and results on L-R fuzzy numbers. In Section 3 we
introduce a metric distance and verify some its properties. In Section 4 we
define an S-L-FLS and present two algorithms for solving it. In Section 5 we
give some numerical examples. Conclusion is drawn in Section 6.

2 Preliminaries

The basic definition of fuzzy numbers is given in [18].

Definition 2.1. A fuzzy subset Ã of the real line R with membership func-
tion µÃ : R → [0, 1] is called a fuzzy number if
(1) µÃ is upper semi-continuous,
(2) µÃ(x) = 0 outside some interval [c, d],
(3) There are real numbers a and b such that c 6 a 6 b 6 d and

i. µÃ(x) is monotonic increasing on [c, a],
ii. µÃ(x) is monotonic decreasing on [b, d],
iii. µÃ(x) = 1, a 6 x 6 b.

The support and core of Ã are defined by the sets S(Ã) = {x ∈ R : µÃ(x) > 0}
and C(Ã) = {x ∈ R : µÃ(x) = 1}, respectively. Then, based on the Definition
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2.1, we have
S(Ã) = [c, d], C(Ã) = [a, b].

Definition 2.2. An L-R fuzzy number Ã = (a1, a2;α, β)LR, a1 6 a2,
α, β > 0, is defined as follows:

µÃ(x) =


L(a1−x

α ), x 6 a1,
1, a1 6 x 6 a2,
R(x−a2

β ), a2 6 x,

where a1 and a2 are the left and right points of core, respectively; α and β are
the left and right spreads, respectively; and the functions L(·) and R(·), which
are called left and right shape functions, satisfying:
(1) L(·) and R(·) are non-increasing from R+ to [0, 1],
(2) L(0) = R(0) = 1, L(1) = R(1) = 0.

Remark 2.3. If for fuzzy number Ã, at least one of left or right spreads be
zero, then we extend the Definition 2.2 as follows:

if Ã = (a1, a2; 0, β)LR then µÃ(x) =


0, x < a1,
1, a1 6 x 6 a2,
R(x−a2

β ), a2 6 x,

if Ã = (a1, a2;α, 0)LR then µÃ(x) =

 L(a1−x
α ), x 6 a1,

1, a1 6 x 6 a2,
0, a2 < x,

if Ã = (a1, a2; 0, 0)LR then µÃ(x) =

 0, x < a1,
1, a1 6 x 6 a2,
0, a2 < x.

.

Thus, by Remark 2.3, the crisp numbers and the crisp intervals can be
considered as L-R fuzzy numbers. In particular, when L(·) and R(·) are lin-

ear functions (L(x) = R(x) = max{0, 1 − x}) and a1 < a2, fuzzy number Ã
denotes trapezoidal fuzzy number. Also, when L(·) and R(·) are linear func-

tions (L(x) = R(x) = max{0, 1 − x}) and a1 = a2, fuzzy number Ã denotes

triangular fuzzy number. Clearly, for Ã = (a1, a2;α, β)LR, we have

S(Ã) = [a1 − α, a2 + β], C(Ã) = [a1, a2].

Definition 2.4. An L-R fuzzy number Ã = (a1, a2;α, β)LR is called a
symmetric fuzzy number if α = β and L(x) = R(x) for all x ∈ R+. In this

case, we say Ã is a symmetric L-L fuzzy number.
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Definition 2.5. Two L-R fuzzy numbers
Ã = (a1, a2;α, β)LR and B̃ = (b1, b2; γ, η)LR

are said to be equal, if and only if a1 = b1, a2 = b2, α = γ and β = η.

Definition 2.6. For L-R fuzzy numbers, addition and scalar multiplication
are defined as follows:

Ã+ B̃ = (a1, a2;α, β)LR + (b1, b2; γ, η)LR = (a1 + b1, a2 + b2;α+ γ, β + η)LR,

λ · Ã = λ · (a1, a2;α, β)LR =

{
(λa1, λ a2;λα, λ β)LR, λ > 0,
(λa2, λ a1;−λβ,−λα)RL, λ < 0.

Note that we use a fixed function L(·) and a fixed function R(·) for all fuzzy
numbers in each problem. Then, through the end of this paper, we eliminate
the subscript “LR” in representation of L-R fuzzy numbers.

3 A metric distance for L-R fuzzy numbers

Now, we are going to define a distance between two L-R fuzzy numbers by
modification of the Euclidean distance.

Definition 3.1. For two interval numbers A = [a1, a2] and B = [b1, b2] we
define the modified Euclidean distance between them as

dME(A,B) =

√
(a1 − b1)2 + (a2 − b2)2

2
, (1)

or

d2ME(A,B) =
(a1 − b1)

2 + (a2 − b2)
2

2
. (2)

Theorem 3.2. The function dME is a metric for the family of all interval
numbers.

Proof. Since dME(A,B) =
√
2
2 dE(A,B), where

dE(A,B) =
√
(a1 − b1)2 + (a2 − b2)2,

is Euclidean metric for interval numbers, it is clear that dME is a metric too. �

Obviously, when a1 = a2 = a and b1 = b2 = b, we conclude

dME(A,B) = |a− b|,

but,
dE(A,B) ̸= |a− b|.
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Therefore, the function dME preserve the traditional distance in real space,
while the function dE has not such property, that is why we call it “modified
Euclidean distance”. We now use dME to introduce a metric distance for the
set of L-R fuzzy numbers.

Definition 3.3. Let the shape functions L(·) and R(·) are fixed. Consider

two L-R fuzzy numbers as Ã = (a1, a2;α, β) and B̃ = (b1, b2; γ, η). We define

the distance between Ã and B̃ as follows:

d(Ã, B̃) =

√
d2ME(S(Ã), S(B̃)) + d2ME(C(Ã), C(B̃))

2
, (3)

or

d2(Ã, B̃) =
d2ME(S(Ã), S(B̃)) + d2ME(C(Ã), C(B̃))

2
. (4)

Then, by Eqs. (2) and (4) we have

d2(Ã, B̃) =
[(a1 − b1)− (α− γ)]

2
+ [(a2 − b2) + (β − η)]

2
+ (a1 − b1)

2 + (a2 − b2)
2

4
.

(5)

Remark 3.4. If Ã and B̃ are two crisp numbers, i.e., Ã = (a, a; 0, 0) and

B̃ = (b, b; 0, 0), then the our metric is equivalent to the traditional metric in
real space, namely

d(Ã, B̃) = |a− b|.

Remark 3.5. If Ã and B̃ are two crisp interval numbers, i.e., Ã = (a1, a2; 0, 0)

and B̃ = (b1, b2; 0, 0), then the proposed metric is equivalent to the modified
Euclidean metric, namely

d(Ã, B̃) = dME([a1, a2], [b1, b2]).

We will show that the function d defined in Eq. (3) is a metric for the set
of L-R fuzzy numbers with the fixed L(·) and R(·). To this end, we have

Lemma 3.6. If a, b, c, d ∈ R, then (ab+ cd) 6
√
a2 + c2 ·

√
b2 + d2.

Proof. Since

(a2 + c2) · (b2 + d2)− (ab+ cd)2 = a2d2 + c2b2 − 2ad cb = (ad− cb)2 > 0,

the proof is completed. �

Lemma 3.7. If a, b, c, d ∈ R, then (a+b)2+(c+d)2 6
(√

a2 + c2 +
√
b2 + d2

)2
.
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Proof. Since(√
a2 + c2 +

√
b2 + d2

)2−(a+b)2−(c+d)2 = 2(
√
a2 + c2 ·

√
b2 + d2− (ab+cd)),

by Lemma 3.6, the proof is completed. �
Theorem 3.8. The function d defined in Eq. (3) is a metric for the family

of all L-R fuzzy numbers with fixed L(·) and R(·) .

Proof. According to Theorem 3.2, since the function dME is a metric for
the family of all interval numbers, then it is easy to verify that the function d
satisfies the following properties:

1) d(Ã, B̃) > 0,

2) d(Ã, B̃) = 0 ⇔ Ã = B̃,

3) d(Ã, B̃) = d(B̃, Ã).

Note that since the functions L(·) and R(·) are fixed, property 2 is holds. It
is only remained to show that the triangle inequality property is holds. By
virtue of Theorem 3.2 and Lemma 3.7, for three L-R fuzzy numbers Ã, B̃ and
C̃ we have

d2(Ã, C̃) =
d2ME(S(Ã), S(C̃))

2
+

d2ME(C(Ã), C(C̃))

2

6

(
dME(S(Ã), S(B̃)) + dME(S(B̃), S(C̃))

)2
2

+

(
dME(C(Ã), C(B̃)) + dME(C(B̃), C(C̃))

)2
2

6
(
d(Ã, B̃) + d(B̃, C̃)

)2
. �

Remark 3.9. It is clear that there exist distinct fuzzy numbers Ã and B̃
such that d(Ã, B̃) = 0, and so the function d defined in Eq. (3) is not a metric
for the family of all fuzzy numbers. For example, consider the fuzzy numbers
Ã and B̃ indicated in Fig. 1. Since L(·) and R(·) are not fixed, then Ã ̸= B̃

while d(Ã, B̃) = 0. In fact, the function d is a pseudo-metric for family of
all fuzzy numbers. Therefore, in Theorem 3.8, it is necessary that two shape
functions L(·) and R(·) are fixed.

Theorem 3.10. For the fixed shape functions L(·) and R(·), the metric d
satisfies the following properties:

1) if L(x) = R(x), ∀x ∈ R+, then d(Ã− C̃, B̃ − C̃) = d(Ã, B̃),

2) d(Ã+ C̃, B̃ + C̃) = d(Ã, B̃),

3) d(λ Ã, λ B̃) = |λ|d(Ã, B̃), ∀λ ∈ R,
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Fig. 1. The fuzzy numbers Ã and B̃ .

where Ã, B̃ and C̃ are L-R fuzzy numbers and Ã− C̃ = Ã+ (−1) C̃.

Proof. 1) Let Ã = (a1, a2;α, β), B̃ = (b1, b2; γ, η) and C̃ = (c1, c2; δ, θ).
Then we have

S(Ã− C̃) = [a1−c2−α−θ , a2−c1+β+δ], C(Ã− C̃) = [a1−c2 , a2−c1],

S(B̃− C̃) = [b1− c2−γ−θ , b2− c1+η+δ], C(B̃− C̃) = [b1− c2 , b2− c1].

It can be easily verified that

dME(S(Ã− C̃) , S(B̃ − C̃)) = dME(S(Ã) , S(B̃)),

and
dME(C(Ã− C̃) , C(B̃ − C̃)) = dME(C(Ã) , C(B̃)).

Thus
d(Ã− C̃ , B̃ − C̃) = d(Ã , B̃).

Note that if L(x) ̸= R(x), then by Definition 2.5, (−1) C̃ is a R-L fuzzy num-
ber and thus we can not use the addition formula presented in Definition 2.5.

2) The proof is similar to the first part.

3) At first, let λ < 0. Therefore, we will have

S(λ Ã) = [λa2 + λβ , λ a1 − λα], C(λ Ã) = [λa2 , λ a1],
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S(λ B̃) = [λ b2 + λη , λ b1 − λ γ], C(λ B̃) = [λ b2 , λ b1].

Hence

d2ME(S(λ Ã) , S(λ B̃)) = λ2 [(a2 − b2) + (β − η)]
2
+ [(a1 − b1)− (α− γ)]

2

2

= λ2 d2ME(S(Ã) , S(B̃)).

Thus
dME(S(λ Ã) , S(λ B̃)) = |λ| dME(S(Ã) , S(B̃)),

and similarly

dME(C(λ Ã) , C(λ B̃)) = |λ| dME(C(Ã) , C(B̃)).

Therefore
dME(λ Ã , λ B̃) = |λ| dME(Ã , B̃).

The proof for λ > 0 is easy and omitted. �

Definition 3.11. A vector X̃ = (x̃1, x̃1, . . . , x̃n)
T , where x̃i, 1 6 i 6 n are

L-R fuzzy numbers, is called an L-R fuzzy vector.

Definition 3.12. For two L-R fuzzy vectors X̃ = (x̃1, x̃2, . . . , x̃n)
T and

Ỹ = (ỹ1, ỹ2, . . . , ỹn)
T , we define

Dp(X̃, Ỹ ) =

(
n∑

i=1

dp(x̃i, ỹi)

) 1
p

, (6)

as distance between them, where p > 1.

In this paper, for obtaining the distance between two L-R fuzzy vectors we
consider p = 2 in Definition 3.12. In the next section, we define a symmetric
L-L FLS and use the our metric to find either the symmetric exact solution
or the symmetric approximate solution for the such system.

4 Solving symmetric L-L fuzzy linear system

Definition 4.1. Let the shape function L(·) is fixed. The n × n linear
system 

a11 x̃1 + a12 x̃2 + · · ·+ a1n x̃n = b̃1,

a21 x̃1 + a22 x̃2 + · · ·+ a2n x̃n = b̃2,
...

an1 x̃1 + an2 x̃2 + · · ·+ ann x̃n = b̃n,

(7)
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where the coefficient matrix A = (aij), 1 6 i, j 6 n is a crisp n × n matrix

and b̃i, 1 6 i 6 n are symmetric L-L fuzzy numbers, is called a symmetric
L-L fuzzy linear system (S-L-FLS).

The matrix form of the above equations is

AX̃ = B̃, (8)

where X̃ = (x̃1, x̃2, . . . , x̃n)
T , B̃ = (b̃1, b̃2, . . . , b̃n)

T and x̃i and b̃i are L-L fuzzy
numbers as follows:

x̃i = (xi
1, x

i
2;α

i
x, β

i
x), b̃i = (bi1, b

i
2;α

i
b, α

i
b), i = 1, 2, . . . , n.

Definition 4.2. We say X̃ = (x̃1, x̃2, . . . , x̃n)
T is a solution for S-L-FLS

(7) if and only if
n∑

j=1

aij x̃j = b̃i, i = 1, 2, . . . , n, (9)

where x̃j, 1 6 j 6 n are fuzzy numbers.

Theorem 4.3. If X̃ = (x̃1, x̃2, . . . , x̃n)
T be unique solution of S-L-FLS

(7), then X̃ is a symmetric L-L fuzzy number vector, i.e., x̃j, 1 6 j 6 n are
symmetric L-L fuzzy numbers.

Proof. It is sufficient to show that αi
x = βi

x, for all i = 1, 2, . . . , n. Since

X̃ is a solution for S-L-FLS (7), then

n∑
j=1

aij x̃j = b̃i, i = 1, 2, . . . , n. (10)

Consequently ∑
j∈Γ+

i

aij α
j
x −

∑
j∈Γ−

i

aij β
j
x = αi

b, (11)

∑
j∈Γ+

i

aij β
j
x +

∑
j∈Γ−

i

aij α
j
x = αi

b, (12)

for all i = 1, 2, . . . , n, where

Γ+
i = {j : 1 6 j 6 n, aij > 0}, (13)

Γ−
i = {j : 1 6 j 6 n, aij < 0}. (14)
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From Eqs. (11) and (12) we have∑
j∈Γ+

i

aij (α
j
x − βj

x) +
∑
j∈Γ−

i

aij (α
j
x − βj

x) = 0, i = 1, 2, . . . , n. (15)

Setting

V = (v1, v2, . . . , vn)
T , vj = αj

x − βj
x, j = 1, 2, . . . , n,

we have

AV = 0.

Since system (7) has unique solution, then the matrix A is nonsingular [16]
and therefore V = 0, i.e., vj = 0, for all j = 1, 2, . . . , n.
Thus, the proof is completed. �

Now, suppose that the X̃ = (x̃1, x̃2, . . . , x̃n)
T is unique solution of S-L-FLS

(7), then we have ∑
j∈Γ+

i

aij x
j
1 +

∑
j∈Γ−

i

aij x
j
2 = bi1, (16)

∑
j∈Γ+

i

aij x
j
2 +

∑
j∈Γ−

i

aij x
j
1 = bi2, (17)

∑
j∈Γ+

i

aij α
j
x −

∑
j∈Γ−

i

aij α
j
x = αi

b, (18)

where the sets Γ+
i and Γ−

i are defined in Eqs. (13) and (14), respectively.

Also, note that according to Theorem 4.3, X̃ is a symmetric L-L fuzzy number
vector. We set

Λx = (α1
x, α

2
x, . . . , α

n
x)

T , Λb = (α1
b , α

2
b , . . . , α

n
b )

T ,

and

W = (w1, w2, . . . , wn)
T , C = (c1, c2, . . . , cn)

T ,

where

wi = xi
1 + xi

2, ci = bi1 + bi2, i = 1, 2, . . . , n.

Therefore, from Eqs. (16)-(18) we have

AW = C, |A|Λx = Λb. (19)
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Since S-L-FLS (7) has unique solution, then the matrices A and |A| are non-
singular [16]. Therefore, by solving the systems (19) we obtain the vectors W
and Λx and consequently we will have

xi
2 = wi − xi

1, i = 1, 2, . . . , n. (20)

On the other hand, It is clear that if X̃ be an exact solution of S-L-FLS (7),
then

d((AX̃)i , b̃i) = 0, i = 1, 2, . . . , n. (21)

Therefore, a logical way to find a symmetric L-L fuzzy vector solution is to
minimization distance between the vectors AX̃ and B̃. To this end, we set

(AX̃)i = ỹi = (yi1, y
i
2;α

i
y, α

i
y). (22)

Hence

yi1 =
∑
j∈Γ+

i

aij x
j
1 +

∑
j∈Γ−

i

aij x
j
2, yi2 =

∑
j∈Γ+

i

aij x
j
2 +

∑
j∈Γ−

i

aij x
j
1, (23)

αi
y =

∑
j∈Γ+

i

aij α
j
x −

∑
j∈Γ−

i

aij α
j
x. (24)

By Definition 3.12 and using the above notations we define the following min-
imization problem to find a symmetric L-L fuzzy vector solution,

min Z =
∑n

i=1 d
2(ỹi , b̃i)

s.t.
xi
1 6 xi

2,
αi
x > max{0, α∗i

x },
xi
1 , x

i
2 : free, i = 1, 2, . . . , n,

(25)

where

d2(ỹi, b̃i) =

[
(yi1 − bi1)− (αi

y − αi
b)
]2

+
[
(yi2 − bi2) + (αi

y − αi
b)
]2

4

+
(yi1 − bi1)

2 + (yi2 − bi2)
2

4
,

and yi1, y
i
2 and αi

y are defined in Eqs. (23) and (24) and also

Λ∗
x = (α∗1

x , α∗2
x , . . . , α∗n

x )T ,

is unique solution of system AΛx = Λb.
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On the other hand, from Eqs. (20), (23) and (24), we conclude

yi1 =
∑
j∈Γ+

i

aij x
j
1 −

∑
j∈Γ−

i

aij x
j
1 +

∑
j∈Γ−

i

aij wj , (26)

yi2 =
∑
j∈Γ+

i

aij wj +
∑
j∈Γ−

i

aij x
j
1 −

∑
j∈Γ+

i

aij x
j
1, (27)

αi
y =

∑
j∈Γ+

i

aij α
j
x −

∑
j∈Γ−

i

aij α
j
x, (28)

Note that in the above equations (26)-(28) we omitted the parameter xi
2. Now,

in the minimization problem (2.24), we let

Ωi
1 := (yi1 − bi1)− (αi

y − αi
b), Ωi

2 := (yi2 − bi2) + (αi
y − αi

b),

Ωi
3 := (yi1 − bi1), Ωi

4 := (yi2 − bi2).

From Eqs. (2.26)-(2.28) we obtain

Ωi
1 =

∑
j∈Γ+

i

ai (x
j
1 −αj

x)−
∑
j∈Γ−

i

aij (x
j
1 −αj

x)+
∑
j∈Γ−

i

aij wj − (bi1 −αi
b),

(29)

Ωi
2 =

∑
j∈Γ−

i

aij (x
j
1 −αj

x)−
∑
j∈Γ+

i

aij (x
j
1 −αj

x) +
∑
j∈Γ+

i

aij wj − (bi2 +αi
b),

(30)

Ωi
3 =

∑
j∈Γ+

i

aij x
j
1 −

∑
j∈Γ−

i

aij x
j
1 +

∑
j∈Γ−

i

aij wj − bi1,

(31)

Ωi
4 =

∑
j∈Γ−

i

aij x
j
1 −

∑
j∈Γ+

i

aij x
j
1 +

∑
j∈Γ+

i

aij wj − bi2.

(32)
Therefore, the minimization problem (24) is changed to:

min Z = 1
4

∑n
i=1

[
(Ωi

1)
2 + (Ωi

2)
2 + (Ωi

3)
2 + (Ωi

4)
2
]
,

s.t.
xi
1 6 1

2wi,
αi
x > max{0, α∗i

x },
xi
1 : free, i = 1, 2, . . . , n.

(33)

By the following theorem, we simplify the minimization problem (33).

Theorem 4.4. For any 1 6 i 6 n, Ωi
1 = −Ωi

2 and Ωi
3 = −Ωi

4.
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Proof. We have
AW = C,

then
n∑

j=1

aij wj = (bi1 + bi2),

or ∑
j∈Γ−

i

aij wj − bi1 = bi2 −
∑
j∈Γ+

i

aij wj .

Now we have

Ωi
1 =

∑
j∈Γ+

i

aij (x
j
1 − αj

x)−
∑
j∈Γ−

i

aij (x
j
1 − αj

x) +
∑
j∈Γ−

i

aij wj − (bi1 − αi
b)

= −

− ∑
j∈Γ+

i

aij (x
j
1 − αj

x) +
∑
j∈Γ−

i

aij (x
j
1 − αj

x)−
∑
j∈Γ−

i

aij wj + bi1 − αi
b


= −

− ∑
j∈Γ+

i

aij (x
j
1 − αj

x) +
∑
j∈Γ−

i

aij (x
j
1 − αj

x) +
∑
j∈Γ+

i

aij wj − (bi2 + αi
b)


= −Ωi

2.

Similarly, since AW = C, then Ωi
3 = −Ωi

4. �

According to Theorem 4.3, we can simplify the minimization problem (33)
as follows: 

min Z = 1
2

∑n
i=1

[
(Ωi

1)
2 + (Ωi

3)
2
]
,

s.t.
xi
1 6 1

2wi,
αi
x > max{0, α∗i

x },
xi
1 : free, i = 1, 2, . . . , n.

(34)

The minimization problem (25) has 2n free variables, while the minimiza-
tion problem (34) has n free variables. Thus, solving (34) is more convenient
than (25). Solving (34) and using the Eq. (20) we can obtain the symmetric L-
L fuzzy vector solution. If the optimal value of the the minimization problem,
i.e. Z, was zero, then we get the exact solution of the S-L-FLS (7). Otherwise,
If Z was nonzero, then we get the approximate solution of the S-L-FLS (7).
Note that, in the second case, the S-L-FLS (7) has not exact solution. In the
following, we propose the first algorithm of our method to solve the S-L-FLS
(7). Since the necessary condition for that an FLS has unique solution is that
the matrices A and |A| are nonsingular [16], thus in this algorithm, we suppose
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that the matrices A and |A| are nonsingular.

Algorithm 1

Step 1: Construct and solve the crisp linear systems (19) and get the
vectors W and Λ∗

x.
Step 2: Construct the Eqs. (29) and (31) where αj

x is replaced by α∗j
x , and

solve the minimization problem (34) and get Z, xi
1 and αi

x for i = 1, 2, . . . , n.

Step 3: By Eq. (20) construct the symmetric L-L fuzzy vector X̃ =
(x̃1, x̃2, . . . , x̃n)

T .

Step 3: If Z = 0 then X̃ is an exact solution, otherwise X̃ is an approxi-
mate solution.

4.1 The second algorithm

In this section, we suppose that the symmetric L-L fuzzy vector X̃ = (x̃1, x̃2, . . . ,
x̃n)

T is the exact solution of S-L-FLS (7). Then, in the non-linear program-
ming problem (34), we have

Z = 0,

thus

Ωi
1 = 0, Ωi

3 = 0,

and consequently

|A|R = K, |A|X1 = M, (35)

respectively, where

(R)i = xi
1 − αi

x, (K)i = (bi1 − αi
b)−

∑
j∈Γ−

i

aijwj , (36)

(X1)i = xi
1, (M)i = bi1 −

∑
j∈Γ−

i

aijwj , (37)

for i = 1, 2, . . . , n.
Finally, we set Λx = X1 − R and Λb = M −K. Then, from (35)–(37),

we have

|A|Λx = Λb, |A|X1 = M, (38)

where

(Λx)i = αi
x, (Λb)i = αi

b,
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and

(X1)i = xi
1, (M)i = bi1 −

∑
j∈Γ−

i

aijwj ,

for i = 1, 2, . . . , n.

Based on the systems (19) and (38) and the minimization problem (34) and
also Eq. (20), we propose the our second algorithm. Similarly to Algorithm
1, we suppose that the matrices A and |A| are nonsingular.

Algorithm 2

Step 1: Construct and solve the crisp linear systems (19) and (38) and
get the vectors W , Λx, X1.

Step 2: By Eq. (20) get the vector X2 = (x1
2, x

2
2, . . . , x

n
2 )

T and then

construct the vector X̃ = (x̃1, x̃2, . . . , x̃n)
T .

Step 3: If X̃ is the symmetric L-L fuzzy number , i.e. αi
x > 0 and

xi
1 6 xi

2, then X̃ is an exact solution, otherwise the problem has not exact
solution.

Step 4: To obtain the symmetric approximate solution, construct the Eqs.
(29) and (31) and solve the minimization problem (34) and get xi

1 and αi
x for

i = 1, 2, . . . , n.

Step 5: By Eq. (20) get the vector X2 = (x1
2, x

2
2, . . . , x

n
2 )

T and then con-

struct the symmetric L-L fuzzy number vector X̃ = (x̃1, x̃2, . . . , x̃n)
T as a fuzzy

symmetric approximate solution.

It should be noted that based on the Algorithm 2, if the S-L-FLS (7) has
an exact solution, then we don’t need to solve the minimization problem (34)
for obtaining the solution.

5 Numerical examples

In this section, we fix the shape function L(·) as:

L(x) = R(x) = max{0, 1− x}, ∀x ∈ R+.

Therefore, in the following examples, the considered fuzzy numbers are either
triangular fuzzy numbers or trapezoidal fuzzy numbers.
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Example 5.1. Consider the 3× 3 S-L-FLS
−x̃1 − x̃2 + x̃3 = (2, 7; 6, 6),

2x̃1 + x̃2 − 2x̃3 = (−7, 1; 11, 11),

−3x̃1 + 2x̃2 − x̃3 = (−12,−3; 11, 11).

(39)

According to Algorithm 2, by solving systems AW = C, |A|Λ∗
x = Λb and

|A|X1 = M we obtain

W = (3, 0, 6 )T , Λ∗
x = (2, 1, 3 )T , X1 = (1, −1, 2 )T .

Also, from Eq. (20) we have

X2 = (x1
2, x

2
2, x

3
2)

T = (2, 1, 4)T .

Obviously α∗i
x > 0 and xi

1 6 xi
2, for i = 1, 2, 3. Therefore, the symmetric

L-L fuzzy vector

X̃ =


(x1

1, x
1
2;α

1
x, α

1
x)

(x2
1, x

2
2;α

2
x, α

2
x)

(x3
1, x

3
2;α

3
x, α

3
x)

 =


(1, 2; 2, 2)

(−1, 1; 1, 1)

(2, 4; 3, 3)


is obtained as the fuzzy exact solution for S-L- FLS (39).

Example 5.2. Consider the 3× 3 S-L- FLS
x̃1 − 2x̃2 + x̃3 = (−4, 1; 5, 5),

−x̃1 − x̃2 + x̃3 = (−5,−2; 4, 4),

−2x̃1 + x̃2 + x̃3 = (−2,−1; 6, 6).

(40)

According to Algorithm 2, by solving systems AW = C, |A|Λ∗
x = Λb and

|A|X1 = M we obtain

W = (4, 4, 1 )T , Λ∗
x = (2, 1, 1 )T , X1 = (3, 1, −1 )T .

Also, from Eq. (20) we have

X2 = (x1
2, x

2
2, x

3
2)

T = (1, 3, 2)T .
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Obviously, since x1
1 � x1

2 then x̃1 is not a fuzzy number. Consequently,

the vector X̃ is not a fuzzy vector and therefore the problem has not exact
solution. To find the symmetric approximate solution, we must construct Ωi

1

and Ωi
3, for i = 1, 2, 3, and solve the minimization problem (4.34). From Eqs.

(29) and (31), we have

Ω1
1 = 2(x1

1 − α1
x) + 2(x2

1 − α2
x) + (x3

1 − α3
x) + 1,

Ω2
1 = (x1

1 − α1
x) + (x2

1 − α2
x) + (x3

1 − α3
x) + 1,

Ω3
1 = 2(x1

1 − α1
x) + (x2

1 − α2
x) + (x3

1 − α3
x),

Ω1
3 = x1

1 + 2x2
1 + x3

1 − 4,

Ω2
3 = x1

1 + x2
1 + 2x3

1 − 3,

Ω3
3 = 2x1

1 + x2
1 + x3

1 − 6.

Now, we must solve the problem
min Z = 1

2

[
(Ω1

1)
2 + (Ω2

1)
2 + (Ω3

1)
2 + (Ω1

3)
2 + (Ω2

3)
2 + (Ω3

3)
2
]
,

s.t.
x1
1 6 2, x2

1 6 2, x3
1 6 1

2 ,
α1
x > 2, α2

x > 1, α3
x > 1.

We solved the above minimization problem using GAMS software and obtain
the optimal solution as follows:

x1
1 = 2, x2

1 = 0.8333, x3
1 = 0.5, α1

x = 2, α2
x = 1, α3

x = 1,

with the optimal value
Z = 0.5833.

On the other hand, by Eq. (20), we have

x1
2 = 2, x2

2 = 3.1667, x3
2 = 0.5.

Obviously αi
x > 0 and xi

1 6 xi
2, for i = 1, 2, 3. Therefore, the symmetric L-L

fuzzy vector

X̃ =


(2, 2; 2, 2)

(0.8333, 3.1667; 1, 1)

(0.5, 0.5; 1, 1)


is a symmetric fuzzy approximate solution for S-L- FLS (40) where

d(AX̃, B̃) =
√
Z = 0.7637.
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Moreover, we put obtained solution of S-L-FLS into the original S-L-FLS (40)

to investigate the difference between value of row i ((AX̃)i) and ith element

of right hand side B̃ (b̃i). For more detail see Fig 2–4.

−10 −8 −6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

Fig. 2. Compare b̃1 (−) and value of first row , i.e. (AX̃)1, (−◦).

−10 −8 −6 −4 −2 0 2
0

0.2

0.4

0.6

0.8

1

1.2

Fig. 3. Compare b̃2 (−) and value of second row , i.e. (AX̃)2, (−◦).

6 Conclusion

A new method for solving S-L-FLS was introduced based on a metric distance
on L-R fuzzy numbers. It is important that functions L(·) and R(·) are fixed
functions. Finally, using the proposed distance a non-linear programming
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−10 −8 −6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

Fig. 4. Compare b̃3 (−) and value of third row , i.e. (AX̃)3, (−◦).

problem (NLP) was presented and solved. The constrains of NLP guarantees
that the solution of S-L-FLS is always an L-L fuzzy number vector.

References

[1] S. Abbasbandy, R. Ezzati, A. Jafarian, LU decomposition method for solv-

ing fuzzy system of linear equations, Applied Mathematics and Computation,

172(2006), 633–643.

[2] T. Allahviranloo, Numerical methods for fuzzy system of linear equations, Ap-

plied Mathematics and Computation, 155(2004), 493–502.

[3] T. Allahviranloo, M. Afshar Kermani, Solution of a fuzzy system of linear equa-

tion, Applied Mathematics and Computation, 175(2006), 519–531.

[4] T. Allahviranloo, M.A. Firozja, Ranking of fuzzy numbers by a new metric, Soft

Computing, 14(2009), 773–782.

[5] T. Allahviranloo, M. Ghanbari, Solving Fuzzy Linear Systems by Homo-

topy Perturbation Method, International Journal of Computational Cognition,

8(2)(2010), 24–30.

[6] T. Allahviranloo, M. Ghanbari, A new approach to obtain algebraic solution of

interval linear systems, Soft Computing, 16(2012), 121–133.



170 T. Allahviranloo, E. Haghi, M. Ghanbari

[7] T. Allahviranloo, M. Ghanbari, On the algebraic solution of fuzzy linear

systems based on interval theory, Applied Mathematical Modelling, (2012),

DOI.org/10.1016/j.apm.2012.01.002.

[8] T. Allahviranloo, M. Ghanbari, A.A. Hosseinzadeh, E. Haghi, R. Nuraei, A

note on “Fuzzy linear systems”,Fuzzy Sets and Systems, 177 (1)(2011), 87–92.

[9] T. Allahviranloo, S. Khezerloo, M.A.Firozja, Fuzzy Regression on Fuzzy Data

by New Metric Distance, Southeast Asian Bulletin of mathematics, 34(2010),

215–230.

[10] T. Allahviranloo, S. Salahshour, Fuzzy symmetric solution of fuzzy linear sys-

tems, Journal of Computational and Applied Mathematics, 235(16) (2011),

4545-4553.

[11] T. Allahviranloo, S. Salahshour, M. Khezerloo, Maximal- and minimal sym-

metric solutions of fully fuzzy linear systems, Journal of Computational and

Applied Mathematics, 235(16) (2011), 4652-4662.

[12] M. Dehghan, B. Hashemi, Iterative solution of fuzzy linear systems, Applied

Mathematics and Computation, 175(2006), 645–674.

[13] M. Dehghan, B. Hashemi, M. Ghatee, Computational methods for solving fully

fuzzy linear systems, Applied Mathematics and Computation, 179(2006), 328–

343.

[14] P. Diamond, Fuzzy least squares, Information Sciences, 46(1988), 141–149.

[15] R. Ezzati, Solving fuzzy linear systems, Soft Computing, 15(2010), 193–197.

[16] M. Friedman, M. Ming and A. Kandel, Fuzzy linear systems, Fuzzy Sets and

Systems, 96(1998), 209–261.

[17] R. Ghanbari, N. Mahdavi-Amiri, New solutions of L-R fuzzy linear systems

using ranking functions and ABS algorithms, Applied Mathematical Modelling,

34(11) (2010), 3363-3375.

[18] R. Goetschel, W. Voxman, Elementary calculus, Fuzzy Sets and Systems,

18(1986), 31–43.

T. Allahviranloo,
Department of Mathematics, Science and Research Branch,
Islamic Azad University,
Tehran, Iran.
Email: Tofigh@Allahviranloo.com



The nearest symmetric fuzzy solution for a symmetric fuzzy linear system 171

E. Haghi,
Department of Mathematics, Science and Research Branch,
Islamic Azad University,
Tehran, Iran.
Email: Haghi.Elnaz@yahoo.com

M. Ghanbari,
Department of Mathematics, Science and Research Branch,
Islamic Azad University,
Tehran, Iran.
Email: Mojtaba.Ghanbari@gmail.com



172 T. Allahviranloo, E. Haghi, M. Ghanbari




