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Stability of General Cubic Mapping in Fuzzy
Normed Spaces

S. Javadi, J. M. Rassias

Abstract

We establish some stability results concerning the general cubic func-
tional equation

f(x+ ky)− kf(x+ y) + kf(x− y)− f(x− ky) = 2k(k2 − 1)f(y)

for fixed k ∈ N\{1} in the fuzzy normed spaces. More precisely, we show
under some suitable conditions that an approximately cubic function can
be approximated by a cubic mapping in a fuzzy sense and we establish
that the existence of a solution for any approximately cubic mapping
guarantees the completeness of the fuzzy normed spaces.

1 Introduction and preliminary results

In order to construct a fuzzy structure on a linear space, in 1984, Kat-
saras [18] defined a fuzzy norm on a linear space to construct a fuzzy vector
topological structure on the space. At the same year Wu and Fang [8] also
introduced a notion of fuzzy normed space and gave the generalization of the
Kolmogoroff normalized theorem for a fuzzy topological linear space. In [6],
Biswas defined and studied fuzzy inner product spaces in a linear space. Since
then some mathematicians have defined fuzzy norms on a linear space from
various points of view [5, 10, 20, 27, 29]. In 1994, Cheng and Mordeson in-
troduced a definition of fuzzy norm on a linear space in such a manner that
the corresponding induced fuzzy metric is of Kramosil and Michalek type [19].
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In 2003, Bag and Samanta [3] modified the definition of Cheng and Mordeson
[7] by removing a regular condition. They also established a decomposition
theorem of a fuzzy norm into a family of crisp norms and investigated some
properties of fuzzy norms (see [4]).

The concept of stability of a functional equation arises when one replaces
a functional equation by an inequality which acts as a perturbation of the
equation. In 1940, Ulam [28] posed the first stability problem. In the next year,
Hyers [12] gave an affirmative answer to the question of Ulam. Hyers’s theorem
was generalized by Aoki [1] for additive mappings and by Rassias [22] for
linear mappings by considering an unbounded Cauchy difference. The concept
of the generalized Hyers-Ulam stability was originated from Rassias’s paper
[22] for the stability of functional equations. During the last decades several
stability problems for various functional equations have been investigated by
many mathematicians; we refer the reader to [9, 13, 16, 23, 24, 35]. Also, the
interested reader should refer to [30, 31, 32, 33] and [34] and the references
therein. Following [3], we give the notion of a fuzzy norm as follows.

Let X be a real linear space. A function N : X × R −→ [0, 1] (so-called
fuzzy subset) is said to be fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,

(N1) N(x, c) = 0 for c ≤ 0;
(N2) x = 0 if and only if N(x, c) = 1 for all c > 0;
(N3) N(cx, t) = N(x, t

|c| ) if c ̸= 0;

(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, .) is a non-decreasing function of R and limt→∞ N(x, t) = 1;
(N6) For x ̸= 0, N(x, .) is (upper semi) continuous on R.

It follows from (N2) and (N4) that if s < t, then

N(x, t) ≥ min{N(x, s), N(0, t− s)} = N(x, s).

Therefore the condition ‘ N(x, .) is a non-decreasing function of R ′ in (N5)
can be omitted. The pair (X,N) is called a fuzzy normed linear space. One
may regard N(x, t) as the truth value of the statement ‘the norm of x is less
than or equal to the real number t ’.
Example 1. Let (X, ∥ . ∥) be a normed linear space. Then

N(x, t) =

{ t
t+∥x∥ , t > 0,

0, t ≤ 0

is a fuzzy norm on X.

Example 2. Let (X, ∥ . ∥) be a normed linear space. Then

N(x, t) =

{
0, t < ∥x∥,
1, t ≥ ∥x∥

is a fuzzy norm on X.
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Let (X,N) be a fuzzy normed linear space. Let {xn} be a sequence in X.
Then {xn} is said to be convergent if there exists x ∈ X such that

lim
n→∞

N(xn − x, t) = 1

for all t > 0. In that case, x is called the limit of the sequence xn and we write
N − limxn = x. A sequence in a fuzzy normed space (X,N) is called Cauchy
if for each ε > 0 and each t > 0 there exists n0 such that for all n ≥ n0 and
all p > 0,

N(xn+p − xn, t) > 1− ε.

It is known that every convergent sequence in a fuzzy normed space is
Cauchy. If in a fuzzy normed space, each Cauchy sequence is convergent, then
the fuzzy norm is said to be complete and the fuzzy normed space is called a
fuzzy Banach space.
The functional equation

f(x+ ky)− kf(x+ y) + kf(x− y)− f(x− ky) = 2k(k2 − 1)f(y) (1.1)

for fixed k with k ∈ N \ 1 is called the general cubic functional equation, since
the function f(x) = x3 is its solution. Every solution of the general cubic
functional equation is said to be cubic mapping. From (1.1), putting x = y = 0
yields f(0) = 0. Note that the left hand side of (1.1) changes sign when y is
replaced by −y. Thus f is odd. Putting x = 0 and y = x in (1.1). We conclude
that f(kx) = k3f(x). By induction, we infer that f(knx) = k3nf(x) for all
positive integer n. The stability problem for the cubic functional equation was
proved by Jun and Kim [14] for mappings f : X → Y , whereX is a real normed
space and Y is a Banach space. Later a number of mathematicians worked
on the stability of some types of the cubic equation [2, 11, 15, 17, 25, 26].
Najati in [21] established the general solution and the generalized Hyers-Ulam
stability for the equation (1.1).

In the next section we proved the non-uniform version of the generalized
Hyers-Ulam stability of the general cubic functional equation (1.1) in fuzzy
normed spaces. The uniform version is discussed in Section 3. Finally, in
section 4, we show that the existence of a conditional cubic mapping for every
approximately cubic type mapping implies that our fuzzy normed space is
complete.

2 Fuzzy generalized Hyers-Ulam theorem:non-uniform
version

Theorem 2.1. Let k ∈ N \ {1}, α ∈ [1,+∞) and α ̸= k3. Let X be a linear
space and let (Z,N ′) be a fuzzy normed space. Suppose that an even function
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φ : X ×X → Z satisfies φ(knx, kny) = αnφ(x, y), for all x, y ∈ X and for all
n ∈ N. Suppose that (Y,N) is a fuzzy Banach space. If a map f : X → Y
satisfies

N
(
f(x+ky)−kf(x+y)+kf(x−y)−f(x−ky)−2k(k2−1)f(y), t

)
≥ N ′(φ(x, y), t)

(2.1)
for all x, y ∈ X and t > 0, then there exists a unique cubic map C : X → Y
which satisfies (1.1) and inequality

N(f(x)−C(x), t) ≥ min
{
N ′

(
φ(0, x),

k3 − α

3
t
)
, N ′

(
φ(0, x),

k(k2 − 1)(k3 − α)

3α
t
)}

holds for all α < k3, x ∈ X and t > 0. Also,

N(f(x)−C(x), t) ≥ min
{
N ′

(
φ(0, x),

α− k3

3
t
)
, N ′

(
φ(0, x),

k(k2 − 1)(α− k3)

3α
t
)}

holds for all α > k3, x ∈ X and t > 0.

Proof. Case (1): 1 ≤ α ≤ k3.
Replacing y := −y in (2.1) and adding the result to (2.1) yield

N(f(y) + f(−y), t) ≥ min{N ′(φ(x, y), k(k2 − 1)t), N ′(φ(x,−y), k(k2 − 1)t)}.
(2.2)

Since (2.2) and (2.1) hold for any x, let us fix x = 0 for convenience. Using
(N4), we obtain

N (2f(ky)− 2k3f(y), t)

≥ min
{
N ′

(
φ(0, y),

t

3

)
, N

(
f(ky) + f(−ky),

t

3

)
, N

(
f(y) + f(−y),

t

3k

)}
≥ min

{
N ′

(
φ(0, y),

t

3

)
, N ′

(
φ(0, ky),

k(k2 − 1)

3
t
)
, N ′

(
φ(0, y),

k2 − 1

3
t
)}

≥ min
{
N ′

(
φ(0, y),

t

3

)
, N ′

(
φ(0, y),

k(k2 − 1)

3α
t
)}

. (2.3)

It follows that

N
(2f(ky)

k3
− 2f(y), t

)
≥ min

{
N ′

(
φ(0, y),

k3

3
t
)
, N ′

(
φ(0, y),

k4(k2 − 1)

3α
t
)}

.

(2.4)
Replacing y by x in (2.4), by (N3) we have

N
(f(kx)

k3
− f(x), t

)
≥ min

{
N ′

(
φ(0, x),

2k3

3
t
)
, N ′

(
φ(0, x),

2k4(k2 − 1)

3α
t
)}

.

(2.5)
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Replacing x by knx in (2.5), we get

N
(f(kn+1x)

k3(n+1)
− f(knx)

k3n
,

t

k3n

)
≥ min

{
N ′

(
φ(0, knx),

2k3

3
t
)
, N ′

(
φ(0, knx),

2k4(k2 − 1)

3α
t
)}

≥ min
{
N ′

(
φ(0, x),

2k3

3αn
t
)
, N ′

(
φ(0, x),

2k4(k2 − 1)

3αn+1
t
)}

.

It follows from

f(knx)

k3n
− f(x) =

n−1∑
i=0

f(ki+1x)

k3(i+1)
− f(kix)

k3i

and above inequality that

N
(f(knx)

k3n
− f(x),

n−1∑
i=0

αit

k3i

)
≥ min

n−1∪
i=0

{
N
(f(ki+1x)

k3(i+1)
− f(kix)

k3i
,
αi

k3i
t
)}

≥ min
{
N ′

(
φ(0, x),

2k3

3
t
)
, N ′

(
φ(0, x),

2k4(k2 − 1)

3α
t
)}

.

We replace x by kmx to prove convergence of the sequence { f(knx)
k3n }. For

m,n ∈ N,

N
(f(kn+mx)

k3(n+m)
− f(kmx)

k3m
,
n−1∑
i=0

αi

k3(i+m)
t
)

≥ min
{
N ′

(
φ(0, kmx),

2k3

3
t
)
, N ′

(
φ(0, kmx),

2k4(k2 − 1)

3α
t
)}

≥ min
{
N ′

(
φ(0, x),

2k3

3αm
t
)
, N ′

(
φ(0, x),

2k4(k2 − 1)

3αm+1
t
)}

.

Replacing t by αmt in last inequality to get

N
(f(kn+mx)

k3(n+m)
− f(kmx)

k3m
,
n+m−1∑
i=m

αi

k3i
t
)

≥ min
{
N ′

(
φ(0, x),

2k3

3
t
)
, N ′

(
φ(0, x),

2k4(k2 − 1)

3α
t
)}

.

For every n ∈ N and m ∈ N ∪ {0}, we put

amn :=

n+m−1∑
i=m

αi

k3i
.
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Replacing t by t
amn

in last inequality, we observe that

N
(f(kn+mx)

k3(n+m)
− f(kmx)

k3m
, t
)

≥ min
{
N ′

(
φ(0, x),

2k3

3amn
t
)
, N ′

(
φ(0, x),

2k4(k2 − 1)

3αamn
t
)}

.

Let t > 0 and ε > 0 be given. Using the fact that limt→∞ N ′(φ(0, x), t) = 1,
we can find some t1 ≥ 0 such that N ′(φ(0, x), t2) > 1 − ε for every t2 > t1.

The convergence of the series
∑∞

i=0
αi

k3i guarantees that there exists some m1

such that min
{

2k3

3amn
t, 2k4(k2−1)

3αamn
t
}

> t1, for every m ≥ m1 and n ∈ N. For

every m ≥ m1 and n ∈ N, we have

N
(f(kn+mx)

k3(n+m)
− f(k3mx)

k3m
, t
)

≥ min
{
N ′

(
φ(0, x),

2k3

3amn
t
)
, N ′

(
φ(0, x),

2k4(k2 − 1)

3αamn
t
)}

≥ min{1− ε, 1− ε} = 1− ε. (2.6)

Hence { f(knx)
k3n } is a Cauchy sequence in the fuzzy Banach space (Y,N), there-

fore this sequence converges to some point C(x) ∈ Y .
Fix x ∈ X and put m = 0 in (2.6) to obtain

N
(f(knx)

k3n
−f(x), t

)
≥ min

{
N ′

(
φ(0, x),

2k3

3a0n
t
)
, N ′

(
φ(0, x),

2k4(k2 − 1)

3αa0n
t
)}

.

For every n ∈ N,

N(C(x)− f(x), t) ≥ min
{
N
(
C(x)− f(knx)

k3n
,
t

2

)
, N

(f(knx)
k3n

− f(x),
t

2

)}
.

The first two terms on the right hand side of the above inequality tend to 1
as n → ∞. Therefore

N(C(x)− f(x), t) ≥ min
{
N
(
C(x)− f(knx)

k3n
,
t

2

)
, N

(f(knx)
k3n

− f(x),
t

2

)}
≥ min

{
N ′

(
φ(0, x),

k3

3a0n
t
)
, N ′

(
φ(0, x),

k4(k2 − 1)

3αa0n
t
)}

for n large enough. By last inequality, we have

N(C(x)− f(x), t) ≥ min
{
N ′

(
φ(0, x),

k3 − α

3
t
)
, (2.7)

N ′
(
φ(0, x),

k(k2 − 1)(k3 − α)

3α
t
)}
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Replacing x, y by knx and kny, respectively in (2.1) to get

N
(f(kn(x+ ky))

k3n
− kf(kn(x+ y))

k3n
+

kf(kn(x− y))

k3n
− f(kn(x− ky))

k3n
− 2k(k2 − 1)f(kny)

k3n
, t
)

≥ N ′(φ(knx, kny), k3nt) ≥ N ′
(
φ(x, y),

k3n

αn
t
)

for all x, y ∈ X and all t > 0. Since 1 ≤ α < k3, by (N5)

lim
n→∞

N ′
(
φ(x, y),

k3n

αn
t
)
= 1.

We conclude that C fulfills (1.1). To prove the uniqueness of the cubic function
C, assume that there exists cubic function C ′ : X → Y which satisfies (2.7).
Fix x ∈ X. Obviously

C(knx) = k3nC(x), C ′(knx) = k3nC ′(x)

for all n ∈ N. It follows from (2.7) that

N(C(x)− C ′(x), t) = N
(C(knx)

k3n
− C ′(knx)

k3n
, t
)

≥ min
{
N
(C(knx)

k3n
− f(knx)

k3n
,
t

2

)
, N

(f(knx)
k3n

− C ′(knx)

k3n
,
t

2

)}
≥ min

{
N ′

(
φ(0, knx),

(k3 − α)k3n

6
t
)
, N ′

(
φ(0, knx),

k(k2 − 1)(k3 − α)k3n

6α
t
)}

≥ min
{
N ′

(
φ(0, x),

(k3 − α)k3n

6αn
t
)
, N ′

(
φ(0, x),

k(k2 − 1)(k3 − α)k3n

6αn+1
t
)}

.

Since 1 ≤ α < k3, we obtain

lim
n→∞

N ′
(
φ(0, x),

(k3 − α)k3n

6αn
t
)
= lim

n→∞
N ′

(
φ(0, x),

k(k2 − 1)(k3 − α)k3n

6αn+1
t
)
= 1.

Therefore N ′(C(x)− C ′(x), t) = 1 for all t > 0, whence C(x) = C ′(x).
Case (2): α > k3. We can state the proof in same pattern as we did in first
case. Replacing x, t by x

k and 2t, respectively in (2.3) to get

N
(
f(x)− k3f(

x

k
), t

)
≥ min

{
N ′

(
φ(0,

x

k
),
2t

3

)
, N ′

(
φ(0,

x

k
),
2k(k2 − 1)

3α
t
)}

.

We replacing y and t by x
kn and t

k3n in last inequality, respectively, we find
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that

N
(
k3nf(

x

kn
)− k3(n+1)f(

x

kn+1
), t

)
≥ min

{
N ′

(
φ(0,

x

kn+1
),

2t

3k3n

)
, N ′

(
φ(0,

x

kn+1
),
2k(k2 − 1)

3k3nα
t
)}

≥ min
{
N ′

(
φ(0, x),

2αn+1

3k3n
t
)
, N ′

(
φ(0, x),

2k(k2 − 1)αn

3k3n
t
)}

.

For each n ∈ N, one can deduce

N
(
k3nf(

x

kn
)− f(x), t

)
≥ min

{
N ′

(
φ(0, x),

2α

3b0n
t
)
, N ′

(
φ(0, x),

2(k2 − 1)

3b0n
t
)}

where b0n =
∑n−1

i=0
k3i

αi . It is easy to see that {k3nf( x
kn )} is a Cauchy sequence

in (Y,N). Therefore this sequence converges to some point C(x) ∈ Y in the
Banach space Y . Moreover, C satisfies (1.1) and

N(f(x)−C(x), t) ≥ min
{
N ′

(
φ(0, x),

α− k3

3
t
)
, N ′

(
φ(0, x),

k(k2 − 1)(α− k3)

3α
t
)}

.

The proof for uniqueness of C for this case, proceeds similarly to that in the
previous case, hence it is omitted.

Corollary 2.2. Let X be a Banach space and ε > 0 be a real number. Suppose
that a function f : X → X satisfies

∥f(x+ ky)− kf(x+ y) + kf(x− y)− f(x− ky)− 2k(k2 − 1)f(y)∥

≤ ε(∥x∥2p + ∥y∥2p + ∥x∥p∥y∥p)
for all x, y ∈ X where 0 < p < 1

2 and k ∈ N \ {1}. Then there exists a unique
cubic function C : X → X which satisfying (1.1) and the inequality

∥C(x)− f(x)∥ <
3ε∥x∥p

k3 − k2p

for all x ∈ X.

Proof. Define N : X × R → [0, 1] by

N(x, t) =

{ t
t+∥x∥ , t > 0,

0, t ≤ 0

It is easy to see that (X,N) is a fuzzy Banach space. Denote by φ : X×X → R
the map sending each (x, y) to ε(∥x∥2p + ∥y∥2p + ∥x∥p∥y∥p). By assumption

N(f(x+ky)−kf(x+y)+kf(x−y)−f(x−ky)−2k(k2−1)f(y), t) ≥ N ′(φ(x, y), t),
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note that N ′ : R× R → [0, 1] given by

N ′(x, t) =

{ t
t+|x| , t > 0,

0, t ≤ 0

is a fuzzy norm on R. By Theorem 2.1, there exists a unique cubic function
C : X → X satisfies (1.1) and inequality

t
t+∥f(x)−C(x)∥ = N(f(x)− C(x), t)

≥ min
{
N ′

(
φ(0, x), k3−k2p

3 t
)
, N ′

(
φ(0, x), k(k2−1)(k3−k2p)

3k2p t
)}

= min
{

(k3−k2p)t
(k3−k2p)t+3ε∥x∥p ,

k(k2−1)(k3−k2p)t
k(k2−1)(k3−k2p)t+3ε∥x∥p

}
= (k3−k2p)t

(k3−k2p)t+3ε∥x∥p .

for all x ∈ X and t > 0. Consequently ∥f(x)− C(x)∥ ≤ 3ε
k3−k2p ∥x∥p.

Corollary 2.3. Let X be a Banach space and ε > 0 be a real number. Suppose
that a function f : X → X satisfies

∥f(x+ ky)− kf(x+ y) + kf(x− y)− f(x− ky)− 2k(k2 − 1)f(y)∥

≤ ε(∥x∥+ ∥y∥ − ∥x∥ 1
2 ∥y∥ 1

2 )

for all x, y ∈ X where k ∈ N \ {1}. Then there exists a unique cubic function
C : X → X which satisfying (1.1) and the inequality

∥C(x)− f(x)∥ <
3∥x∥ε
k3 − k

for all x ∈ X.

Proof. Consider the fuzzy norms defined by Corollary 2.2. We define

φ(x, y) = ε(∥x∥+ ∥y∥ − ∥x∥ 1
2 ∥y∥ 1

2 )

for all x, y ∈ X. By assumption

N(f(x+ky)−kf(x+y)+kf(x−y)−f(x−ky)−2k(k2−1)f(y), t) ≥ N ′(φ(x, y), t),
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for all x, y ∈ X and t > 0. Therefore there exists a unique cubic function
C : X → X satisfies (1.1) and inequality

t
t+∥f(x)−C(x)∥ = N(f(x)− C(x), t)

≥ min
{
N ′

(
φ(0, x), k3−k

3 t
)
, N ′

(
φ(0, x), k(k2−1)(k3−k)

3k t
)}

= min
{

(k3−k)t
(k3−k)t+3∥x∥ε ,

k(k2−1)(k3−k)t
k(k2−1)(k3−k)t+3k∥x∥ε

}
= (k3−k)t

(k3−k)t+3∥x∥ε .

for all x ∈ X and t > 0. Consequently ∥C(x)− f(x)∥ < 3∥x∥ε
k3−k .

Let X be a Banach space. Denote by N and N ′ the fuzzy norms obtained
as Corollary 2.2 on X and R, respectively. Let ϵ > 0 and let φ : X×X → R be
defined by φ(x, y) = ε for all x, y ∈ X. Let f : X → X be a φ-approximately
cubic mapping in the sense that

∥f(x+ ky)− kf(x+ y) + kf(x− y)− f(x− ky)− 2k(k2 − 1)f(y)∥ < ε,

then there exists a unique cubic function C : X → X which satisfies

∥f(x)− C(x)∥ ≤ 3ε

k3 − 1

for all x ∈ X.

Let f be a mapping from X to Y . For each k ∈ N, let Dfk : X ×X → Y
be a mapping defined by

Dfk(x, y) = f(x+ ky)− f(x− ky)− kf(x+ y) + kf(x− y)− 2k(k2 − 1)f(y)

Proposition 2.4. Let X be a linear space and let Y be a normed space. Let ε
be a nonnegative real number and let f be a mapping from X to Y . Suppose
that

∥Df2(x, y)∥ ≤ ε (2.8)

for all x, y ∈ X. Then there exists a sequence of nonnegative real numbers
{εk}∞k=0 such that ε0 = ε, ε1 = 4ε, ε2 = 10ε, ..., εk = 2εk−1 + (k + 1)ε +
εk−2 (k ≥ 3) and

∥Dfk(x, y)∥ ≤ εk−2. (2.9)
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Proof. Replacing x by x+ y and x− y in (2.8), respectively, we get from (2.8)
that

∥Df3(x, y)∥ ≤ 4ε = ε1 (2.10)

for all x, y ∈ X. Replacing x by y+ x and x− y in (2.10), respectively, we get
from (2.8) that

∥Df4(x, y)∥ ≤ 10ε = ε2 (2.11)

for all x, y ∈ X. Replacing x by y+ x and x− y in (2.11), respectively, we get
from (2.8) and (2.10)

∥Df5(x, y)∥ ≤ 28ε = 2ε2 + 4ε+ ε1 = ε3,

for all x, y ∈ X. Therefore by using this method, by induction we infer (2.9).

From about argument we have the following Corollary.

Corollary 2.5. Let X be a linear space and let Y be a Banach space. Let f
be a mapping from X to Y and let ε be a nonnegative real number. Suppose
that ∥Df2(x, y)∥ ≤ ε holds for all x, y ∈ X. Then for each positive integer
k > 1, there exists a unique cubic mapping Ck : X → Y such that

∥Ck(x)− f(x)∥ ≤ 3εk−2

k3 − 1

for all x ∈ X.

3 Fuzzy Generalized Hyers-Ulam theorem: uniform ver-
sion

In this section, we deal with a fuzzy version of the generalized Hyers-Ulam
stability in which we have uniformly approximate cubic mapping.

Theorem 3.1. Let X be a linear space and (Y,N) be a fuzzy Banach space.
Let φ : X ×X → [0,∞) be a function such that

ϕ(x, y) =

∞∑
n=0

k−3nφ(knx, kny) < ∞ (3.1)

for all x, y ∈ X. Let f : X → Y be a uniformly approximately cubic function
respect to φ in the sense that

lim
t→∞

N(f(x+ky)−kf(x+y)+kf(x−y)−f(x−ky)−2k(k2−1)f(y), tφ(x, y)) = 1

(3.2)
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uniformly on X ×X. Then T (x) := N − limn→∞
f(knx)
k3n for each x ∈ X exists

and defines a cubic mapping T : X → Y such that if for some δ > 0, α > 0,

N(f(x+ky)−kf(x+y)+kf(x−y)−f(x−ky)−2k(k2−1)f(y), δφ(x, y)) > α
(3.3)

for all x, y ∈ X, then

N
(
T (x)− f(x),

δ

k3
ϕ(0, x)

)
> α

for all x ∈ X

Proof. Let ε > 0, by (3.2), we can find t0 > 0 such that

N(f(x+ky)−kf(x+y)+kf(x−y)−f(x−ky)−2k(k2−1)f(y), tφ(x, y)) ≥ 1−ε
(3.4)

for all x, y ∈ X and all t ≥ t0. By induction on n, we shall show that

N
(
f(knx)− k3nf(x), t

n−1∑
m=0

k3(n−m−1)φ(0, kmx)
)
≥ 1− ε (3.5)

for all t ≥ t0, all x ∈ X and all positive integers n. Putting x = 0 and y = x
in (3.4), we get (3.5) for n = 1. Let (3.5) holds for some positive integers n.
Then

N
(
f(kn+1x)− k3(n+1)f(x), t

n∑
m=0

k3(n−m)φ(0, kmx)
)

≥ min
{
N(f(kn+1x)− k3f(knx), tφ(0, knx)),

N(k3f(knx)− k3(n+1)f(x), t

n−1∑
m=0

k3(n−m)φ(0, kmx))
}

≥ min{1− ε, 1− ε} = 1− ε

This completes the induction argument. Let t = t0 and put n = p. Then by
replacing x with knx in (3.5), we obtain

N
(f(kn+px)

k3(n+p)
− f(knx)

k3n
, t0

p−1∑
m=0

k−3(n+m+1)φ(0, kn+mx)
)
≥ 1− ε (3.6)

for all integers n ≥ 0, p > 0. The convergence of (3.1) and the equation

p−1∑
m=0

k−3(n+m+1)φ(0, kn+mx) =
1

k3

n+p−1∑
m=n

k−3mφ(0, kmx),
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guarantees that for given δ > 0 there exists n0 ∈ N such that

t0
k3

n+p−1∑
m=n

k−3mφ(0, kmx) < δ,

for all n ≥ n0 and p > 0. It follows from (3.6) that

N
(

f(kn+px)
k3(n+p) − f(knx)

k3n , δ
)

(3.7)

≥ N
(

f(kn+px)
k3(n+p) − f(knx)

k3n , t0
∑p−1

m=0 k
−3(n+m+1)φ(0, kn+mx)

)
≥ 1− ε

for each n ≥ n0 and all p > 0. Hence { f(knx)
k3n } is a Cauchy sequence in Y .

Since Y is a fuzzy Banach space, this sequence converges to some T (x) ∈ Y .

Hence we can define a mapping T : X → Y by T (x) := N − limn→∞
f(knx)
k3n ,

namely. For each t > 0 and x ∈ X, limn→∞ N
(
T (x) − f(knx)

k3n , t
)
= 1. Now,

let x, y ∈ X. Fix t > 0 and 0 < ε < 1. Since limn→∞ k−3nφ(knx, kny) = 0,

there is some n1 > n0 such that t0φ(k
nx, kny) < k3nt

6 for all n ≥ n1. Hence
for each n ≥ n1, we infer that

N(T (x+ ky)− kT (x+ y) + kT (x− y)− T (x− ky)− 2k(k2 − 1)T (y), t)

≥ min
{
N
(
T (x+ ky)− f(kn(x+ ky))

k3n
,
t

6

)
, N

(
T (x+ y)− f(kn(x+ y))

k3n
,
t

6k

)
,

N
(
T (x− y)− f(kn(x− y))

k3n
,
t

6k

)
, N

(
T (x− ky)− f(kn(x− ky))

k3n
,
t

6

)
,

N
(
T (y)− f(kny)

k3n
,

t

12k(k2 − 1)

)
, N

(
f(kn(x+ ky))− kf(kn(x+ y))

+ kf(kn(x− y))− f(kn(x− ky))− 2k(k2 − 1)f(kny),
k3nt

6

)}
.

As n → ∞, we see that the first five terms on the right-hand side of the above
inequality tend to 1 and the sixth term is greater than N(Dkf(k

nx, kny),
t0φ(k

nx, kny)), that is, by (3.4), greater than or equal to 1− ε. Thus

N(T (x+ky)−kT (x+ y)+kT (x− y)−T (x−ky)−2k(k2−1)T (y), t) ≥ 1− ε,

for all t > 0 and 0 < ε < 1. It follows that

N(T (x+ ky)− kT (x+ y) + kT (x− y)− T (x− ky)− 2k(k2 − 1)T (y), t) = 1,
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for all t > 0 and by (N2), we have

T (x+ ky)− kT (x+ y) + kT (x− y)− T (x− ky) = 2k(k2 − 1)T (y).

To end the proof, let for some positive δ and α, (3.3) holds. Let

φn(x, y) :=
n−1∑
m=0

k3(−m−1)φ(kmx, kmy) (x, y ∈ X).

Let x ∈ X. By a similar discussion as in the beginning of the proof we can
obtain from (3.3)

N
(
f(knx)− k3nf(x), δ

n−1∑
m=0

k3(n−m−1)φ(0, kmx)
)
≥ α, (3.8)

for all positive integers n. Let s > 0. We have

N
(
f(x)− T (x), δφn(0, x) + s

)
(3.9)

≥ min
{
N
(
f(x)− f(knx)

k3n
, δφn(0, x)

)
, N

(f(knx)
k3n

− T (x), s
)}

. (3.10)

Combining (3.7), (3.8) and the fact that limn→∞ N
(

f(knx)
k3n −T (x), s

)
= 1, we

obtain that
N
(
f(x)− T (x), δφn(0, x) + s

)
≥ α

for large enough n. By the (upper semi) continuity of the real function

N(f(x)− T (x), .), we obtain that N
(
f(x)− T (x), δ

k3ϕ(0, x) + s
)
≥ α. Taking

the limit as s → 0, we conclude that

N
(
f(x)− T (x),

δ

k3
ϕ(0, x)

)
≥ α.

Corollary 3.2. Let X be a linear space and (Y,N) be a fuzzy Banach space.
Let φ : X × X → [0,∞) be a function satisfying (3.1). Let f : X → Y be
a uniformly approximately cubic function with respect to φ. Then there is a
unique cubic mapping T : X → Y such that

lim
t→∞

N(f(x)− T (x), tϕ(0, x)) = 1 (3.11)

uniformly on X.
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Proof. The existence of uniform limit (3.9) immediately follows Theorem 3.1.
It remains to prove the uniqueness assertion. Let S be another cubic mapping
satisfying (3.9). Fix c > 0. Given ε > 0, by (3.9) for T and S, we obtain some
t0 > 0 such that

N
(
f(x)− T (x),

t

2
ϕ(0, x)

)
≥ 1− ε, N

(
f(x)− S(x),

t

2
ϕ(0, x)

)
≥ 1− ε,

for all x ∈ X and all t ≥ t0. Fix some x ∈ X and find some integer n0 such
that

t0

∞∑
m=n

k−3mφ(0, kmx) <
c

2
, ∀n ≥ n0.

Since
∞∑

m=n

k−3nφ(0, kmx) =
1

k3n

∞∑
m=n

k−3(m−n)φ(0, km−n(knx))

=
1

k3n

∞∑
i=0

k−3iφ(0, ki(knx))

=
1

k3n
ϕ(0, knx),

we have

N(S(x)− T (x), c) ≥ min
{
N
(f(knx)

k3n
− T (x),

c

2

)
, N

(
S(x)− f(knx)

k3n
,
c

2

)}
= min

{
N
(
f(knx)− T (knx),

k3n

2
c
)
, N

(
S(knx)− f(knx),

k3n

2
c
)}

≥ min
{
N
(
f(knx)− T (knx), k3nt0

∞∑
m=n

k−3nφ(0, kmx)
)
,

N
(
S(knx)− f(knx), k3nt0

∞∑
m=n

k−3nφ(0, kmx)
)}

= min{N(f(knx)− T (knx), t0ϕ(0, k
nx)), N(S(knx)− f(knx), t0ϕ(k

nx))}
≥ 1− ε

It follows that N(S(x) − T (x), c) = 1 for all c > 0. Thus T (x) = S(x) for all
x ∈ X.

4 Fuzzy Completeness

We proved that under suitable conditions including the completeness of a
space, for every approximately cubic function there exists a unique cubic map-
ping which is close to it. It is natural to ask whether the converse of this result
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holds. More precisely, under what conditions involving approximately cubic
functions, our fuzzy normed space is complete. The following result gives a
partial answer to this question.

Definition 4.1. Let (X,N) be a fuzzy normed space. A mapping f : N∪{0} →
X is said to be approximately cubic if for each α ∈ (0, 1) there is some nα ∈ N
such that

N(f(i+ kj)− kf(i+ j) + kf(i− j)− f(i− kj)− 2k(k2 − 1)f(j), t) ≥ α,

for all i ≥ 2j ≥ nα.

Definition 4.2. Let (X,N) be a fuzzy normed space. A mapping f : N∪{0} →
X is said to be a conditional cubic if

f(i+ kj)− kf(i+ j) + kf(i− j)− f(i− kj) = 2k(k2 − 1)f(j),

for all i ≥ 2j.

Theorem 4.3. Let (X,N) be a fuzzy normed space such that for each approx-
imately cubic type mapping f : N ∪ {0} → X, there is a conditional cubic
mapping C : N ∪ {0} → X such that limn→∞ N(C(n) − f(n), 1) = 1. Then
(X,N) is a fuzzy Banach space.

Proof. Let {xn} be a Cauchy sequence in (X,N). There is an increasing
sequence {nl} of natural numbers

N
(
xn − xm,

1

(10kl)3

)
≥ 1− 1

l

for each n,m ≥ nl. Put yl = xnl
and define f : N ∪ {0} → X by f(l) = l3yl.

Let α ∈ (0, 1) and find some n0 ∈ N such that 1− 1
n0

> α. Since

f(i+ kj)− kf(i+ j) + kf(i− j)− f(i− kj)− 2k(k2 − 1)f(j)

=kj3[yi+kj − yi+j ] + kj3[yi+kj − yi−j ] + (k3 − 2k)j3[yi+kj − yj ]

+k3j3[yi−kj − yj ] + 3k2ij2[yi+kj − yi−kj ] + 3kij2[yi+j − yi−j ]

+3ki2j[yi+kj − yi+j ] + 3ki2j[yi−kj − yi−j ] + i3[yi+kj − yi−kj ]

+ ki3[yi−j − yi+j ],
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for each i ≥ 2kj, hence

N(f(i+ kj)− kf(i+ j) + kf(i− j)− f(i− kj)− 2k(k2 − 1)f(j), 1) ≥

min
{
N
(
yi+kj − yi+j ,

1
10kj3

)
, N

(
yi+kj − yi−j ,

1
10kj3

)
, N

(
yi+kj − yj ,

1
10(k3−2k)j3

)
,

N
(
yi−kj − yj ,

1
10k3j3

)
, N

(
yi+kj − yi−kj ,

1
30k2ij2

)
, N

(
yi+j − yi−j ,

1
30kij2

)
,

N
(
yi+kj − yi+j ,

1
30ki2j

)
, N

(
yi−kj − yi−j ,

1
30ki2j

)
, N

(
yi+kj − yi−kj ,

1
10i3

)
,

N
(
yi−j − yi+j ,

1
10ki3

)}
.

Let i > n0. Then

N
(
yi+kj − yi+j ,

1

10kj3

)
≥ N

(
yi+kj − yi+j ,

1

103k3(i+ j)3

)
≥ α,

N
(
yi+kj − yi−j ,

1

10kj3

)
≥ N

(
yi+kj − yi−j ,

1

103k3(i− j)3

)
≥ α,

N
(
yi+kj − yj ,

1

10(k3 − 2k)j3

)
≥ N

(
yi+kj − yj ,

1

103k3j3

)
≥ α,

N
(
yi−kj − yj ,

1

10k3j3

)
≥ N

(
yi−kj − yj ,

1

103k3j3

)
≥ α,

N
(
yi+kj − yi+j ,

1

30ki2j

)
≥ N

(
yi+kj − yi+j ,

1

103k3(i+ j)3

)
≥ α.

Since i− kj ≥ kj and i− i
2 ≥ kj, we infer that

N
(
yi+kj − yi−kj ,

1

30k2ij2

)
≥ N

(
yi+kj − yi−kj ,

1

103k3(i− kj)3

)
≥ α,

N
(
yi+j − yi−j ,

1

30kij2

)
≥ N

(
yi+j − yi−j ,

1

103k3(i− j)3

)
≥ α,
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N
(
yi−kj − yi−j ,

1

30ki2j

)
≥ N

(
yi−kj − yi−j ,

1

103k3(i− j)3

)
≥ α,

N
(
yi+kj − yi−kj ,

1

10i3

)
≥ N

(
yi+kj − yi−kj ,

1

103k3(i− kj)3

)
≥ α,

N
(
yi−j − yi+j ,

1

10ki3

)
≥ N

(
yi−j − yi+j ,

1

103k3(i− j)3

)
≥ α.

Therefore

N(f(i+ kj)− kf(i+ j) + kf(i− j)− f(i− kj)− 2k(k2 − 1)f(j), t) ≥ α.

This means that f is an approximately cubic type mapping. By our as-
sumption, there is a conditional cubic mapping C : N ∪ {0} → X such that
limn→∞ N(C(n)− f(n), 1) = 1. In particular, limn→∞ N(C(kn)− f(kn), 1) =

1. This means that limn→∞ N
(
C(1)− ykn , 1

k3n

)
= 1. Hence the subsequence

{ykn} of the cauchy sequence {xn} converges to y = C(1). Therefore {xn}
also converges to y.
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