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principle
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Abstract

In this paper we prove a generalized version of the Ekeland varia-
tional principle, which is a common generalization of Zhong variational
principle and Borwein Preiss Variational principle. Therefore in a partic-
ular case, from this variational principle we get a Zhong type variational
principle, and a Borwein-Preiss variational principle. As a consequence,
we obtain a Caristi type fixed point theorem.

1 Introduction

In 1974 1. Ekeland formulated a variational principle in [5] having applications
in many domains of Mathematics, including fixed point theory. Ekeland’s
variational principle (see, for instance [5] and [6]) has been widely used in
nonlinear analysis, since it entails the existence of approximate solutions of
minimization problems for lower semicontinuous functions on complete metric
spaces (see, for instance [1]). Later,Borwein and Preiss gave a different form
of this principle suitable for applications in subdifferential theory [2]. Eke-
land’s variational principle has many generalizations in the very recent books
of Borwein, Zhu [3], Meghea [7] and the references therein.

In this paper we give a generalized form of Ekeland variational princi-
ple, which is a generalization of the variational principles given by Ekeland-
Borwein-Preiss and also by Zhong. As a consequence, we obtain a Caristi type
fixed point theorem in a complete metric space.
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2 A generalized form of Ekeland’s variational principle

In this section we give a common generalization of the variational principles
of Borwein-Preiss-Ekeland [3] and Zhong [9].

First, we recall some notions used in our results, such as lower semi-
continuous or proper functions. For this let (X,d) be an arbitrary metric
space:

Definition 2.1. Let f : X — RU {400} be a function. We say that the
function f is lower semicontinuous at xg € X if

liminf f(z) = f(zo),

Tr—rT0o
where iminf f(z) = sup inf f(x), where V(xo) is a neighborhood system
T—x0 VEV(Z()) zeV

of xg.
Definition 2.2. Let f: X — R be a function. We define the following set
D(f) ={z € X|f(x) < oo}
We say that the function f is proper if D(f) # 0.
Now, we prove our main result.

Theorem 2.1. Let h : [0, +00) — [0, +00) be continuous non-increasing func-
tion. Let (X,d) be a complete metric space and f : X — R U {+oo} be
a proper, lower semi-continuous function bounded from below. Suppose that
p: X xX = Ry U{oo} is a function, satisfying:

(1) for each x € X, we have p(x,x) = 0;
(1) for each (yn,zn) € X xX, such that p(yn, zn) = 0 we have d(yn, 2,) — 0;

(#i7) for each z € X the function y — p(y, z) is lower semi-continuous func-
tion.

Let §,, > 0 (n € N*) be a nonnegative number sequence and 6y > 0 a positive
number. For every xo € X and € > 0 with

flwo) < inf f(@)+e, 1)

there exists a sequence {x,} C X which converges to some x. (x, — xc) such

that
€

h(d(vav xn))p(fea xn) < ﬂ

, for allm € N. (2.2)



A GENERALIZED FORM OF EKELAND’S VARIATIONAL PRINCIPLE 103

If 8,, > 0 for infinitely many n € N, then

fxe) + h(d(wo,22)) Y Suplae,n) < flao), (2.3)

n=0

and for x # x. we have that

f(z)+h(d(xo,x)) Z Onp(x,z0) > f(xe)+h(d(zo,xe)) Z Onp(Te,x,). (2.4)

n=0 n=0
If 6, > 0 for some k € N* and 6; = 0 for every j > k, then for each v # x.
there exists m € N, m > k such that
k—1
f(z) + h(d(xo,x)) Z dip(x, z;) + h(d(xo, 2))okp(z, Tm) >
i=0
k—1
Flae) + h(d(zo, 22)) > 8ip(we, ;) + h(d(wo, 22))0kp(2e, Tm). (2.5)
i=0
Proof. In the first case, for infinitely many n € N, without loss of generality,
we can assume that d,, > 0, for every n € N. We can define the following set:

W(zo) = {x € X[f(x) + h(d(zo, x))dop(z, z0) < f(z0)} - (2.6)

By the assumption (i), we have that p(zo,z¢) = 0, so g € W(xq). Therefore
the set W(zg) # 0. From the lower semi-continuity of the functions f and
p(y,-) and continuity of function h, we have that W(z) is closed subset of X.
We can choose x1 € W(xy), such that

f(x1)+h(d(xo, 21))d0p(x1,20) < me%{zo) {f(z)+ h(d(m()?$))5°p(x’m0)}+€2.5i1

and set again:

1
W(z1) = {93 € W(xo)|f(x) + h(d(wo,2)) > diplw,x:) < fla1) + h(d(zo’fﬂl)ﬁop(zhmo)}
i=0

Similarly as above, we have that W(z1) # 0 (since 1 € W(z1)), and W(x1) is

non-empty closed subset of W(z), which means that W(z;) is a non-empty

closed subset of X as well.

Using the mathematical induction we can define a sequence 2,1 € W(z,—2)
and W(x,,_1) such that:

W(zn1) = {z € W(zn-2)|f(x) + h(d(zo, 2)) i dip(x, x;) <
i=0
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n—2

f(@n-1) + h(d(x0,2n-1)) Y ip(wn—1,2:)}.

i=0
It is easy to see that W(z,—1) # 0, and W(z,,—_1) is closed subset of X. We
can choose x,, € W(x,,_1) such that

n—1
Fn) + hldo, 7)) S Biplirm 22) <
i=0
< inf f(z) d(z Z dip(z, ;) 5” -
T z€W(zn—_1) 0% P ! 2”50 ’

and we can define the set

W(zn) = {fﬂ € W(za-1)|f(2) + h(d(zo,2)) Y dip(z, i) < f(an) + hld(wo, 20)) i 51-/)(%7%)}

=0 =0

which is closed subset of X.
Let z be an arbitrary element of W(z,) . Then from the definition of
W(z,,) we have the following inequality

n—1
f(Z) + h(d Zg, 2 Z(szp z xz) < f(:cn) + h(d(ZOaxn Zézp Tn, T ) g
=0 =0
n—1 n—1
~ f(Z)-f—h(d(l‘o,Z))(Snp(Z,;L'n)—f—h(d Ll?(), Z i p 2, Ty ) < f(mn)+h(d(x0>xn Z §zp 1'7“.’17@)
=0 =0

Then, we obtain

=0

f(2) d(xg, 2 Z&p 2,T; ] <

h(d(zo,2))0np(z,2) < lf(xn) + h(d(zo,xn)) i 0ip(zp, %)1 -

n—1
< lf(xn) + h(d(xo, ) Z dip(n, %)1
=0
- inf 51 i
(EEM}?wn 1) /(@) d@o, Z pla, i ]
On€
<
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therefore -

h(d(zo, 2))p(z, 2n) < 3gy”

So, if n — oo, then p(z,x,) — 0. Then from (i) it follows that d(z,z,) —

0. Therefore diam(W(zy,,)) — 0, whenever n — oo and we obtain a descending
sequence {W(z,,)}n>0 of nonempty closed subsets of X,

(2.7)

W(xo) D W(x1) D .... D W(zy,) D

such that diam(W(z,)) — 0, as n — oco. Applying the Cantor intersection
theorem for the set sequence {W(x,,) }nen, we have that there exists an z. € X
such that

ﬂ W(zy,) = {z}.
n=0

We can observe that z = x. satisfies the inequality (2.7), therefore z,, — ..
If © # z., then there exists m € N such that

m—1
f(@)+h(d(zo, Z@p (@, 25) > f(@m)+h(d(@o, 2m)) Y dip(Tm, z:). (2.8)
i=0 i=0
It is clear that if ¢ > m then
m—1 q—1
f(xm) + h(d(xovxm)) Z 5Zp(xa xz) > f(xq) + h 1’071'q Z‘Szp 'TQ):I/.1 2
i=0 i=0

f(xe) + h(d(xo, 7)) dip(xe, 4).

%

IV
I
o

using the inequality (2.8) we get the following estimate

f(@) + h(d(zo,x Zélp (z,z;) > f(ze) + h(d(zo,ze)) Zélp (Te,x;),

i=0 =0

from where if ¢,m — oo, we have the claimed (2.4) relation.

Now, we assume the existence of a k € N such that d; > 0 and J; = 0 for
each j > k > 0. Without loss of generality we can assume that §; > 0 for
every i < k. If n < k then we can take z, and W(z,,) similarly as above. If
n > k, we can choose x,, € W(x,,_1) so that

k—1
f(-r,b)+h(d($0,],‘n)) Z 61p($n71‘1) < inf ) {f( ) x(), Z 51p Ty T } 26:;:

P zEW (-1
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and we define the following set

k—1

W(z,) = {2 € W(an-1)|f(2)+h(d(wo,2)) Y dip(a, z;)+h(d(wo, x))5p(w, ) <
i=0

f(xn) + h 1‘0, Z 510 xwuxL

In the same way as above, we can see that the statement of Theorem 2.1 holds.
But, if we have x # x, then there exists m > k such that

k—1
f(x)_'_h(d To, T 26 /) T xz)+h(d(x0a ))516(7; xm) > f(xm +h xO, 2611) -rm7xz
=0
k—1
> flxe) + h(d(wo, ) Y Sip(re, x:) + h(d(o, 7))k p(2e, Tm),
i=0
which concludes the proof. O

3 Relation with the Zhong variational principle and the
Ekeland-Borwein-Preiss variational principle

We show that in a special case of the Theorem 2.1 we get Zhong’s variational
principle (see for instance [9] and [10]), and in another special case we get the
generalized form of Ekeland-Borwein-Preiss variational principle given by Li
Yongxin and Shi Shuzhong(see [2], [8] and [3]).

3.1 Relation with Ekeland-Borwein-Preiss variational principle
From the theorem 2.1 we have that

f(x) + h(d(zo,x Z(an (x,2n) > f(xe) + h(d(zo, <)) Z Inp(ze, ).

n=0 n=0

We choose h =¢ > 0 and p = %p. This means that theorem 2.1 gets the
following form:

Corollary 3.1. (Yongzin-Shuzong [8]) Let (X,d) be a complete metric space
and f : X — RU{oco} be a lower semi-continuous function bounded from
below, such that D(f) # 0. Suppose that p: X x X — Ry U{oo} is a function,
satisfying:
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(i) for each x € X, we have p(z,z) = 0;
(i) for each (Yn,zn) € X XX, such that p(yn, 2,) — 0 we have d(yn, zn) — 0;

(iii) for each z € X the function y — p(y, z) is lower semi-continuous func-
tion.

And let 6, > 0(n € N*) be a nonnegative number sequence, 69 > 0. Then for
every xg € X and € > 0 with

Jlwo) < inf f(x) +5, (3.9)

there exists a sequence {x,} C X which converges to some x. (x, — xc) such
that

p(xe, Tp) < 2:50 n € N. (3.10)
If 8,, > 0 for infinitely many n, then
flae) + i np(ze,n) < f(20), (3.11)
n=0
and for x # x. we have
flz)+ i Snp(x, ) > flze) + i Onp(Te, p). (3.12)
n=0 n=0

3.2 Relation with Zhong variational principle

To obtain the Zhong’s variational principle as a special case of Theorem 2.1
we choose the functions h, p, and the sequence §,, as follows. Let §y = 1

and 6, = 0, for every n > 0. Let ¢, > 0 and h(t) = where

€
A(L+g(t)’
g :[0,00) — [0, 00) is a continuous non-decreasing function. Then, in this case

Z Onp(x,2,) = dop(x, 20) = p(, x0).

n=0
If p = d then the Theorem 2.1 has the following form:
f(@) = flae) +

£ E
NI T g(d(ao, 20)) 7 ™) T XA+ g(d(zo.2)

d(x, z).
(3.13)
In the sequel, we examine the conditions when the following inequality holds:
d(xo, ) ~ d(zo, ) < d(x,x.)
L+g(d(zo,x)) 14 g(d(ze,20)) — 14 g(d(2e, 70))

(3.14)
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We use the notations
d(xo,x) = a,
d(zo,x:) = ¢,
d(z,z.) =b.

It is easy to see that a,b, ¢ are exactly the sides of a triangle. The inequality
(3.14) is equivalent with the following

a b+c
<
1+g(a) ~ 14+g(c)

a+ag(c) < (b+c)+ (b+c)g(a). (3.15)

Now, we distinguish two cases, whether a > c or a < c.
If a > ¢, then by the choice of g, we have g(a) > g(c), so ag(c) < ag(a) <
(b+c)g(a). So, if © ¢ B(z.,d(xo,z:)), then

13 &
NI+ g(dlmo.z2))) "= ™) T XA+ gld(zo.2))

flx) = flze) +

d(z,z¢) >

> ) = ST gty e ) (3.16)
Now, we examine the case when a < ¢. We can observe that, if z — @
is a non-increasing function, then &CC) < @ and we obtain
a+ag(c) <a+cgla) < (b+c)+cgla) < (b+c)+ (b+c)g(a).
So, in this case, the (3.14) inequality holds assuming that z +— 92 i non-

x
increasing.

Now, we can announce the following corollary of the Theorem 2.1.

Corollary 3.2. Let g : [0,+00) — [0,+00) continuous non-decreasing func-
tion. Let (X,d) be a complete metric space and f: X — R U {oo} be a lower
semi-continuous function bounded from below, such that D(f) # 0. Then for
every xg € X and e > 0 with

fwo) < inf f(2)+e, (3.17)

there exists a sequence {xy,} C X which converges to some x. (x, — xc) such
that

h(d(20, 2))d(@e, 2n) < 2% neN. (3.18)
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then if © ¢ B(xo,d(zg,z)),

f(x) = f(ze) =

A1+ g(d(zo,7c)))

If @ is decreasing on (0,d(xg,x.)] then for all x # x.

d(z,z.). (3.19)

g

@) 2 1) = A gatmoe)

d(z,z.).

I
Remark 3.1. If g is differentiable then we have (@) < 0, which means
that g(z) < x.

4 An extension of Caristi fixed point theorem

In this section we give an extension of Caristi fixed point theorem. In the
o0

sequel let & = Z 0n < 00, then we have the following:
n=0

Theorem 4.2. Let (X,d) be a complete metric space, such that the function
p is continuous. Let o : X — X be an operator for which there exists a lower
semi-continuous mapping f : X — Ry U{oo}, such that

(1) h(d(zo, p(x)))p(e(x),y) = h(d(zo, x))p(z,y) < p(z, p(z)),
(i) Ep(u, p(u)) < fu) — f(p(u)).
Then ¢ has at least one fixzed point.

Proof. We argue by contradiction. We assume that
o(x) # z,for all x € X. (4.20)

Using Corollary 3.1 we have that for each € > 0 there exists a d; sequence
of positive real numbers and a sequence (Zp,)neN, Tn —> Te a8 N — 00, T € X
such that for every x € X, x # z. we have

f(‘T) + h(d(‘rov .’1?)) Z (5n,0($, xn) > f(xe) + h(d(.’];m 376)) Z 6np($sa xn)
n=0 n=0
(4.21)
In (4.21) we can put x := p(x.), because p(xe) # z.. So, we get the following
inequality:

f(ze)=f(p(ze)) < h(d(wo, p(zc))) Z Snp(p(xe), 2n)—h(d(x0, 2c)) Z Onp(Te, Tn) &
n=0

n=0
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f(%)‘f(‘ﬁ(xa)) < Z 5“ [h(d($07 @(xa)))P(SO(%)a (En) - h(d($07$s))P($s,$n)] :
n=0

(4.22)
Using (i), we get the following
flze)—f(p(ze)) < Z dn [h(d(z0, p(ze)))p(P(2e), Tn) — h(d(z0, 2)) P20, T1)]
n=0
< Z on [p(xe, p(22))] = p(ae, p(:)) Z On = Ep(Te, (). (4.23)
n=0 n=0
If in (ii) we choose u = z. we get the following inequality
Ep(ze, p(ze)) < flae) — flp(xe)). (4.24)
From the (4.23) we have
f(xs) - f(@(l's)) < fp(xsv 50(1'8))' (4'25)
If we compare the inequalities (4.25) and (4.24), we have that
Ep(ze, p(ze)) < flze) — flo(z:)) < Ep(ae, p(z:)),
which is a contradiction.
Thus, there exists & € X such that & € ¢(Z). O
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