

A generalized form of Ekeland's variational principle

Csaba Farkas

Abstract

In this paper we prove a generalized version of the Ekeland variational principle, which is a common generalization of Zhong variational principle and Borwein Preiss Variational principle. Therefore in a particular case, from this variational principle we get a Zhong type variational principle, and a Borwein-Preiss variational principle. As a consequence, we obtain a Caristi type fixed point theorem.

1 Introduction

In 1974 I. Ekeland formulated a variational principle in [5] having applications in many domains of Mathematics, including fixed point theory. Ekeland's variational principle (see, for instance [5] and [6]) has been widely used in nonlinear analysis, since it entails the existence of approximate solutions of minimization problems for lower semicontinuous functions on complete metric spaces (see, for instance [1]). Later, Borwein and Preiss gave a different form of this principle suitable for applications in subdifferential theory [2]. Ekeland's variational principle has many generalizations in the very recent books of Borwein, Zhu [3], Meghea [7] and the references therein.

In this paper we give a generalized form of Ekeland variational principle, which is a generalization of the variational principles given by Ekeland-Borwein-Preiss and also by Zhong. As a consequence, we obtain a Caristi type fixed point theorem in a complete metric space.

Key Words: Ekeland variational principle, Zhong variational principle, Borwein Preiss variational principle, metric spaces, Caristi type fixedpoint

2010 Mathematics Subject Classification: 49J40,58E30

Received: March, 2011. Accepted: February, 2012.

2 A generalized form of Ekeland's variational principle

In this section we give a common generalization of the variational principles of Borwein-Preiss-Ekeland [3] and Zhong [9].

First, we recall some notions used in our results, such as lower semicontinuous or proper functions. For this let (X,d) be an arbitrary metric space:

Definition 2.1. Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a function. We say that the function f is lower semicontinuous at $x_0 \in X$ if

$$\liminf_{x \to x_0} f(x) = f(x_0),$$

where $\liminf_{x\to x_0} f(x) = \sup_{V\in\mathcal{V}(x_0)} \inf_{x\in V} f(x)$, where $\mathcal{V}(x_0)$ is a neighborhood system of x_0 .

Definition 2.2. Let $f: X \to \overline{\mathbb{R}}$ be a function. We define the following set

$$\mathcal{D}(f) = \{ x \in X | f(x) < \infty \}.$$

We say that the function f is proper if $\mathfrak{D}(f) \neq \emptyset$.

Now, we prove our main result.

Theorem 2.1. Let $h: [0, +\infty) \to [0, +\infty)$ be continuous non-increasing function. Let (X, d) be a complete metric space and $f: X \to \mathbb{R} \cup \{+\infty\}$ be a proper, lower semi-continuous function bounded from below. Suppose that $\rho: X \times X \to \mathbb{R}_+ \cup \{\infty\}$ is a function, satisfying:

- (i) for each $x \in X$, we have $\rho(x, x) = 0$;
- (ii) for each $(y_n, z_n) \in X \times X$, such that $\rho(y_n, z_n) \to 0$ we have $d(y_n, z_n) \to 0$;
- (iii) for each $z \in X$ the function $y \mapsto \rho(y, z)$ is lower semi-continuous function.

Let $\delta_n \geq 0$ $(n \in \mathbb{N}^*)$ be a nonnegative number sequence and $\delta_0 > 0$ a positive number. For every $x_0 \in X$ and $\varepsilon > 0$ with

$$f(x_0) \le \inf_{x \in X} f(x) + \varepsilon,$$
 (2.1)

there exists a sequence $\{x_n\} \subset X$ which converges to some $x_{\varepsilon} (x_n \to x_{\varepsilon})$ such that

$$h(d(x_0, x_n))\rho(x_{\varepsilon}, x_n) \le \frac{\varepsilon}{2^n \delta_0}, \text{ for all } n \in \mathbb{N}.$$
 (2.2)

If $\delta_n > 0$ for infinitely many $n \in \mathbb{N}$, then

$$f(x_{\varepsilon}) + h(d(x_0, x_{\varepsilon})) \sum_{n=0}^{\infty} \delta_n \rho(x_{\varepsilon}, x_n) \le f(x_0), \tag{2.3}$$

and for $x \neq x_{\varepsilon}$ we have that

$$f(x) + h(d(x_0, x)) \sum_{n=0}^{\infty} \delta_n \rho(x, x_n) > f(x_{\varepsilon}) + h(d(x_0, x_{\varepsilon})) \sum_{n=0}^{\infty} \delta_n \rho(x_{\varepsilon}, x_n).$$
 (2.4)

If $\delta_k > 0$ for some $k \in \mathbb{N}^*$ and $\delta_j = 0$ for every j > k, then for each $x \neq x_{\varepsilon}$ there exists $m \in \mathbb{N}$, $m \geq k$ such that

$$f(x) + h(d(x_0, x)) \sum_{i=0}^{k-1} \delta_i \rho(x, x_i) + h(d(x_0, x)) \delta_k \rho(x, x_m) >$$

$$f(x_{\varepsilon}) + h(d(x_0, x_{\varepsilon})) \sum_{i=0}^{k-1} \delta_i \rho(x_{\varepsilon}, x_i) + h(d(x_0, x_{\varepsilon})) \delta_k \rho(x_{\varepsilon}, x_m).$$
 (2.5)

Proof. In the first case, for infinitely many $n \in \mathbb{N}$, without loss of generality, we can assume that $\delta_n > 0$, for every $n \in \mathbb{N}$. We can define the following set:

$$W(x_0) = \{ x \in X | f(x) + h(d(x_0, x)) \delta_0 \rho(x, x_0) \le f(x_0) \}.$$
 (2.6)

By the assumption (i), we have that $\rho(x_0, x_0) = 0$, so $x_0 \in \mathcal{W}(x_0)$. Therefore the set $\mathcal{W}(x_0) \neq \emptyset$. From the lower semi-continuity of the functions f and $\rho(y,\cdot)$ and continuity of function h, we have that $\mathcal{W}(x_0)$ is closed subset of X. We can choose $x_1 \in \mathcal{W}(x_0)$, such that

$$f(x_1) + h(d(x_0, x_1))\delta_0 \rho(x_1, x_0) \le \inf_{x \in \mathcal{W}(x_0)} \{f(x) + h(d(x_0, x))\delta_0 \rho(x, x_0)\} + \frac{\varepsilon \cdot \delta_1}{2\delta_0}$$

and set again:

$$W(x_1) = \left\{ x \in W(x_0) | f(x) + h(d(x_0, x)) \sum_{i=0}^{1} \delta_i \rho(x, x_i) \le f(x_1) + h(d(x_0, x_1)) \delta_0 \rho(x_1, x_0) \right\}$$

Similarly as above, we have that $W(x_1) \neq \emptyset$ (since $x_1 \in W(x_1)$), and $W(x_1)$ is non-empty closed subset of $W(x_0)$, which means that $W(x_1)$ is a non-empty closed subset of X as well.

Using the mathematical induction we can define a sequence $x_{n-1} \in \mathcal{W}(x_{n-2})$ and $\mathcal{W}(x_{n-1})$ such that:

$$W(x_{n-1}) = \{x \in W(x_{n-2}) | f(x) + h(d(x_0, x)) \sum_{i=0}^{n-1} \delta_i \rho(x, x_i) \le 1 \}$$

$$f(x_{n-1}) + h(d(x_0, x_{n-1})) \sum_{i=0}^{n-2} \delta_i \rho(x_{n-1}, x_i)$$
.

It is easy to see that $W(x_{n-1}) \neq \emptyset$, and $W(x_{n-1})$ is closed subset of X. We can choose $x_n \in W(x_{n-1})$ such that

$$f(x_n) + h(d(x_0, x_n)) \sum_{i=0}^{n-1} \delta_i \rho(x_n, x_i) \le$$

$$\le \inf_{x \in \mathcal{W}(x_{n-1})} \left\{ f(x) + h(d(x_0, x)) \sum_{i=0}^{n-1} \delta_i \rho(x, x_i) \right\} + \frac{\delta_n \cdot \varepsilon}{2^n \delta_0},$$

and we can define the set

$$W(x_n) = \left\{ x \in W(x_{n-1}) | f(x) + h(d(x_0, x)) \sum_{i=0}^n \delta_i \rho(x, x_i) \le f(x_n) + h(d(x_0, x_n)) \sum_{i=0}^{n-1} \delta_i \rho(x_n, x_i) \right\}$$

which is closed subset of X.

Let z be an arbitrary element of $\mathcal{W}(x_n)$. Then from the definition of $\mathcal{W}(x_n)$ we have the following inequality

$$f(z) + h(d(x_0, z)) \sum_{i=0}^{n} \delta_i \rho(z, x_i) \le f(x_n) + h(d(x_0, x_n)) \sum_{i=0}^{n-1} \delta_i \rho(x_n, x_i) \Leftrightarrow$$

$$\Leftrightarrow f(z) + h(d(x_0, z)) \delta_n \rho(z, x_n) + h(d(x_0, z)) \sum_{i=0}^{n-1} \delta_i \rho(z, x_i) \le f(x_n) + h(d(x_0, x_n)) \sum_{i=0}^{n-1} \delta_i \rho(x_n, x_i).$$

Then, we obtain

$$h(d(x_0, z))\delta_n \rho(z, x_n) \leq \left[f(x_n) + h(d(x_0, x_n)) \sum_{i=0}^{n-1} \delta_i \rho(x_n, x_i) \right] -$$

$$- \left[f(z) + h(d(x_0, z)) \sum_{i=0}^{n-1} \delta_i \rho(z, x_i) \right] \leq$$

$$\leq \left[f(x_n) + h(d(x_0, x_n)) \sum_{i=0}^{n-1} \delta_i \rho(x_n, x_i) \right]$$

$$- \inf_{x \in \mathcal{W}(x_{n-1})} \left[f(x) + h(d(x_0, x)) \sum_{i=0}^{n-1} \delta_i \rho(x, x_i) \right]$$

$$\leq \frac{\delta_n \varepsilon}{2^n \delta_0},$$

therefore

$$h(d(x_0, z))\rho(z, x_n) \le \frac{\varepsilon}{2^n \delta_0}.$$
 (2.7)

So, if $n \to \infty$, then $\rho(z, x_n) \to 0$. Then from (ii) it follows that $d(z, x_n) \to 0$. Therefore $diam(\mathcal{W}(x_n)) \to 0$, whenever $n \to \infty$ and we obtain a descending sequence $\{\mathcal{W}(x_n)\}_{n\geq 0}$ of nonempty closed subsets of X,

$$\mathcal{W}(x_0) \supset \mathcal{W}(x_1) \supset \dots \supset \mathcal{W}(x_n) \supset \dots$$

such that $diam(W(x_n)) \to 0$, as $n \to \infty$. Applying the Cantor intersection theorem for the set sequence $\{W(x_n)\}_{n\in\mathbb{N}}$, we have that there exists an $x_{\varepsilon} \in X$ such that

$$\bigcap_{n=0}^{\infty} \mathcal{W}(x_n) = \{x_{\varepsilon}\}.$$

We can observe that $z = x_{\varepsilon}$ satisfies the inequality (2.7), therefore $x_n \to x_{\varepsilon}$. If $x \neq x_{\varepsilon}$, then there exists $m \in \mathbb{N}$ such that

$$f(x) + h(d(x_0, x)) \sum_{i=0}^{m} \delta_i \rho(x, x_i) > f(x_m) + h(d(x_0, x_m)) \sum_{i=0}^{m-1} \delta_i \rho(x_m, x_i).$$
 (2.8)

It is clear that if $q \geq m$ then

$$f(x_m) + h(d(x_0, x_m)) \sum_{i=0}^{m-1} \delta_i \rho(x, x_i) \geq f(x_q) + h(d(x_0, x_q)) \sum_{i=0}^{q-1} \delta_i \rho(x_q, x_i) \geq$$
$$\geq f(x_{\varepsilon}) + h(d(x_0, x_{\varepsilon})) \sum_{i=0}^{q-1} \delta_i \rho(x_{\varepsilon}, x_i).$$

using the inequality (2.8) we get the following estimate

$$f(x) + h(d(x_0, x)) \sum_{i=0}^{m} \delta_i \rho(x, x_i) \ge f(x_{\varepsilon}) + h(d(x_0, x_{\varepsilon})) \sum_{i=0}^{q} \delta_i \rho(x_{\varepsilon}, x_i),$$

from where if $q, m \to \infty$, we have the claimed (2.4) relation.

Now, we assume the existence of a $k \in \mathbb{N}$ such that $\delta_k > 0$ and $\delta_j = 0$ for each $j > k \ge 0$. Without loss of generality we can assume that $\delta_i > 0$ for every $i \le k$. If $n \le k$ then we can take x_n and $\mathcal{W}(x_n)$ similarly as above. If n > k, we can choose $x_n \in \mathcal{W}(x_{n-1})$ so that

$$f(x_n) + h(d(x_0, x_n)) \sum_{i=0}^{k-1} \delta_i \rho(x_n, x_i) \le \inf_{x \in W(x_{n-1})} \left\{ f(x) + h(d(x_0, x)) \sum_{i=0}^{k-1} \delta_i \rho(x, x_i) \right\} + \frac{\delta_k \varepsilon}{2^n \delta_0},$$

and we define the following set

$$W(x_n) = \{x \in W(x_{n-1}) | f(x) + h(d(x_0, x)) \sum_{i=0}^{k-1} \delta_i \rho(x, x_i) + h(d(x_0, x)) \delta_k \rho(x, x_n) \le 0\}$$

$$f(x_n) + h(d(x_0, x)) \sum_{i=0}^{k-1} \delta_i \rho(x_n, x_i)$$
.

In the same way as above, we can see that the statement of Theorem 2.1 holds. But, if we have $x \neq x_{\varepsilon}$, then there exists m > k such that

$$f(x) + h(d(x_0, x)) \sum_{i=0}^{k-1} \delta_i \rho(x, x_i) + h(d(x_0, x)) \delta_k(x, x_m) > f(x_m) + h(d(x_0, x)) \sum_{i=0}^{k-1} \delta_i \rho(x_m, x_i)$$

$$\geq f(x_{\varepsilon}) + h(d(x_0, x_{\varepsilon})) \sum_{i=0}^{k-1} \delta_i \rho(x_{\varepsilon}, x_i) + h(d(x_0, x_{\varepsilon})) \delta_k \rho(x_{\varepsilon}, x_m),$$

which concludes the proof.

3 Relation with the Zhong variational principle and the Ekeland-Borwein-Preiss variational principle

We show that in a special case of the Theorem 2.1 we get Zhong's variational principle (see for instance [9] and [10]), and in another special case we get the generalized form of Ekeland-Borwein-Preiss variational principle given by Li Yongxin and Shi Shuzhong(see [2], [8] and [3]).

3.1 Relation with Ekeland-Borwein-Preiss variational principle

From the theorem 2.1 we have that

$$f(x) + h(d(x_0, x)) \sum_{n=0}^{\infty} \delta_n \widetilde{\rho}(x, x_n) > f(x_{\varepsilon}) + h(d(x_0, x_{\varepsilon})) \sum_{n=0}^{\infty} \delta_n \widetilde{\rho}(x_{\varepsilon}, x_n).$$

We choose $h \equiv \varepsilon > 0$ and $\tilde{\rho} = \frac{1}{\varepsilon} \rho$. This means that theorem 2.1 gets the following form:

Corollary 3.1. (Yongxin-Shuzong [8]) Let (X, d) be a complete metric space and $f: X \to \mathbb{R} \cup \{\infty\}$ be a lower semi-continuous function bounded from below, such that $\mathbb{D}(f) \neq \emptyset$. Suppose that $\rho: X \times X \to \mathbb{R}_+ \cup \{\infty\}$ is a function, satisfying:

- (i) for each $x \in X$, we have $\rho(x, x) = 0$;
- (ii) for each $(y_n, z_n) \in X \times X$, such that $\rho(y_n, z_n) \to 0$ we have $d(y_n, z_n) \to 0$;
- (iii) for each $z \in X$ the function $y \mapsto \rho(y, z)$ is lower semi-continuous function.

And let $\delta_n \geq 0 (n \in \mathbb{N}^*)$ be a nonnegative number sequence, $\delta_0 > 0$. Then for every $x_0 \in X$ and $\varepsilon > 0$ with

$$f(x_0) \le \inf_{x \in X} f(x) + \varepsilon, \tag{3.9}$$

there exists a sequence $\{x_n\} \subset X$ which converges to some x_{ε} $(x_n \to x_{\varepsilon})$ such that

$$\rho(x_{\varepsilon}, x_n) \le \frac{\varepsilon}{2^n \delta_0} \quad n \in \mathbb{N}. \tag{3.10}$$

If $\delta_n > 0$ for infinitely many n, then

$$f(x_{\varepsilon}) + \sum_{n=0}^{\infty} \delta_n \rho(x_{\varepsilon}, x_n) \le f(x_0), \tag{3.11}$$

and for $x \neq x_{\varepsilon}$ we have

$$f(x) + \sum_{n=0}^{\infty} \delta_n \rho(x, x_n) > f(x_{\varepsilon}) + \sum_{n=0}^{\infty} \delta_n \rho(x_{\varepsilon}, x_n).$$
 (3.12)

3.2 Relation with Zhong variational principle

To obtain the Zhong's variational principle as a special case of Theorem 2.1 we choose the functions h, ρ , and the sequence δ_n as follows. Let $\delta_0 = 1$ and $\delta_n = 0$, for every n > 0. Let $\varepsilon, \lambda > 0$ and $h(t) = \frac{\varepsilon}{\lambda(1+g(t))}$, where $g:[0,\infty) \to [0,\infty)$ is a continuous non-decreasing function. Then, in this case

$$\sum_{n=0}^{\infty} \delta_n \rho(x, x_n) = \delta_0 \rho(x, x_0) = \rho(x, x_0).$$

If $\rho = d$ then the Theorem 2.1 has the following form:

$$f(x) \ge f(x_{\varepsilon}) + \frac{\varepsilon}{\lambda(1 + g(d(x_0, x_{\varepsilon})))} d(x_{\varepsilon}, x_0) - \frac{\varepsilon}{\lambda(1 + g(d(x_0, x)))} d(x, x_0).$$

In the sequel, we examine the conditions when the following inequality holds:

$$\frac{d(x_0, x)}{1 + g(d(x_0, x))} - \frac{d(x_0, x_{\varepsilon})}{1 + g(d(x_{\varepsilon}, x_0))} \le \frac{d(x, x_{\varepsilon})}{1 + g(d(x_{\varepsilon}, x_0))}$$
(3.14)

We use the notations

$$\begin{cases} d(x_0, x) = a, \\ d(x_0, x_{\varepsilon}) = c, \\ d(x, x_{\varepsilon}) = b. \end{cases}$$

It is easy to see that a, b, c are exactly the sides of a triangle. The inequality (3.14) is equivalent with the following

$$\frac{a}{1+g(a)} \le \frac{b+c}{1+g(c)} \Leftrightarrow$$

$$a+ag(c) \le (b+c)+(b+c)g(a). \tag{3.15}$$

Now, we distinguish two cases, whether $a \ge c$ or a < c.

If $a \ge c$, then by the choice of g, we have $g(a) \ge g(c)$, so $ag(c) \le ag(a) \le (b+c)g(a)$. So, if $x \notin B(x_{\varepsilon}, d(x_0, x_{\varepsilon}))$, then

$$f(x) \ge f(x_{\varepsilon}) + \frac{\varepsilon}{\lambda(1 + g(d(x_{0}, x_{\varepsilon})))} d(x_{\varepsilon}, x_{0}) - \frac{\varepsilon}{\lambda(1 + g(d(x_{0}, x)))} d(x, x_{0}) \ge d(x_{\varepsilon}) - \frac{\varepsilon}{\lambda(1 + g(d(x_{0}, x_{\varepsilon})))} d(x_{\varepsilon})$$

$$(3.16)$$

Now, we examine the case when a < c. We can observe that, if $x \mapsto \frac{g(x)}{x}$ is a non-increasing function, then $\frac{g(c)}{c} \le \frac{g(a)}{a}$ and we obtain

$$a + ag(c) \le a + cg(a) \le (b+c) + cg(a) \le (b+c) + (b+c)g(a)$$

So, in this case, the (3.14) inequality holds assuming that $x \mapsto \frac{g(x)}{x}$ is non-increasing.

Now, we can announce the following corollary of the Theorem 2.1.

Corollary 3.2. Let $g:[0,+\infty) \to [0,+\infty)$ continuous non-decreasing function. Let (X,d) be a complete metric space and $f:X \to \mathbb{R} \cup \{\infty\}$ be a lower semi-continuous function bounded from below, such that $\mathfrak{D}(f) \neq \emptyset$. Then for every $x_0 \in X$ and $\varepsilon > 0$ with

$$f(x_0) \le \inf_{x \in X} f(x) + \varepsilon,$$
 (3.17)

there exists a sequence $\{x_n\} \subset X$ which converges to some x_{ε} $(x_n \to x_{\varepsilon})$ such that

$$h(d(x_0, x_n))d(x_{\varepsilon}, x_n) \le \frac{\varepsilon}{2^n} \ n \in \mathbb{N}.$$
 (3.18)

then if $x \notin B(x_0, d(x_0, x_{\varepsilon}))$,

$$f(x) \ge f(x_{\varepsilon}) - \frac{\varepsilon}{\lambda(1 + g(d(x_0, x_{\varepsilon})))} d(x, x_{\varepsilon}).$$
 (3.19)

If $\frac{g(x)}{x}$ is decreasing on $(0,d(x_0,x_{\varepsilon})]$ then for all $x\neq x_{\varepsilon}$

$$f(x) \ge f(x_{\varepsilon}) - \frac{\varepsilon}{\lambda(1 + g(d(x_0, x_{\varepsilon})))} d(x, x_{\varepsilon}).$$

Remark 3.1. If g is differentiable then we have $\left(\frac{g(x)}{x}\right)' \leq 0$, which means that $g(x) \leq x$.

4 An extension of Caristi fixed point theorem

In this section we give an extension of Caristi fixed point theorem. In the sequel let $\xi = \sum_{n=0}^{\infty} \delta_n < \infty$, then we have the following:

Theorem 4.2. Let (X,d) be a complete metric space, such that the function ρ is continuous. Let $\varphi: X \to X$ be an operator for which there exists a lower semi-continuous mapping $f: X \to \mathbb{R}_+ \cup \{\infty\}$, such that

(i)
$$h(d(x_0, \varphi(x)))\rho(\varphi(x), y) - h(d(x_0, x))\rho(x, y) \le \rho(x, \varphi(x)),$$

(ii)
$$\xi \rho(u, \varphi(u)) \le f(u) - f(\varphi(u)).$$

Then φ has at least one fixed point.

Proof. We argue by contradiction. We assume that

$$\varphi(x) \neq x$$
, for all $x \in X$. (4.20)

Using Corollary 3.1 we have that for each $\varepsilon > 0$ there exists a δ_j sequence of positive real numbers and a sequence $(x_n)_{n \in \mathbb{N}}$, $x_n \to x_{\varepsilon}$ as $n \to \infty$, $x_{\varepsilon} \in X$ such that for every $x \in X$, $x \neq x_{\varepsilon}$ we have

$$f(x) + h(d(x_0, x)) \sum_{n=0}^{\infty} \delta_n \rho(x, x_n) > f(x_{\varepsilon}) + h(d(x_0, x_{\varepsilon})) \sum_{n=0}^{\infty} \delta_n \rho(x_{\varepsilon}, x_n).$$
(4.21)

In (4.21) we can put $x := \varphi(x_{\varepsilon})$, because $\varphi(x_{\varepsilon}) \neq x_{\varepsilon}$. So, we get the following inequality:

$$f(x_{\varepsilon}) - f(\varphi(x_{\varepsilon})) < h(d(x_0, \varphi(x_{\varepsilon}))) \sum_{n=0}^{\infty} \delta_n \rho(\varphi(x_{\varepsilon}), x_n) - h(d(x_0, x_{\varepsilon})) \sum_{n=0}^{\infty} \delta_n \rho(x_{\varepsilon}, x_n) \Leftrightarrow$$

$$f(x_{\varepsilon}) - f(\varphi(x_{\varepsilon})) < \sum_{n=0}^{\infty} \delta_n \left[h(d(x_0, \varphi(x_{\varepsilon}))) \rho(\varphi(x_{\varepsilon}), x_n) - h(d(x_0, x_{\varepsilon})) \rho(x_{\varepsilon}, x_n) \right].$$

$$(4.22)$$

Using (i), we get the following

$$f(x_{\varepsilon}) - f(\varphi(x_{\varepsilon})) < \sum_{n=0}^{\infty} \delta_n \left[h(d(x_0, \varphi(x_{\varepsilon}))) \rho(\varphi(x_{\varepsilon}), x_n) - h(d(x_0, x_{\varepsilon})) \rho(x_{\varepsilon}, x_n) \right]$$

$$\leq \sum_{n=0}^{\infty} \delta_n \left[\rho(x_{\varepsilon}, \varphi(x_{\varepsilon})) \right] = \rho(x_{\varepsilon}, \varphi(x_{\varepsilon})) \sum_{n=0}^{\infty} \delta_n = \xi \rho(x_{\varepsilon}, \varphi(x_{\varepsilon})). \tag{4.23}$$

If in (ii) we choose $u = x_{\varepsilon}$ we get the following inequality

$$\xi \rho(x_{\varepsilon}, \varphi(x_{\varepsilon})) \le f(x_{\varepsilon}) - f(\varphi(x_{\varepsilon})).$$
 (4.24)

From the (4.23) we have

$$f(x_{\varepsilon}) - f(\varphi(x_{\varepsilon})) < \xi \rho(x_{\varepsilon}, \varphi(x_{\varepsilon})).$$
 (4.25)

If we compare the inequalities (4.25) and (4.24), we have that

$$\xi \rho(x_{\varepsilon}, \varphi(x_{\varepsilon})) \le f(x_{\varepsilon}) - f(\varphi(x_{\varepsilon})) < \xi \rho(x_{\varepsilon}, \varphi(x_{\varepsilon})),$$

which is a contradiction.

Thus, there exists $\tilde{x} \in X$ such that $\tilde{x} \in \varphi(\tilde{x})$.

Acknowledgement: The author would like to thank dr. Ildikó Mezei and dr. Csaba Varga for carefully reading the paper and for the comments and remarks that considerably improved the paper.

References

- [1] J.P. Aubin Optima and Equilibira: An interduction to Nonlinear Analysis, Graduate Texts in Mathematics. Springer-Verlag, 1993.
- [2] J. M. Borwein and D. Preiss, A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions, *Trans. Amer. Math. Soc.* 303(1987), 517-527.
- [3] J. M. Borwein and Q. J. Zhu, Techniques of Variational Analysis, Springer Berlin Heidelberg New York, 2005
- [4] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241-251.

- [5] I. Ekeland, On the variational principle, Journ. Math Anal. App. 47(1974),324-357.
- [6] I. Ekeland, Nonconvex minimazition problems, Bulletin of A.M.S, Vol.1, No.3, 443-474.
- [7] I. Meghea, Ekeland Variational Principle with Generalizations and Variants, Old City Pubishing, 2009.
- [8] Li Yongsin, Sci Shuzhong, A generalization of Ekeland's ε- variational primciple and its Borwein-Preiss variant, J.M.A.T.A. 246(2000), Nr. 1, 308-319.
- [9] C.-K. Zhong, On Ekeland's variational principle and minimax theorem, Journ. Math. Anal. App. 205(1997), 239-250.
- [10] C.-K. Zhong, A generalization of Ekeland's variational principle and aplication to the study of the realition between the P.S. condition and coercivity Nonl. Anal. T.M.A. 29(1997), 1421-1431.

Csaba Farkas,
Department of Mathematics,
Babeş-Bolyai University

1 Kogălniceanu Str., 400084, Cluj-Napoca, Romania. Email: farkas.csaba2008@gmail.com