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A generalized form of Ekeland’s variational
principle

Csaba Farkas

Abstract

In this paper we prove a generalized version of the Ekeland varia-
tional principle, which is a common generalization of Zhong variational
principle and Borwein Preiss Variational principle. Therefore in a partic-
ular case, from this variational principle we get a Zhong type variational
principle, and a Borwein-Preiss variational principle. As a consequence,
we obtain a Caristi type fixed point theorem.

1 Introduction

In 1974 I. Ekeland formulated a variational principle in [5] having applications
in many domains of Mathematics, including fixed point theory. Ekeland’s
variational principle (see, for instance [5] and [6]) has been widely used in
nonlinear analysis, since it entails the existence of approximate solutions of
minimization problems for lower semicontinuous functions on complete metric
spaces (see, for instance [1]). Later,Borwein and Preiss gave a different form
of this principle suitable for applications in subdifferential theory [2]. Eke-
land’s variational principle has many generalizations in the very recent books
of Borwein, Zhu [3], Meghea [7] and the references therein.

In this paper we give a generalized form of Ekeland variational princi-
ple, which is a generalization of the variational principles given by Ekeland-
Borwein-Preiss and also by Zhong. As a consequence, we obtain a Caristi type
fixed point theorem in a complete metric space.
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2 A generalized form of Ekeland’s variational principle

In this section we give a common generalization of the variational principles
of Borwein-Preiss-Ekeland [3] and Zhong [9].

First, we recall some notions used in our results, such as lower semi-
continuous or proper functions. For this let (X, d) be an arbitrary metric
space:

Definition 2.1. Let f : X → R ∪ {+∞} be a function. We say that the
function f is lower semicontinuous at x0 ∈ X if

lim inf
x→x0

f(x) = f(x0),

where lim inf
x→x0

f(x) = sup
V ∈V(x0)

inf
x∈V

f(x), where V(x0) is a neighborhood system

of x0.

Definition 2.2. Let f : X → R be a function. We define the following set

D(f) = {x ∈ X|f(x) < ∞}.

We say that the function f is proper if D(f) ̸= ∅.

Now, we prove our main result.

Theorem 2.1. Let h : [0,+∞) → [0,+∞) be continuous non-increasing func-
tion. Let (X, d) be a complete metric space and f : X → R ∪ {+∞} be
a proper, lower semi-continuous function bounded from below. Suppose that
ρ : X ×X → R+ ∪ {∞} is a function, satisfying:

(i) for each x ∈ X, we have ρ(x, x) = 0;

(ii) for each (yn, zn) ∈ X×X, such that ρ(yn, zn) → 0 we have d(yn, zn) → 0;

(iii) for each z ∈ X the function y 7→ ρ(y, z) is lower semi-continuous func-
tion.

Let δn ≥ 0 (n ∈ N∗) be a nonnegative number sequence and δ0 > 0 a positive
number. For every x0 ∈ X and ε > 0 with

f(x0) ≤ inf
x∈X

f(x) + ε, (2.1)

there exists a sequence {xn} ⊂ X which converges to some xε (xn → xε) such
that

h(d(x0, xn))ρ(xε, xn) ≤
ε

2nδ0
, for all n ∈ N. (2.2)
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If δn > 0 for infinitely many n ∈ N, then

f(xε) + h(d(x0, xε))
∞∑

n=0

δnρ(xε, xn) ≤ f(x0), (2.3)

and for x ̸= xε we have that

f(x)+h(d(x0, x))
∞∑

n=0

δnρ(x, xn) > f(xε)+h(d(x0, xε))
∞∑

n=0

δnρ(xε, xn). (2.4)

If δk > 0 for some k ∈ N∗ and δj = 0 for every j > k, then for each x ̸= xε

there exists m ∈ N, m ≥ k such that

f(x) + h(d(x0, x))
k−1∑
i=0

δiρ(x, xi) + h(d(x0, x))δkρ(x, xm) >

f(xε) + h(d(x0, xε))

k−1∑
i=0

δiρ(xε, xi) + h(d(x0, xε))δkρ(xε, xm). (2.5)

Proof. In the first case, for infinitely many n ∈ N, without loss of generality,
we can assume that δn > 0, for every n ∈ N. We can define the following set:

W(x0) = {x ∈ X|f(x) + h(d(x0, x))δ0ρ(x, x0) ≤ f(x0)} . (2.6)

By the assumption (i), we have that ρ(x0, x0) = 0, so x0 ∈ W(x0). Therefore
the set W(x0) ̸= ∅. From the lower semi-continuity of the functions f and
ρ(y, ·) and continuity of function h, we have that W(x0) is closed subset of X.
We can choose x1 ∈ W(x0), such that

f(x1)+h(d(x0, x1))δ0ρ(x1, x0) ≤ inf
x∈W(x0)

{f(x) + h(d(x0, x))δ0ρ(x, x0)}+
ε · δ1
2δ0

and set again:

W(x1) =

{
x ∈ W(x0)|f(x) + h(d(x0, x))

1∑
i=0

δiρ(x, xi) ≤ f(x1) + h(d(x0, x1))δ0ρ(x1, x0)

}
Similarly as above, we have that W(x1) ̸= ∅ (since x1 ∈ W(x1)), and W(x1) is
non-empty closed subset of W(x0), which means that W(x1) is a non-empty
closed subset of X as well.

Using the mathematical induction we can define a sequence xn−1 ∈ W(xn−2)
and W(xn−1) such that:

W(xn−1) = {x ∈ W(xn−2)|f(x) + h(d(x0, x))

n−1∑
i=0

δiρ(x, xi) ≤
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f(xn−1) + h(d(x0, xn−1))

n−2∑
i=0

δiρ(xn−1, xi)}.

It is easy to see that W(xn−1) ̸= ∅, and W(xn−1) is closed subset of X. We
can choose xn ∈ W(xn−1) such that

f(xn) + h(d(x0, xn))
n−1∑
i=0

δiρ(xn, xi) ≤

≤ inf
x∈W(xn−1)

{
f(x) + h(d(x0, x))

n−1∑
i=0

δiρ(x, xi)

}
+

δn · ε
2nδ0

,

and we can define the set

W(xn) =

{
x ∈ W(xn−1)|f(x) + h(d(x0, x))

n∑
i=0

δiρ(x, xi) ≤ f(xn) + h(d(x0, xn))
n−1∑
i=0

δiρ(xn, xi)

}
which is closed subset of X.

Let z be an arbitrary element of W(xn) . Then from the definition of
W(xn) we have the following inequality

f(z) + h(d(x0, z))
n∑

i=0

δiρ(z, xi) ≤ f(xn) + h(d(x0, xn))
n−1∑
i=0

δiρ(xn, xi) ⇔

⇔ f(z)+h(d(x0, z))δnρ(z, xn)+h(d(x0, z))

n−1∑
i=0

δiρ(z, xi) ≤ f(xn)+h(d(x0, xn))

n−1∑
i=0

δiρ(xn, xi).

Then, we obtain

h(d(x0, z))δnρ(z, xn) ≤

[
f(xn) + h(d(x0, xn))

n−1∑
i=0

δiρ(xn, xi)

]
−

−

[
f(z) + h(d(x0, z))

n−1∑
i=0

δiρ(z, xi)

]
≤

≤

[
f(xn) + h(d(x0, xn))

n−1∑
i=0

δiρ(xn, xi)

]

− inf
x∈W(xn−1)

[
f(x) + h(d(x0, x))

n−1∑
i=0

δiρ(x, xi)

]

≤ δnε

2nδ0
,
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therefore
h(d(x0, z))ρ(z, xn) ≤

ε

2nδ0
. (2.7)

So, if n → ∞, then ρ(z, xn) → 0. Then from (ii) it follows that d(z, xn) →
0. Therefore diam(W(xn)) → 0, whenever n → ∞ and we obtain a descending
sequence {W(xn)}n≥0 of nonempty closed subsets of X,

W(x0) ⊃ W(x1) ⊃ .... ⊃ W(xn) ⊃ ...

such that diam(W(xn)) → 0, as n → ∞. Applying the Cantor intersection
theorem for the set sequence {W(xn)}n∈N, we have that there exists an xε ∈ X
such that

∞∩
n=0

W(xn) = {xε}.

We can observe that z = xε satisfies the inequality (2.7), therefore xn → xε.
If x ̸= xε, then there exists m ∈ N such that

f(x)+h(d(x0, x))

m∑
i=0

δiρ(x, xi) > f(xm)+h(d(x0, xm))

m−1∑
i=0

δiρ(xm, xi). (2.8)

It is clear that if q ≥ m then

f(xm) + h(d(x0, xm))
m−1∑
i=0

δiρ(x, xi) ≥ f(xq) + h(d(x0, xq))

q−1∑
i=0

δiρ(xq, xi) ≥

≥ f(xε) + h(d(x0, xε))

q−1∑
i=0

δiρ(xε, xi).

using the inequality (2.8) we get the following estimate

f(x) + h(d(x0, x))
m∑
i=0

δiρ(x, xi) ≥ f(xε) + h(d(x0, xε))

q∑
i=0

δiρ(xε, xi),

from where if q,m → ∞, we have the claimed (2.4) relation.
Now, we assume the existence of a k ∈ N such that δk > 0 and δj = 0 for

each j > k ≥ 0. Without loss of generality we can assume that δi > 0 for
every i ≤ k. If n ≤ k then we can take xn and W(xn) similarly as above. If
n > k, we can choose xn ∈ W(xn−1) so that

f(xn)+h(d(x0, xn))

k−1∑
i=0

δiρ(xn, xi) ≤ inf
x∈W(xn−1)

{
f(x) + h(d(x0, x))

k−1∑
i=0

δiρ(x, xi)

}
+

δkε

2nδ0
,
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and we define the following set

W(xn) = {x ∈ W(xn−1)|f(x)+h(d(x0, x))
k−1∑
i=0

δiρ(x, xi)+h(d(x0, x))δkρ(x, xn) ≤

f(xn) + h(d(x0, x))
k−1∑
i=0

δiρ(xn, xi)}.

In the same way as above, we can see that the statement of Theorem 2.1 holds.
But, if we have x ̸= xε, then there exists m > k such that

f(x)+h(d(x0, x))
k−1∑
i=0

δiρ(x, xi)+h(d(x0, x))δk(x, xm) > f(xm)+h(d(x0, x))
k−1∑
i=0

δiρ(xm, xi)

≥ f(xε) + h(d(x0, xε))
k−1∑
i=0

δiρ(xε, xi) + h(d(x0, xε))δkρ(xε, xm),

which concludes the proof.

3 Relation with the Zhong variational principle and the
Ekeland-Borwein-Preiss variational principle

We show that in a special case of the Theorem 2.1 we get Zhong’s variational
principle (see for instance [9] and [10]), and in another special case we get the
generalized form of Ekeland-Borwein-Preiss variational principle given by Li
Yongxin and Shi Shuzhong(see [2], [8] and [3]).

3.1 Relation with Ekeland-Borwein-Preiss variational principle

From the theorem 2.1 we have that

f(x) + h(d(x0, x))
∞∑

n=0

δnρ̃(x, xn) > f(xε) + h(d(x0, xε))
∞∑

n=0

δnρ̃(xε, xn).

We choose h ≡ ε > 0 and ρ̃ = 1
ερ. This means that theorem 2.1 gets the

following form:

Corollary 3.1. (Yongxin-Shuzong [8]) Let (X, d) be a complete metric space
and f : X → R ∪ {∞} be a lower semi-continuous function bounded from
below, such that D(f) ̸= ∅. Suppose that ρ : X×X → R+∪{∞} is a function,
satisfying:
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(i) for each x ∈ X, we have ρ(x, x) = 0;

(ii) for each (yn, zn) ∈ X×X, such that ρ(yn, zn) → 0 we have d(yn, zn) → 0;

(iii) for each z ∈ X the function y 7→ ρ(y, z) is lower semi-continuous func-
tion.

And let δn ≥ 0(n ∈ N∗) be a nonnegative number sequence, δ0 > 0. Then for
every x0 ∈ X and ε > 0 with

f(x0) ≤ inf
x∈X

f(x) + ε, (3.9)

there exists a sequence {xn} ⊂ X which converges to some xε (xn → xε) such
that

ρ(xε, xn) ≤
ε

2nδ0
n ∈ N. (3.10)

If δn > 0 for infinitely many n, then

f(xε) +
∞∑

n=0

δnρ(xε, xn) ≤ f(x0), (3.11)

and for x ̸= xε we have

f(x) +
∞∑

n=0

δnρ(x, xn) > f(xε) +
∞∑

n=0

δnρ(xε, xn). (3.12)

3.2 Relation with Zhong variational principle

To obtain the Zhong’s variational principle as a special case of Theorem 2.1
we choose the functions h, ρ, and the sequence δn as follows. Let δ0 = 1

and δn = 0, for every n > 0. Let ε, λ > 0 and h(t) =
ε

λ(1 + g(t))
, where

g : [0,∞) → [0,∞) is a continuous non-decreasing function. Then, in this case

∞∑
n=0

δnρ(x, xn) = δ0ρ(x, x0) = ρ(x, x0).

If ρ = d then the Theorem 2.1 has the following form:

f(x) ≥ f(xε) +
ε

λ(1 + g(d(x0, xε)))
d(xε, x0)−

ε

λ(1 + g(d(x0, x)))
d(x, x0).

(3.13)
In the sequel, we examine the conditions when the following inequality holds:

d(x0, x)

1 + g(d(x0, x))
− d(x0, xε)

1 + g(d(xε, x0))
≤ d(x, xε)

1 + g(d(xε, x0))
(3.14)
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We use the notations  d(x0, x) = a,
d(x0, xε) = c,
d(x, xε) = b.

It is easy to see that a, b, c are exactly the sides of a triangle. The inequality
(3.14) is equivalent with the following

a

1 + g(a)
≤ b+ c

1 + g(c)
⇔

a+ ag(c) ≤ (b+ c) + (b+ c)g(a). (3.15)

Now, we distinguish two cases, whether a ≥ c or a < c.
If a ≥ c, then by the choice of g, we have g(a) ≥ g(c), so ag(c) ≤ ag(a) ≤

(b+ c)g(a). So, if x /∈ B(xε, d(x0, xε)), then

f(x) ≥ f(xε) +
ε

λ(1 + g(d(x0, xε)))
d(xε, x0)−

ε

λ(1 + g(d(x0, x)))
d(x, x0) ≥

≥ f(xε)−
ε

λ(1 + g(d(x0, xε)))
d(x, xε) (3.16)

Now, we examine the case when a < c. We can observe that, if x 7→ g(x)

x

is a non-increasing function, then
g(c)

c
≤ g(a)

a
and we obtain

a+ ag(c) ≤ a+ cg(a) ≤ (b+ c) + cg(a) ≤ (b+ c) + (b+ c)g(a).

So, in this case, the (3.14) inequality holds assuming that x 7→ g(x)
x is non-

increasing.
Now, we can announce the following corollary of the Theorem 2.1.

Corollary 3.2. Let g : [0,+∞) → [0,+∞) continuous non-decreasing func-
tion. Let (X, d) be a complete metric space and f : X → R ∪ {∞} be a lower
semi-continuous function bounded from below, such that D(f) ̸= ∅. Then for
every x0 ∈ X and ε > 0 with

f(x0) ≤ inf
x∈X

f(x) + ε, (3.17)

there exists a sequence {xn} ⊂ X which converges to some xε (xn → xε) such
that

h(d(x0, xn))d(xε, xn) ≤
ε

2n
n ∈ N. (3.18)
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then if x /∈ B(x0, d(x0, xε)),

f(x) ≥ f(xε)−
ε

λ(1 + g(d(x0, xε)))
d(x, xε). (3.19)

If g(x)
x is decreasing on (0, d(x0, xε)] then for all x ̸= xε

f(x) ≥ f(xε)−
ε

λ(1 + g(d(x0, xε)))
d(x, xε).

Remark 3.1. If g is differentiable then we have
(

g(x)
x

)′
≤ 0, which means

that g(x) ≤ x.

4 An extension of Caristi fixed point theorem

In this section we give an extension of Caristi fixed point theorem. In the

sequel let ξ =

∞∑
n=0

δn < ∞, then we have the following:

Theorem 4.2. Let (X, d) be a complete metric space, such that the function
ρ is continuous. Let φ : X → X be an operator for which there exists a lower
semi-continuous mapping f : X → R+ ∪ {∞}, such that

(i) h(d(x0, φ(x)))ρ(φ(x), y)− h(d(x0, x))ρ(x, y) ≤ ρ(x, φ(x)),

(ii) ξρ(u, φ(u)) ≤ f(u)− f(φ(u)).

Then φ has at least one fixed point.

Proof. We argue by contradiction. We assume that

φ(x) ̸= x, for all x ∈ X. (4.20)

Using Corollary 3.1 we have that for each ε > 0 there exists a δj sequence
of positive real numbers and a sequence (xn)n∈N, xn → xε as n → ∞, xε ∈ X
such that for every x ∈ X, x ̸= xε we have

f(x) + h(d(x0, x))
∞∑

n=0

δnρ(x, xn) > f(xε) + h(d(x0, xε))
∞∑

n=0

δnρ(xε, xn).

(4.21)
In (4.21) we can put x := φ(xε), because φ(xε) ̸= xε. So, we get the following
inequality:

f(xε)−f(φ(xε)) < h(d(x0, φ(xε)))

∞∑
n=0

δnρ(φ(xε), xn)−h(d(x0, xε))

∞∑
n=0

δnρ(xε, xn) ⇔



110 Csaba Farkas

f(xε)−f(φ(xε)) <
∞∑

n=0

δn [h(d(x0, φ(xε)))ρ(φ(xε), xn)− h(d(x0, xε))ρ(xε, xn)] .

(4.22)
Using (i), we get the following

f(xε)−f(φ(xε)) <
∞∑

n=0

δn [h(d(x0, φ(xε)))ρ(φ(xε), xn)− h(d(x0, xε))ρ(xε, xn)]

≤
∞∑

n=0

δn [ρ(xε, φ(xε))] = ρ(xε, φ(xε))
∞∑

n=0

δn = ξρ(xε, φ(xε)). (4.23)

If in (ii) we choose u = xε we get the following inequality

ξρ(xε, φ(xε)) ≤ f(xε)− f(φ(xε)). (4.24)

From the (4.23) we have

f(xε)− f(φ(xε)) < ξρ(xε, φ(xε)). (4.25)

If we compare the inequalities (4.25) and (4.24), we have that

ξρ(xε, φ(xε)) ≤ f(xε)− f(φ(xε)) < ξρ(xε, φ(xε)),

which is a contradiction.
Thus, there exists x̃ ∈ X such that x̃ ∈ φ(x̃).
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