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Abstract. The main objective of the present study was to establish significant and validated QSAR models for imidazoles 

and sulfonamides to explore the relationship between their physicochemical properties and antidiabetic activity. Two 

dimensional QSAR models had been developed by multiple linear regression and partial least square analysis methods, 

and then validated for internal and external predictions. The established 2D QSAR models were statistically significant 

and highly predictive. The validation methods provided significant statistical parameters with q2 > 0.5 and pred_r2 > 0.6, 

which proved the predictive power of the models. The developed 2D QSAR models revealed the significance of SlogP 

and T_N_O_5, and Mol.Wt and SsBrE-index properties of imidazoles and sulfonamides on their antidiabetic activity, 

respectively. These results should prove to be an essential guide for the further design and development of new imidazoles 

and sulfonamides having better antidiabetic activity.
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1. Introduction  

The discovery and development of a new chemical entity 

with demonstrated utility in ameliorating or curing disease 

is a long and arduous process. Industry statistics suggests 

that up to several thousand compounds are synthesized and 

tested; up to 100 compounds are assessed for safety; and 

up to 10 compounds are tested clinically in humans for 

every drug that is approved for medical use. Trial and error 

screening used to consider as the normal procedure, is 

becoming very costly and at the same time less efficient. 

Therefore, only molecules with good chance of activity 

should be prepared and tested. In this context, proper 

designing is required before synthesis of the drugs. 

Diabetes is a complex and costly disease that can 

affect nearly every organ in the body and result in 

devastating consequences [1]. Diabetes is the major 

causes of renal failure, blindness [2], stroke, 

cardiovascular disease, premature and perinatal mortality 

[3]. Insulin is the choice of treatment for type 1 diabetes. 

Type 2 diabetes can be managed with a combination of 

different oral and injectable antidiabetic agents [4].  

In rational drug design, numerous 2D QSAR studies 

[5-10], 3D QSAR studies [11, 12] and binding studies 

[13] have been reported for different group of chemical 

derivatives and their antidiabetic activity. With the aim 

of developing good antidiabetic drugs, we have selected 

some imidazole and sulfonamide antidiabetic compounds 

[14-17] to understand structural insight, which is 

responsible for selectivity of these derivatives towards 

diabetes by using QSAR analysis. The series of 

compounds had shown well defined activity. There was 

high structural diversity and a sufficient range of the 

biological activity in the series of compounds selected for 

the present study. The developed QSAR models were 

statistically significant and could efficiently guide to 

                                                           
* Corresponding author. E-mail address: phravi75@rediffmail.com, sameshyaravi@gmail.com (Veerasamy 

Ravichandran) 

design imidazole and sulfonamide derivatives with better 

antidiabetic potential. 

2. Experimental 

2.1. Software 

CS Chem Office 2004 (Cambridge Soft Corp., 

Cambridge, USA, http://www. cambridgesoft.com) and 

the molecular modeling studies were carried out in Vlife 

MDS 4.3 (VLife Sci Tech Private Ltd, India, 

www.vlifesciences.com).  

2.2. Sketching of molecules 

The .mol files of structures (Imidazole and sulfonamide 

antidiabetic compounds [14-17]), which were drawn and 

cleaned up in Chem 3D, were transferred to VLife MDS.  

2.3. Energy minimization 

“The geometry of the 3D structures was optimized to 

local minima by Merck Molecular Force Field (MMFF) 

by considering distance-dependent dielectric constant of 

1.0, convergence criterion or root-mean-square (RMS) 

gradient at 0.001 kcal/mol Å and the iteration limit to 

10,000. Most stable structure for each compound was 

generated and saved as .mol2 files for computing various 

physico-chemical and alignment independent 

descriptors” [18].  

2.4. Calculation of descriptor (Independent variable) 

The energy-minimized structures were used for the 

calculation of the various 2D descriptors like physico-

chemical (200 in numbers) and other alignment 

independent descriptors (700 in numbers). The 

preprocessing of the independent variables (i.e., 2D 

descriptors) was done by removing invariables and 

variable exclusion was done for constant variable or near 

constant variable at paired correlation. Finally all 

http://www.medicinenet.com/insulin/article.htm
http://www.vlifesciences.com/
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together 300 descriptors were selected to develop 

models.  

2.5. Training and test set selection 

Division of compounds into training and test data set was 

done by using sphere exclusion (SE) and random 

selection methods. The dissimilarity value 1 and 1.5 was 

used in sphere exclusion method, where the dissimilarity 

value is the sphere exclusion radius. In random selection 

method selection of training set compounds with four 

trials 70, 75, 80 and 85% were tried [19]. The reported 

IC50 or Ki values of the selected series of compounds for 

the present QSAR study as their negative logarithmic 

concentrations [–logIC50 or pIC50 or pKi], where IC50 is 

the micro molar concentration of the compounds 

producing 50% inhibition in the glucagon receptor 

activity [14] and Ki is carbonic anhydrase II inhibitor 

activity [15-17]. 

2.6. Feature selection and model development  

In the present study, stepwise (SW) forward–backward 

variable selection [20], genetic algorithms (GA) [21] and 

simulated annealing (SA) [22] based feature selection 

procedures were used to build QSAR models. The cross-

correlation limit 0.5, the number of variables 5, and the 

term selection criteria q² was used to build QSAR 

models. The variance cutoff of 0 and auto-scaling with 

number of random iterations 100 was used to normalize 

the independent variables.  

The stepping criteria for inclusion of predictor 

variable F = 4 and exclusion of predictor variable F = 

3.99 was used in SW forward-backward variable 

selection algorithm. Population 10, number of 

generations 1000 and speed of 9999 was used in GA 

method. The maximum and minimum temperature used 

in SA method was 100 K and 0.01 K, and it was 

decreased by 5 units with 100 iterations at that particular 

temperature [18].  

Multiple linear regression and partial least square 

analysis were used to find the relation between the 

dependent and independent variables. The relationship 

between dependent variable and various independent 

variables were established by using QSAR module of 

VLife MDS software.  

2.7. Model quality and validation 

The developed QSAR models are evaluated using the 

following statistical measures: n (the number of 

compounds in regression); k (number of variables); DF 

(degree of freedom); r² (squared correlation coefficient); 

r²se (standard error of r²); F test (Fischer’s value); q² 

(cross-validated squared correlation coefficient); q²_se 

(standard error of q²); pred_r² (r² for external test set); 

pred_r²se (standard error of pred_r²); Z score (Z score 

calculated by the randomization test); best_ran_q² 

(highest q2 value in the randomization test); best_ran_r² 

(highest r² value in the randomization test). A QSAR 

model is considered to be predictive, if the following 

conditions are satisfied: r² > 0.7, q² > 0.5 and pred_r² > 

0.6 [23]. The quality and validation parameters of QSAR 

models are compiled and discussed in detail somewhere 

by Ravichandran et al. [24]. 

3. Results and discussion 

Series I: Triaryl imidazoles 

The glucagon antagonist activity and structure of 27 

compounds (Table 1) was taken from the study reported 

by Chang et al. after excluding 11 molecules which were 

not having a well-defined biological activity, and 3 

molecules that are not congeners to the rest of the dataset 

[14]. Different feature selection and model development 

methods were used to develop 2D QSAR models. One of 

the best developed models was Eq. (1). The criteria’s 

used to get this model were: random training and test set 

selection method (70%), stepwise forward-backward 

variable selection method, model development by 

multiple linear regression (MLR), test set compounds: 4, 

5, 7, 10, 15, 16, 21, 25, and outliers: compound 8. 

pIC50 = 1.923 + 0.753 (± 0.062) SlogP + 0.591 (± 0.201) 

T_N_O_5            Eq. (1) 

 n = 18, r2 = 0.917, r2se = 0.302, q2 = 0.880, q2se = 0.364, 

F2,15 = 83.191, pred_r2 = 0.830, pred_r2 se = 0.425, Z 

Score r2 = 8.681, Z Score q2 = 7.563, Best Rand r2 = 

0.387, Best Rand q2 = 0.138 

Eq. (1) could explain 91.7% and predict 83.0% of the 

variance of the antidiabetic data. There was no inter-

correlation between the descriptors. The parameters 

involved in the selected model (SlogP, T_N_O_5) and 

the calculated antidiabetic activity by Eq. (1) are given in 

Table 2.  

 

Table 1. The structures of triaryl imidazoles with their glucagons antagonist activity 

 
 

Compounds R1 R2 R3 pIC50 

1 (4-Br)Ph (4-F)Ph 4-pyridyl 6.569 

2 (3-Br)Ph (4-F)Ph 4-pyridyl 5.854 

3 (4-Cl)Ph (4-F)Ph 4-pyridyl 6.398 

4 (4-F)Ph (4-F)Ph 4-pyridyl 5.699 

5 (4-I)Ph (4-F)Ph 4-pyridyl 6.292 

6 (4-Me)Ph (4-F)Ph 4-pyridyl 5.886 

7 (4-iPr)Ph (4-F)Ph 4-pyridyl 6.155 

8 (4-Ph)Ph (4-F)Ph 4-pyridyl 5.000 

9 (4-NH2)Ph (4-F)Ph 4-pyridyl 5.699 

N

H
N

R2

R1

R3
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Compounds R1 R2 R3 pIC50 

10 (4-OMe)Ph (4-F)Ph 4-pyridyl 4.886 

11 (4-CN)Ph (4-F)Ph 4-pyridyl 5.097 

12 (4-COOMe)Ph (4-F)Ph 4-pyridyl 5.060 

13 (4-SMe)Ph (4-F)Ph 4-pyridyl 6.310 

14 (4-Br)Ph Ph 4-pyridyl 6.107 

15 (4-Cl)Ph (4-F)Ph 3-Me(4-pyridyl) 5.959 

16 (4-Cl)Ph (4-Cl)Ph 4-pyridyl 6.721 

17 (4-Cl)Ph (4-I)Ph 4-pyridyl 6.886 

18 (4-Cl)Ph (4-Ph)Ph 4-pyridyl 6.854 

19 (4-Cl)Ph (4-t-Bu)Ph 4-pyridyl 6.886 

20 (4-Cl)Ph (4-n-Bu)Ph 4-pyridyl 7.131 

21 (4-Cl)Ph (3-Ph)Ph 4-pyridyl 7.215 

22 (4-Cl)Ph (2-OPh)Ph 4-pyridyl 8.187 

23 (4-Cl)Ph (3-OPh)Ph 4-pyridyl 7.886 

24 (4-Cl)Ph (4-OPh)Ph 4-pyridyl 7.569 

25 (4-Cl)Ph (2-O-n-Bu)Ph 4-pyridyl 8.071 

26 (4-Cl)Ph (2,4-(O-n-Pr)2)Ph 4-pyridyl 7.886 

27 (4-Cl)Ph (2,4-(O-n-Bu)2)Ph 4-pyridyl 8.187 

 

Table 2. Descriptors involved in 2D QSAR model Eq. (1) for glucagons receptor antagonistic activity of triaryl imidazoles and their 

predicted activity 

Compounds SlogP T_N_O_5 Actual activity (pIC50) 
Predicted activity 

(pIC50) 

1 5.707 0 6.569 6.217 

2 5.707 0 5.854 6.217 

3 5.598 0 6.398 6.135 

4a 5.084 0 5.699 5.749 

5a 5.549 0 6.292 6.099 

6 5.253 0 5.886 5.876 

7a 6.068 0 6.155 6.489 

8 6.612 0 * * 

9 4.527 0 5.699 5.330 

10a 4.953 0 4.886 5.650 

11 4.816 0 5.097 5.547 

12 4.731 0 5.06 5.483 

13 5.667 0 6.31 6.187 

14 5.568 0 6.107 6.113 

15a 5.907 0 5.959 6.368 

16a 6.112 0 6.721 6.522 

17 6.064 0 6.886 6.486 

18 7.126 0 6.854 7.285 

19 6.757 0 6.886 7.008 

20 6.802 0 7.131 7.041 

21a 7.126 0 7.215 7.285 

22 7.251 1 8.187 7.970 

23 7.251 1 7.886 7.970 

24 7.251 0 7.569 7.379 

25a 6.638 1 8.071 7.509 

26 7.037 1 7.886 7.809 

27 7.817 1 8.187 8.396 

                                       a – indicates test set compounds, * - indicates outliers 

 

The correlation of experimental activity against 

predicted activities by Eq. (1) is graphically represented 

in Figure 1. The closeness of the actual and predicted 

activity by Eq. (1) for training and test set compounds are 

shown in Figure 2 and 3, respectively.   

 

Figure 1. Fitness plot between the experimental and predicted 

activities by Eq. (1) 
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Figure 2. Radar plot depicting closeness between the actual 

and predicted activity of training set compounds by Eq. (1) 

The selected model was good in internal prediction (q2 = 

0.880) and external prediction (pred_r2 = 0.830). The good 

results in our original model are not due to a chance 

correlation or structural dependency of the compounds 

was buttressed by the low randomized r2 (0.287) and q2 

(0.138) values.  

 

Figure 3. Radar plot depicting closeness between the actual 

and predicted activity of test set compounds by Eq. (1) 

 

The developed MLR model reveals that the descriptor 

T_N_O_5 which is an alignment independent descriptor 

showed positive contribution. Such positive effect 

indicates that the antidiabetic activity is increased with 

increase in the count of number of nitrogen atom (single, 

double or triple bonded) separated from any oxygen atom 

(single, double or triple bonded) by 5 bond distance in a 

molecule. These findings were supported by the 

compounds 22, 23, 24, 25, 26 and 27 which have 

substitution of 2-OPh-Ph, 3-OPh-Ph, 4-OPh-Ph, 2-O-

nBu-Ph, 2,4-(O-nPr)2-Ph or 2,4-(O-nBu)2-Ph at C-4 

position (R2) of imidazole. The other descriptor SlogP 

signifies log of the octanol/water partition coefficient 

(Including implicit hydrogen). The positive contribution 

SlogP suggests that the antidiabetic activity is increased 

with substitution of strong hydrophobic groups. These 

findings were supported by the compounds 18 to 27 

which have substitution of strong hydrophobic groups 

specifically at C-4 position of imidazole (R2). 

Modification of the parameters T_N_O_5 and SlogP for 

the present series of compounds will lead to good effect 

on antidiabetic activity. 

Series II: Aromatic sulfonamides  

The carbonic anhydrase II inhibitory activity and 

structure of 47 compounds (Table 3) were used for the 

present study [15-17]. Different feature selection and 

model development methods were used to develop 2D 

QSAR models. One of the best developed models was 

Eq. (2). The criteria’s used to get this model were: 

random training and test set selection method (80%), 

stepwise forward-backward variable selection method, 

model development by multiple linear regression (MLR), 

and test set compounds: 2, 12, 15, 19, 21, 23, 25, 28, 36, 

45. 

pKi = -0.605 + 0.001 (±0.000) Mol.Wt. + 0.2446 

(±0.126) SsBrE-index     Eq. (2) 

n = 37, r2 = 0.663, r2se = 0.085, q2 = 0.623, q2se = 0.089, 

F2,34 = 33.375, pred_r2 = 0.714, pred_r2se = 0.079, Z Score 

r2 = 13.021, Z Score q2 = 5.647, Best Rand r2 = 0.201, 

Best Rand q2 = 0.082 

Table 3. The structures of para-substituted aromatic sulfonamides with their carbonic anhydrase II inhibitory activity 

                                       

1   2   3-9 

Compounds R pKi 

1 - -0.382 

2 - -0.321 

3 3,4-Cl2C6H3 -0.047 

4 4-Ac- C6H4 -0.070 

5 4-EtOOC-C6H4 0.020 

6 4-Br-C6H4 0.064 

7 4-Ph-C6H4 -0.018 

8 4-PhO-C6H4 -0.099 

9 4-PhCH2-C6H4 -0.070 

SO O

NH2

HO O

SO O

NH2

HN O

NH2

SO O

NH2

HN O

NH

H
N

R

O
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10-14              15-16       17-26 

Compounds R pKi 

10 Ph -0.102 

11 2-Me-C6H4 -0.084 

12 4-Me-C6H4 -0.084 

13 4-F-C6H4 -0.079 

14 4-Cl-C6H4 -0.059 

15 X = F -0.346 

16 X = Cl -0.325 

17 Me -0.334 

18 CF3 -0.266 

19 Et -0.317 

20 n-Pr -0.281 

21 i-Pr -0.299 

22 n-Bu -0.264 

23 t-Bu -0.264 

24 n-C5H11 -0.264 

25 Ph -0.264 

26 C6F5 -0.143 

 

                                                    

27-30               31-35 

Compounds n R pKi 

27 0 Ph -0.237 

28 1 Ph -0.219 

29 2 Ph -0.202 

30 2 3,4-Cl2C6H3  -0.115 

31 0 Ph -0.211 

32 1 Ph -0.193 

33 2 Ph -0.175 

34 0 4-FC6H4 -0.188 

35 2 4-AcNHC6H4 -0.103 

 

 

                                                             

36   37   38 

SO O

NH2

HN O

NH

H
N

S

O

O

O

R

SO O

NH2

NH

H2N

X

SO O

NH2

NH

O

R

S

O O

NH2
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O
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39            40-43 

Compounds X pKi 

36 - -0.387 

37 - -0.369 

38 - -0.370 

39 - -0.352 

40 F -0.365 

41 Cl -0.344 

42 Br -0.194 

43 I -0.229 

 

                     

44    45                 46                      47 

                   

Compounds R pKi 

44 - -0.201 

45 - -0.244 

46 - -0.369 

47 - -0.351 

Table 4. Descriptors involved in 2D QSAR model Eq. (2) for para-substituted aromatic sulfonamides as carbonic anhydrase II 

inhibitors with their actual and predicted activities 

Compounds Molecular weight 
SsBrE-

index 

Actual activity 

(pKi) 

Predicted activity 

(pKi) 

1 201.203 0 -0.382 -0.382 

2a 215.233 0 -0.321 -0.321 

3 403.245 0 -0.047 -0.047 

4 376.393 0 -0.070 -0.07 

5 408.435 0 0.020 0.02 

6 413.252 0.573 0.064 0.064 

7 410.453 0 -0.018 -0.018 

8 426.453 0 -0.099 -0.099 

9 426.496 0 -0.070 -0.07 

10 398.421 0 -0.102 -0.262 

11 412.447 0 -0.084 -0.239 

12a 412.447 0 -0.084 0.004 

13 416.411 0 -0.079 0.01 

14 432.865 0 -0.059 0.018 

15a 205.213 0 -0.346 -0.232 

16 221.667 0 -0.325 -0.274 

17 214.245 0 -0.334 -0.379 

18 268.216 0 -0.266 -0.327 

19a 228.272 0 -0.317 -0.374 

20 256.326 0 -0.281 -0.372 

21a 242.299 0 -0.299 -0.382 

22 270.353 0 -0.264 -0.367 

SO O

NH2

H2N

SO O

NH2

NH2

X

SO O

NH2

Cl

S

H2N

Cl

O

O

NH2

SO O

NH2

NH2

S

Cl

O

O

NH2

SO O

NH2

OH

SO O

NH2

OH
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Compounds Molecular weight 
SsBrE-

index 

Actual activity 

(pKi) 

Predicted activity 

(pKi) 

23a 270.353 0 -0.264 -0.373 

24 270.353 0 -0.264 -0.255 

25a 270.353 0 -0.264 -0.195 

26 366.268 0 -0.143 -0.09 

27 291.331 0 -0.237 -0.377 

28a 305.358 0 -0.219 -0.306 

29 319.384 0 -0.202 -0.273 

30 388.274 0 -0.115 -0.047 

31 312.37 0 -0.211 -0.228 

32 326.397 0 -0.193 -0.205 

33 340.424 0 -0.175 -0.161 

34 330.361 0 -0.188 0.02 

35 397.476 0 -0.103 -0.273 

36a 172.208 0 -0.387 -0.394 

37 187.222 0 -0.369 -0.399 

38 186.235 0 -0.370 -0.348 

39 200.262 0 -0.352 -0.343 

40 190.198 0 -0.365 -0.25 

41 206.653 0 -0.344 -0.31 

42 251.104 0.383 -0.194 -0.205 

43 298.108 0 -0.229 -0.266 

44 320.177 0 -0.201 -0.161 

45a 285.732 0 -0.244 -0.273 

46 187.219 0 -0.369 -0.322 

47 201.246 0 -0.351 -0.31 

                a – indicates test set compound 

Eq. (2) could explain 66.3% and predict 71.4% of the 

variance of the carbonic anhydrase II inhibitory activity 

data. There was no inter-correlation between the 

descriptors. The parameters involved in the selected 

model (Molecular weight and SsBrE-index) and the 

calculated antidiabetic activity by Eq. (2) are given in 

Table 4. 

The correlation of experimental activity against 

predicted activities by Eq. (2) is graphically represented 

in Figure 4. The closeness of the actual and predicted 

activity by Eq. (2) for training and test set compounds are 

shown in Figure 5 and 6, respectively. The selected 

model was good in internal prediction (q2 = 0.846) and 

external prediction (pred_r2 = 0.714). The good results in 

our original model are not due to a chance correlation or 

structural dependency of the compounds was buttressed 

by the low randomized r2 (0.201) and q2 (0.082) values.  

 
Figure 4. Fitness plot between the experimental and predicted 

activities by Eq. (2) 

 
Figure 5. Radar plot depicting closeness between the actual 

and predicted activity of training set compounds by Eq. (2) 

 
Figure 6. Radar plot depicting closeness between the actual 

and predicted activity of test set compounds by Eq. (2) 

The developed MLR model reveals that the descriptor 

molecular weight showed positive contribution. Such 

positive effect indicates that the antidiabetic activity is 

increased with substitution of bulky groups in the 

compounds. These findings were supported by the 

compounds 5, 6, 12, 13 and 14 which have high 

molecular weight. The other descriptor, SsBrE-index is 

an electrotopological indices descriptor influencing 
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activity variation and is directly contributing to activity. 

This descriptor reveals the importance of presence of 

number of bromine atom connected with one single bond 

in the compounds. Carbonic anhydrase II inhibitory 

activity of sulfonamides is increased with substitution of 

more bromine. Modification of the parameters molecular 

weight and SsBrE-index in the present series of 

sulfonamide compounds will lead to good effect on 

antidiabetic activity. 

4. Conclusion 

In the present study, statistically significant and highly 

predictive 2D QSAR models were developed for some 

antidiabetic compounds. The QSAR models were 

validated by standard statistical measures, cross-

validated correlation coefficient, external test set and 

randomization test, and through observation on how it 

reproduces and explains the quantitative differences seen 

in the experimentally known activity data. The models 

are considered predictive model as the validation 

methods provided significant statistical parameters with 

q2 = 0.880, 0.623 and pred_r2 = 0.830, 0.714, respectively 

for model 1 and 2. The developed 2D QSAR models 

revealed the importance of SlogP, T_N_O_5, Mol.Wt 

and SsBrE-index properties of compounds in their 

antidiabetic activity. These results will be an essential 

guide for the further design and development of new lead 

compounds of more potent antidiabetic compounds. 

These studies can be further extended to develop 

QSAR models using some other approaches HQSAR, 

PARM, 3D QSAR and docking analysis of direct drug 

designing and further validation of the results obtained in 

the present studies. The field is further open for 

designing, synthesis and biological evaluation of potent 

antidiabetic compounds, pharmacokinetic studies and 

clinical studies to establish those molecules as drug. 
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