Electrochemical oxidation of salicylhydroxamic acid on Pt electrode

Open access

Abstract

The electrochemical oxidation behavior of salicylhydroxamic acid (SHAM) on a Pt electrode was investigated in aqueous solution of different pHs, containing 10 mM of SHAM, at 25°C, by cyclic voltammetry technique. The results indicate that the SHAM was oxidized more easily in alkaline medium than acidic and neutral mediums, and the oxidation peaks of SHAM shifted toward lower potential values by increasing pH values. The SHAM electrooxidation involves an irreversible transfer of one or two electron, depending on the pH of solution. If solution pH is lower than 3 and higher than 7, the two electron transfer is involved in the electrooxidation. While, from pH=3 to pH=7, the SHAM electrooxidation involves an irreversible transfer of one electron and two protons in the first step, in agreement with the one step one-electron mechanism. The effect of SHAM concentration on the electrode reaction was investigated in artificial saliva solution. SHAM gives a single irreversible oxidation wave over the wide concentration range studied. Possible mechanism of SHAM electrooxidation was proposed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] C.J. Marmion D. Griffith K.B. Nolan European Journal of Inorganic Chemistry 15 3003-3016 (2002).

  • [2] C. Indiani E. Santoni M. Becucci A. Boffi K. Fukuyama G. Smulevich Biochemistry 47 14066-14074 (2003).

  • [3] E.C. O’Brien E. Farkas M.J. Gil D. Fitzgerald A. Castineras K.B. Nolan Journal of Inorganic Biochemistry 79 47-51 (2000).

  • [4] M. Arnold D.A. Brown O. Deeg W. Errington W. Haase K. Herlihy T.J. Kemp H. Nimir R. Werner Inorganic Chemistry 37 2920 -2925 (1998).

  • [5] E.M.F. Muri M.J. Nieto R.D. Sindelar J.S. Williamson Current Medicinal Chemistry 9 1631-1653 (2002).

  • [6] W.P. Steward A.L. Thomas Expert opinion on investigational drugs 9 2913-2922 (2002).

  • [7] D. A. Brown L.P. Cuffe N. J Fitzpatrick Á.T. Ryan Journal of Inorganic Chemistry 43 297-302 (2003).

  • [8] P. Reddy Y. Maeda K. Hotary C. Liu L.L. Reznikov C.A. Dinarello J.L.M. Ferrara Proceedings of the National Academy of Sciences of the United States of America 101 3921-3926 (2004).

  • [9] W.O. Foye H.S. Hong C.M. Kim E.L. Prien Investigative urology 14 33-37 (1976).

  • [10] A.A.Salem M.M. Omar Turkish Journal of Chemistry 27 383-393 (2002).

  • [11] M. Tian B. Adams J.L. Wen R.M. Asmussen A.C. Chen Electrochimca Acta 54 3799-3805 (2009).

  • [12] Y. Wang H. Jiang J.J. Tian J.B. He Electrochimica Acta 125 133-140 (2014).

  • [13] V. Supalkova J. Petrek L. Havel S. Krizkova J. Petrlova V. Adam D. Potesil P. Babula M. Beklova A. Horna R. Kizek Sensors 6 1483-1497 (2006).

  • [14] I. Gualandi E. Scavetta S. Zappoli D. Tonelli Biosens. Bioelectron. 26 3200-3206 (2011).

  • [15] K. Kratochvilová I. Hoskovcová J. Jirkovsk´y J. Klíma J. Ludvík Electrochimca Acta 40 2603-2609 (1995).

  • [16] W.D. Zhang B. Xu Y.X. Hong Y.X. Yu J.S. Ye J.Q. Zhang J. Solid State Electrochemistry 14 1713-1718 (2010).

  • [17] J. Xu X. Zhuang Talanta 38 1191-1195 (1991).

  • [18] J. Li J. Yu Q. Lin Analytical Letter 43 631-643 (2010).

  • [19] E. Al Shamaileh M. Alawi Y. Dahdal H. Saadeh Jordan Journal of Pharmaceutical Sciences 1 55-64 (2008).

  • [20] Y. Wang H. Jiang J. Tian J. He Electrochemica Acta 125 133-140 (2014).

  • [21] E. Wudarska E. Chrzescijanska E. Kusmierek J. Rynkowski Electrochimica Acta 93 189-194 (2013).

  • [22] E. Chrzescijanska E. Wudarska E. Kusmierek J. Rynkowski Journal of Electroanalytical Chemistry 713 17-21 (2014).

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 242 157 11
PDF Downloads 112 88 6